JPH0770393B2 - AC solenoid control method - Google Patents

AC solenoid control method

Info

Publication number
JPH0770393B2
JPH0770393B2 JP63045365A JP4536588A JPH0770393B2 JP H0770393 B2 JPH0770393 B2 JP H0770393B2 JP 63045365 A JP63045365 A JP 63045365A JP 4536588 A JP4536588 A JP 4536588A JP H0770393 B2 JPH0770393 B2 JP H0770393B2
Authority
JP
Japan
Prior art keywords
iron core
solenoid
movable iron
power supply
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63045365A
Other languages
Japanese (ja)
Other versions
JPH01220412A (en
Inventor
孝 石野
裕之 山本
功 桧山
寿光 五味田
洋介 永野
重治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63045365A priority Critical patent/JPH0770393B2/en
Publication of JPH01220412A publication Critical patent/JPH01220412A/en
Publication of JPH0770393B2 publication Critical patent/JPH0770393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、交流ソレノイドの制御方法に係り、さらに詳
細には、固定鉄心に対する可動鉄心吸引時の衝撃音減化
をはかる電源電圧の波形制御方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an AC solenoid, and more particularly, to waveform control of a power supply voltage for reducing impact noise when a movable iron core is attracted to a fixed iron core. Regarding the method.

〔従来の技術〕[Conventional technology]

本発明の説明に先立ち、交流ソレノイドの内部構造、さ
らには、従来おこなわれている交流ソレノイドの制御方
法を、それぞれ第4図および第5図にもとづいて説明す
る。
Prior to the description of the present invention, the internal structure of the AC solenoid and the conventional AC solenoid control method will be described with reference to FIGS. 4 and 5, respectively.

交流ソレノイドの内部構造を示す第4図において、1は
交流ソレノイドの総称、2は主コイル、3は固定鉄心、
4は可動鉄心、6は主コイル2を包囲した合成樹脂製の
ボビンを示し、ボビン6は、その略中央部に固定鉄心3
と可動鉄4とを収納するガイド部5を有している。ま
た、ボビン6は固定鉄心3を装着した磁性材よりなるヨ
ーク7と当て板8とによつて挟持されている。可動鉄心
4には、固定鉄心3と対向する側に位置して、戻しばね
9を支持する凹部10が設けられており、また可動鉄心4
の他側には、ボビン6のガイド部5の係止部11に掛かる
段付部12が設けられている。そして、固定鉄心3の可動
鉄心4と対向する側には、従コイル13が嵌着されてい
る。
In FIG. 4 showing the internal structure of the AC solenoid, 1 is a general term for the AC solenoid, 2 is a main coil, 3 is a fixed iron core,
Reference numeral 4 denotes a movable iron core, 6 denotes a synthetic resin bobbin surrounding the main coil 2, and the bobbin 6 has a fixed iron core 3 at a substantially central portion thereof.
It has a guide portion 5 for housing the movable iron 4 and the movable iron 4. The bobbin 6 is sandwiched between a yoke 7 made of a magnetic material, to which the fixed iron core 3 is attached, and a contact plate 8. The movable iron core 4 is provided with a recess 10 that is located on the side facing the fixed iron core 3 and that supports the return spring 9.
On the other side, a stepped portion 12 that hooks on the locking portion 11 of the guide portion 5 of the bobbin 6 is provided. A secondary coil 13 is fitted on the side of the fixed iron core 3 facing the movable iron core 4.

従来形交流ソレノイドの制御回路図である第5図におい
て、交流電源には、これと並列にFLS14と交流ソレノイ
ド1とが接続されている。また、FLS14のゲート(G)
は、マイクロコンピュータのコントローラー15に接続さ
れ、コントローラー15での制御によるゲート信号を前記
FLS14のゲート(G)が受けて、t1−t2間を電気的に閉
じ、交流ソレノイド1を駆動する。FLS14は、ゲート信
号が入つた時点から、電源電圧の半波形(9ゼロクロス
まで)を交流ソレノイド1に印加する。したがつて、役
2KHzのパルスよりなるゲート信号を連続してFLS14に送
ることにより、交流ソレノイド1には、連続的に電源電
圧が印加される。主コイル2に電圧が印加されると、固
定鉄心3,ヨーク7,当て板8および可動鉄心4に磁路が形
勢され、戻しばね9の反力に打ち勝つて可動鉄心4が固
定鉄心3に吸引される。また、固定鉄心3に磁路が形勢
されることにより、従コイル13に電流が発生し、前記の
主磁路とは別に、90゜位相の遅れた従磁路が発生し、円
滑な吸引作用を継続する。そして、前記ゲート信号をオ
フすることにより、可動鉄心4が戻しばね9の力によつ
て元の位置に戻る。
In FIG. 5, which is a control circuit diagram of the conventional AC solenoid, the FLS 14 and the AC solenoid 1 are connected in parallel to the AC power source. Also, the gate of FLS14 (G)
Is connected to the controller 15 of the microcomputer, and the gate signal under the control of the controller 15 is
The gate (G) of FLS14 receives and electrically closes between t 1 and t 2 to drive the AC solenoid 1. The FLS 14 applies a half waveform (up to 9 zero crosses) of the power supply voltage to the AC solenoid 1 from the time when the gate signal is input. Therefore, the role
A power supply voltage is continuously applied to the AC solenoid 1 by continuously sending a gate signal composed of a pulse of 2 KHz to the FLS 14. When a voltage is applied to the main coil 2, a magnetic path is formed in the fixed iron core 3, the yoke 7, the contact plate 8 and the movable iron core 4, and the movable iron core 4 is attracted to the fixed iron core 3 by overcoming the reaction force of the return spring 9. To be done. In addition, since the magnetic path is generated in the fixed iron core 3, a current is generated in the slave coil 13, and a slave magnetic path with a 90 ° phase delay is generated in addition to the main magnetic path, so that a smooth suction action is obtained. To continue. Then, by turning off the gate signal, the movable iron core 4 is returned to its original position by the force of the return spring 9.

ところで、従来一般に採用されている交流ソレノイドの
駆動制御方法にあつては、電源電圧のどの波高の時にFL
S14のゲート信号をオンさせるかについて考慮していな
いため、交流ソレノイド1は、電源電圧の各波高でオン
されることになる。
By the way, regarding the AC solenoid drive control method that has been generally adopted in the past, the FL
Since it is not considered whether to turn on the gate signal of S14, the AC solenoid 1 is turned on at each wave height of the power supply voltage.

一方、交流ソレノイド1の固定鉄心3に対して可動鉄心
4が吸引される場合に発生する衝撃音の問題であるが、
これは、固定鉄心3に対して可動鉄心4が衝突した時に
失われる可動鉄心4の運動エネルギーによって左右され
る。
On the other hand, there is a problem of impact noise generated when the movable iron core 4 is attracted to the fixed iron core 3 of the AC solenoid 1.
This depends on the kinetic energy of the movable iron core 4 lost when the movable iron core 4 collides with the fixed iron core 3.

そして、可動鉄心4の運動エネルギーは、当該可動鉄心
4の重量と速度によって決まる。
Then, the kinetic energy of the movable iron core 4 is determined by the weight and speed of the movable iron core 4.

つまり、交流ソレノイド1への通電開始から可動鉄心4
がフルストロークした時までの電気エネルギーの積分値
が最小の時、前記衝突音は小さくなる。
In other words, from the start of energization of the AC solenoid 1 to the movable iron core 4
When the integrated value of the electric energy up to the time of full stroke is minimum, the collision noise becomes small.

ところで、交流ソレノイド1への通電タイミングをゼロ
クロス時点に一致させて可動鉄心4を移動させた時の当
該可動鉄心4のストローク特性は第6図のようになり、
交流ソレノイド1への通電タイミングをゼロクロス時点
からずらして可動鉄心4を移動させた時の当該可動鉄心
4のストローク特性は第7図のようになる。
By the way, the stroke characteristic of the movable iron core 4 when the movable iron core 4 is moved with the timing of energizing the AC solenoid 1 coincident with the zero cross time point is as shown in FIG.
The stroke characteristic of the movable iron core 4 when the movable iron core 4 is moved with the timing of energizing the AC solenoid 1 deviated from the zero cross point is as shown in FIG.

すなわち、交流ソレノイド1への通電タイミングをゼロ
クロス時点に一致させて可動鉄心4を移動させた時の電
圧,電流と可動鉄心4の移動形態とを示す第6図におい
て、可動鉄心4がフルストロークするまでに消費される
電気エネルギーは、同図のハッチング部分の電流値iに
各時点の電圧Vを乗じた値になる。
That is, in FIG. 6 showing the voltage and current and the moving mode of the movable iron core 4 when the movable iron core 4 is moved with the energization timing of the AC solenoid 1 coincident with the zero cross time point, the movable iron core 4 makes a full stroke. The electric energy consumed up to this point has a value obtained by multiplying the current value i in the hatched portion of FIG.

一方、交流ソレノイド1への通電タイミングをゼロクロ
ス時点からずらして可動鉄心4を移動させた時の電圧,
電流と可動鉄心4の移動形態とを示す第7図において、
交流ソレノイド1への通電タイミングをゼロクロス時点
からt0だけ遅らせると、可動鉄心4がフルストロークす
るまでに消費される電気エネルギーは、同図のハッチン
グ部分の電流値iに各時点の電圧Vを乗じた値になる。
On the other hand, the voltage when the movable iron core 4 is moved with the energization timing of the AC solenoid 1 shifted from the zero cross point,
In FIG. 7 showing the electric current and the moving mode of the movable iron core 4,
When the timing of energizing the AC solenoid 1 is delayed by t 0 from the time of zero crossing, the electric energy consumed until the movable iron core 4 makes a full stroke is obtained by multiplying the current value i at the hatched portion in the figure by the voltage V at each time. It becomes a value.

第6図のケースと第7図のケースとを比較すると、第7
図のケースの方が、明らかに消費された電気エネルギー
は小さく、したがって固定鉄心3に対して可動鉄心4が
衝突する時の音も小さくなる。
Comparing the case of FIG. 6 with the case of FIG.
In the case shown in the figure, the consumed electric energy is obviously smaller, and therefore the noise when the movable core 4 collides with the fixed core 3 is also smaller.

また、固定鉄心3と可動鉄心4との衝突直前に電磁力
(電流)がゼロであれば、この時が最も可動鉄心4の加
速度が小さく、固定鉄心3と可動鉄心4との衝撃力を弱
める上で有効であると言えるが、FLS14のオン信号がラ
ンダムであれば、固定鉄心3と可動鉄心4との衝突直前
における電磁力も常に変り、衝撃音もばらつくことにな
る。実験によれば、同一仕様の交流ソレノイドを駆動さ
せた場合、音圧レベルで約10dB程度の音のばらつきが生
じている。
If the electromagnetic force (current) is zero immediately before the collision between the fixed iron core 3 and the movable iron core 4, the acceleration of the movable iron core 4 is the smallest at this time, and the impact force between the fixed iron core 3 and the movable iron core 4 is weakened. It can be said that this is effective, but if the ON signal of the FLS 14 is random, the electromagnetic force immediately before the collision between the fixed iron core 3 and the movable iron core 4 will always change, and the impact noise will also vary. According to the experiment, when the AC solenoids having the same specifications are driven, the sound pressure level causes a sound variation of about 10 dB.

しかして、交流ソレノイドの衝撃音低減化、すなわち固
定鉄心に対する可動鉄心吸引時の衝撃音低減化は、従来
一般に、空気,油等によつてダンパー効果をもたせた機
械式緩衝装置によるものがほとんどである。
However, the impact noise of the AC solenoid, that is, the impact noise when the movable iron core is attracted to the fixed iron core, is generally reduced by a mechanical shock absorber that has a damper effect by air or oil. is there.

しかし、このように、機械式緩衝装置によつて固定鉄心
と可動鉄心との衝撃音低減化をはかる場合、機械式緩衝
装置を組み込んだソレノイドの構造が複雑かつ大形化す
るばかりでなく、コスト的にも、その低減化に限度があ
る。
However, when the impact noise between the fixed iron core and the movable iron core is reduced by the mechanical shock absorber in this way, not only the structure of the solenoid incorporating the mechanical shock absorber becomes complicated and large, but also the cost is reduced. However, there is a limit to the reduction.

以上の点を考慮して、先に、電源電圧のゼロクロス時点
より時間t0遅らせて可動鉄心の移動を開始し、前記可動
鉄心の駆動電流がほぼゼロとなる時点、すなわち可動鉄
心4の加速度が最も小さくなる時点で可動鉄心と固定鉄
心とが密着するよう、電源電圧の波形制御をおこなう固
定鉄心ソレノイドの制御方法が提案されており、これに
よれば、固定鉄心と可動鉄心との衝撃音を電気的制御に
よつて低減させるため、機械式緩衝装置を組み込んだソ
レノイドに比較して、その構造が複雑かつ大形化するこ
となく、コストの低減化にも大きく貢献することができ
る。
In consideration of the above points, first, the moving iron core starts moving with a time t 0 delayed from the zero crossing time of the power supply voltage, and the driving current of the moving iron core becomes almost zero, that is, the acceleration of the moving iron core 4 is A fixed iron core solenoid control method that controls the waveform of the power supply voltage has been proposed so that the movable iron core and the fixed iron core come into close contact with each other at the smallest point. Since the amount is reduced by electric control, the structure can be greatly reduced and the cost can be largely contributed to, compared with a solenoid incorporating a mechanical shock absorber, without making the structure complicated and large.

なお、後述する本発明と技術分野を共通にする先行技術
としては、例えば得開昭51−87765号および同54−15707
4号公報等を挙げることができる。
Incidentally, as a prior art having a common technical field with the present invention described later, for example, Tokukai 51-87765 and 54-15707.
No. 4, etc. can be mentioned.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明の目的は、ソレノイド固定鉄心と可動鉄心との衝
撃音を電気的制御によつて低減させる場合、すなわち可
動鉄心の加速度が最も小さくなる時点で可動鉄心と固定
鉄心とを密着させる場合に、1個の交流ソレノイドを商
用電源周波数が50Hzあるいは60Hzのいずれの地域で使用
する場合も、その衝撃音領域をほぼ最低の領域に止どめ
ることができ、この種制御方法を実施する上でその効果
を実効あるものとすることのできる、改良された交流ソ
レノイドの制御方法を提供することにある。
An object of the present invention is to reduce the impact noise between the solenoid fixed iron core and the movable iron core by electrical control, that is, to bring the movable iron core and the fixed iron core into close contact with each other when the acceleration of the movable iron core is minimized, When using one AC solenoid in any area where the commercial power supply frequency is 50Hz or 60Hz, the impact sound area can be kept to the lowest area. An object of the present invention is to provide an improved AC solenoid control method capable of making the effect effective.

〔課題を解決するための手段〕[Means for Solving the Problems]

前記目的は、交流ソレノイドが商用電源に接続され、前
記ソレノイドが付勢されると商用電源の半波の間に可動
鉄心がフルストロークするように、可動鉄心戻しばねの
弾力、および電磁力を設定して、電源電圧のゼロクロス
時点より時間t0遅らせて可動鉄心の移動を開始し、前記
可動鉄心の駆動電流がほぼゼロとなる時点で可動鉄心と
固定鉄心とが密着するよう、電源電圧の波形制御をおこ
なう交流ソレノイドの制御方法において、前記時間t0
3〜6msとすることによつて達成される。
The purpose is to set the elasticity of the movable core return spring and the electromagnetic force so that the AC solenoid is connected to a commercial power supply and the movable iron core makes a full stroke during a half wave of the commercial power supply when the solenoid is energized. Then, the movement of the movable iron core is delayed by time t 0 from the time of the zero crossing of the power source voltage, and the waveform of the power source voltage is adjusted so that the movable iron core and the fixed iron core come into close contact when the drive current of the movable iron core becomes almost zero. This is achieved by setting the time t 0 to 3 to 6 ms in the control method of the AC solenoid that performs control.

〔作用〕[Action]

しかして、本発明は、前記方法を採用することにより、
後述の実験データから明らかなように、交流ソレノイド
の固定鉄心と可動鉄心との衝撃音を電気的制御によって
低減させる場合に、すなわち可動鉄心の加速度が最も小
さくなる時点で可動鉄心と固定鉄心とを密着させる場合
に、1個の交流ソレノイドを商用電源周波数が50Hzある
いは60Hzのいずれの地域で使用する場合も、その衝撃音
領域をほぼ最低の領域に止どめることができる。
Therefore, the present invention, by adopting the above method,
As will be apparent from the experimental data described later, when the impact sound between the fixed core and the movable core of the AC solenoid is reduced by electrical control, that is, when the acceleration of the movable core becomes the smallest, the movable core and the fixed core are separated. When closely contacting each other, even if one AC solenoid is used in a region where the commercial power supply frequency is 50 Hz or 60 Hz, the impact sound region can be kept to the lowest region.

〔実施例〕〔Example〕

以下、本発明を、第1図〜第3図の一実施例にもとづい
て説明すると、第1図は本発明方法の実施に供される交
流ソレノイドの制御回路図、第2図は電圧,電流,ゲー
ト信号とソレノイド可動鉄心の移動形態とを示す特性線
図、第3図は本発明の効果を示す音圧レベル特性線図で
ある。
Hereinafter, the present invention will be described based on one embodiment of FIGS. 1 to 3. FIG. 1 is a control circuit diagram of an AC solenoid used for carrying out the method of the present invention, and FIG. 2 is voltage and current. , A characteristic diagram showing the gate signal and the moving form of the solenoid movable iron core, and FIG. 3 is a sound pressure level characteristic diagram showing the effect of the present invention.

本発明方法の実施に供される交流ソレノイドの制御回路
図を示す第1図において、電源電圧ゼロクロス検出回路
16は、電源電圧のゼロクロスを検出し、これを起点に、
マイクロコンピユータのコントローラー15を介して、ゲ
ート信号のオン信号が前記ゼロクロスより時間t0遅れて
送られ、交流ソレノイド1が駆動される。なお、その駆
動状態を、第1図を参照しつつ、第2図にもとづいて説
明する。
FIG. 1 is a control circuit diagram of an AC solenoid used for carrying out the method of the present invention.
16 detects the zero cross of the power supply voltage, and with this as the starting point,
The ON signal of the gate signal is sent via the controller 15 of the microcomputer at a time t 0 later than the zero cross, and the AC solenoid 1 is driven. The drive state will be described with reference to FIG. 1 and FIG.

すなわち、第2図において、電源電圧のゼロクロスから
時間t0後にFLS14のゲート信号をオンすると、電圧が斜
線で示すごとく交流ソレノイド1に印加され、電流は
のように立ち上がる。この電流に対し、可動鉄心4は、
戻しばね9に抗して、電流i0から移動を始め、電流値が
ほぼゼロ近傍時点で固定鉄心3に吸引衝突し、その後吸
引状態を継続して、ゲートオフ信号で吸引が解除され、
戻しばね9によつて可動鉄心4が初期状態に復帰する。
なお、電源電圧の立上り制御によつて固定鉄心と可動鉄
心との衝突音変化の実験例を第3図にもとづいて説明す
る。
That is, in FIG. 2, when the gate signal of the FLS 14 is turned on after the time t 0 from the zero cross of the power supply voltage, the voltage is applied to the AC solenoid 1 as shown by the diagonal lines, and the current rises as. In response to this current, the movable iron core 4
It starts moving from the current i 0 against the return spring 9, and when the current value is close to zero, it attracts and collides with the fixed iron core 3, and then continues the attraction state, and the attraction is released by the gate-off signal.
The return spring 9 causes the movable iron core 4 to return to the initial state.
An experimental example of collision noise change between the fixed iron core and the movable iron core by the rise control of the power supply voltage will be described with reference to FIG.

すなわち、第3図においては、商用電源周波数が50Hzの
場合あるいは60Hzの場合について、電源電圧ゼロクロス
からのオン時間を横軸にとり、固定鉄心と可動鉄心との
衝突衝撃音の音圧レベルを縦軸にとつてある。しかし
て、第3図によれば、電源電圧ゼロクロスからの時間t0
を変えることによつて音圧レベルが変化していることが
判る。また、第3図から、商用電源周波数が50Hzあるい
は60Hzで音圧の変曲点が異なることが判る(第3図のA
点およびB点)。しかして、商用電源周波数が60Hzの場
合、音圧レベルの最低点(B点)は、電源電圧ゼロクロ
スからのオン時間t0が3.7msのところにあり、また商用
電源周波数が50Hzの場合、音圧レベルの最低点(A点)
は、電源電圧ゼロクロスからのオン時間t0が5msのとこ
ろにあり、1個の交流ソレノイドを商用電源周波数が50
Hzあるいは60Hzのいずれの地域で使用する場合も、音圧
低減化の上で、前記時間t0は、3.7〜5msが理想である
が、本発明においては、交流ソレノイド製作時の量産ば
らつきを考慮して、前記時間t0を3〜6msとした。
That is, in FIG. 3, when the commercial power supply frequency is 50 Hz or 60 Hz, the horizontal axis represents the on-time from the power supply voltage zero crossing, and the vertical axis represents the sound pressure level of the collision impact sound between the fixed core and the movable core. It is related to Thus, according to FIG. 3, the time t 0 from the power supply voltage zero crossing
It can be seen that the sound pressure level is changed by changing the. Also, from FIG. 3, it can be seen that the inflection point of the sound pressure is different when the commercial power supply frequency is 50 Hz or 60 Hz (A in FIG. 3).
Points and B points). When the commercial power supply frequency is 60 Hz, the lowest point (B point) of the sound pressure level is at the on-time t 0 of 3.7 ms from the power supply voltage zero crossing, and when the commercial power supply frequency is 50 Hz, the Lowest pressure level (point A)
Is an on-time t 0 from the power supply voltage zero cross at 5 ms, and one AC solenoid is connected to a commercial power supply frequency of 50 ms.
When used in any area of Hz or 60 Hz, the time t 0 is ideally 3.7 to 5 ms in terms of sound pressure reduction, but in the present invention, variations in mass production at the time of manufacturing an AC solenoid are taken into consideration. Then, the time t 0 is set to 3 to 6 ms.

〔発明の効果〕〔The invention's effect〕

本発明は以上のごときであり、本発明によれば、交流ソ
レノイドの固定鉄心と可動鉄心との衝撃音を電気的制御
によっで低減させる場合、すなわち可動鉄心の加速度が
最も小さくなる時点で可動鉄心と固定鉄心とを密着させ
る場合に、電源電圧のゼログロス時点から時間3〜6ms
遅らせて可動鉄心の移動を開始することにより、1個の
交流ソレノイドを商用電源周波数が50Hzあるいは60Hzの
いずれの地域で使用する場合も、その衝撃音領域をほぼ
最低の領域に止どめることができる。
The present invention is as described above. According to the present invention, when the impact noise between the fixed iron core and the movable iron core of the AC solenoid is reduced by electrical control, that is, the movable iron core moves when the acceleration is minimized. When the iron core and the fixed iron core are in close contact with each other, it takes 3 to 6 ms from the time of zero gloss of the power supply voltage.
By delaying the movement of the movable iron core, when using one AC solenoid in any area where the commercial power frequency is 50Hz or 60Hz, the impact sound area should be kept to the lowest area. You can

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は本発明の一実施例を示し、第1図は本
発明方法の実施に供される交流ソレノイドの制御回路
図、第2図は電圧,電流,ゲート信号とソレノイド可動
鉄心の移動形態とを示す特性線図、第3図は本発明の効
果を示す音圧レベル特性線図、第4図は交流ソレノイド
の内部構造を示す縦断面図、第5図は従来形交流ソレノ
イドの制御回路図、第6図は交流ソレノイドへの通電タ
イミングをゼロクロス時点に一致させて可動鉄心を移動
させた時の電圧,電流と可動鉄心の移動形態とを示す特
性線図、第7図は交流ソレノイドへの通電タイミングを
ゼロクロス時点からずらして可動鉄心を移動させた時の
電圧,電流と可動鉄心の移動形態とを示す特性線図であ
る。 1……交流ソレノイド、3……固定鉄心、4……可動鉄
心、14……FLS、15……マイクロコンピユータコントロ
ーラー、16……電源電圧ゼロクロス検出回路。
1 to 3 show an embodiment of the present invention, FIG. 1 is a control circuit diagram of an AC solenoid used for carrying out the method of the present invention, and FIG. 2 is a voltage, current, gate signal and solenoid movement. Fig. 3 is a characteristic diagram showing the moving form of the iron core, Fig. 3 is a characteristic diagram of sound pressure level showing the effect of the present invention, Fig. 4 is a longitudinal sectional view showing the internal structure of the AC solenoid, and Fig. 5 is a conventional AC type. FIG. 7 is a control circuit diagram of the solenoid, and FIG. 6 is a characteristic diagram showing the voltage and current and the moving mode of the movable iron core when the movable iron core is moved with the energization timing of the AC solenoid coincident with the zero cross point. FIG. 6 is a characteristic diagram showing the voltage and current and the moving mode of the movable iron core when the movable iron core is moved with the timing of energizing the AC solenoid shifted from the zero cross point. 1 ... AC solenoid, 3 ... Fixed iron core, 4 ... Movable iron core, 14 ... FLS, 15 ... Micro computer controller, 16 ... Power supply voltage zero cross detection circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五味田 寿光 茨城県日立市東多賀町1丁目1番1号 株 式会社日立製作所多賀工場内 (72)発明者 永野 洋介 茨城県日立市東多賀町1丁目1番1号 株 式会社日立製作所多賀工場内 (72)発明者 中野 重治 茨城県日立市東多賀町1丁目1番1号 株 式会社日立製作所多賀工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisamitsu Gomida 1-1-1, Higashitaga-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Taga factory (72) Inventor Yosuke Nagano 1-chome, Higashi-taga-cho, Hitachi, Ibaraki No. 1 1-1 Inside the Hitachi Ltd. Taga Factory (72) Inventor Shigeharu Nakano 1-1-1 Higashi Taga-cho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Ltd. Taga Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】交流ソレノイドが商用電源に接続され、前
記ソレノイドが付勢されると商用電源の半波の間に可動
鉄心がフルストロークするように、可動鉄心戻しばねの
弾力、および電磁力を設定して、電源電圧のゼロクロス
時点より時間t0遅らせて可動鉄心の移動を開始し、前記
可動鉄心の駆動電流がほぼゼロとなる時点で可動鉄心と
固定鉄心とが密着するよう、電源電圧の波形制御をおこ
なう交流ソレノイドの制御方法において、前記時間t0
3〜6msとしたことを特徴とする交流ソレノイドの制御
方法。
1. An AC solenoid is connected to a commercial power source, and when the solenoid is energized, the elastic force of the movable iron core return spring and the electromagnetic force are applied so that the movable iron core makes a full stroke during a half wave of the commercial power source. Set, and start moving the movable iron core with a time t 0 after the zero crossing of the power source voltage, and when the drive current of the movable iron core becomes substantially zero, the movable iron core and the fixed iron core are in close contact with each other. An AC solenoid control method for performing waveform control, wherein the time t 0 is set to 3 to 6 ms.
JP63045365A 1988-02-27 1988-02-27 AC solenoid control method Expired - Fee Related JPH0770393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045365A JPH0770393B2 (en) 1988-02-27 1988-02-27 AC solenoid control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045365A JPH0770393B2 (en) 1988-02-27 1988-02-27 AC solenoid control method

Publications (2)

Publication Number Publication Date
JPH01220412A JPH01220412A (en) 1989-09-04
JPH0770393B2 true JPH0770393B2 (en) 1995-07-31

Family

ID=12717245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045365A Expired - Fee Related JPH0770393B2 (en) 1988-02-27 1988-02-27 AC solenoid control method

Country Status (1)

Country Link
JP (1) JPH0770393B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957061B2 (en) * 2014-10-30 2016-07-27 日機装エイコー株式会社 Control device and control method for electromagnetic reciprocating pump

Also Published As

Publication number Publication date
JPH01220412A (en) 1989-09-04

Similar Documents

Publication Publication Date Title
CN103069138B (en) The drive unit of fuel injection system
US4779582A (en) Bistable electromechanical valve actuator
MXPA02003875A (en) Reduced energy consumption actuator.
JP2002231530A (en) Electromagnetic actuator controller
JPH09507002A (en) Armature speed magnetic control solenoid
JP2000114037A (en) Electronic controller
JP2002188470A (en) Drive control device for engine valve
JPH0770393B2 (en) AC solenoid control method
US4538930A (en) Adaptive print hammer damper
JPH11243013A (en) Method for driving electromagnetic actuator
JP5025889B2 (en) Electromechanical actuators for valves for internal combustion engines and internal combustion engines equipped with such actuators
JP7261079B2 (en) horn controller
US6655328B2 (en) Method for controlling an electromagnetic valve drive by changing the current direction when supplying the electromagnets with current
US4005413A (en) Buzzer construction and method of adjusting the same
JPH08185779A (en) Electromagnetic contactor
JP2021097004A (en) Operating device
JP3671793B2 (en) Control device for electromagnetically driven valve
US2861204A (en) Magnetic motor
JP2001221360A (en) Control device of solenoid driven valve
CN112086315B (en) Intelligent electric meter based on novel pulse relay
JP3405053B2 (en) Electromagnetic driven gas exchange device
CA1113991A (en) Vibrator
JP2003314232A (en) Internal combustion engine with phase-controlled initial drive of solenoid drive valve
JPH0783012A (en) Electromagnetic drive type valve
EP1049114A2 (en) A method for controlling an armature of a high speed electromagnetic actuator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees