JPH076963B2 - Packing material for liquid chromatography - Google Patents

Packing material for liquid chromatography

Info

Publication number
JPH076963B2
JPH076963B2 JP2073356A JP7335690A JPH076963B2 JP H076963 B2 JPH076963 B2 JP H076963B2 JP 2073356 A JP2073356 A JP 2073356A JP 7335690 A JP7335690 A JP 7335690A JP H076963 B2 JPH076963 B2 JP H076963B2
Authority
JP
Japan
Prior art keywords
resin
template
adsorption
packing material
metal ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2073356A
Other languages
Japanese (ja)
Other versions
JPH03274458A (en
Inventor
有起 藤井
一 真家
章雄 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Gas Products Co Ltd
Original Assignee
Showa Tansan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Tansan Co Ltd filed Critical Showa Tansan Co Ltd
Priority to JP2073356A priority Critical patent/JPH076963B2/en
Publication of JPH03274458A publication Critical patent/JPH03274458A/en
Publication of JPH076963B2 publication Critical patent/JPH076963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属イオンの捕集、濃縮、または分離のための
液体クロマトグラフィー用充填剤に関するものである。
TECHNICAL FIELD The present invention relates to a packing material for liquid chromatography for collecting, concentrating or separating metal ions.

従来の技術 キレート樹脂は金属イオンを含む溶液から特定の金属イ
オンを捕集、濃縮、及び分離する能力を有する機能性高
分子として知られているが、従来のキレート樹脂は配位
能力の高い窒素原子やイオン原子を含む配位基を高分子
に担持したものが大部分であるので、金属イオンの捕集
能力は一般に高いが、選択性は必ずしもよくないことが
指摘されている(北条舒正、「キレート樹脂・イオン交
換樹脂」、1976年、講談社;Coord.Chem.Rev.59,1−139
(1984))。また、従来のものは金属イオンを吸着する
のに長時間を要する(鈴木敏重、横山敏郎、「キレート
樹脂による金属イオンの捕集と分離」、科学の領域、3
7,74−84(1983))。これに対し、酸素原子のみを配位
原子として含む配位基を担持した樹脂は配位能力は一般
に高くはないが、すぐれた選択性を発現することが酸素
原子を大環状化した配位基の場合に報告されている(F.
Vogtle,“Host Guest Complex Chemistry,"Vol.I,43−1
06(1981),Springer−verlag;R.M.Izatt,J.J.Christen
sen)共編、庄野利之、柳田祥三、木村恵一共訳「クラ
ウンニーテルとクリプタンドの科学」217−326(1979)
化学同人)。また、本発明者らは酸素原子のみを配位原
子として含む2−ヒドロキシアセトフェノン型配位基を
担持した樹脂を合成して金属イオンの吸着挙動を検討し
てきた。その結果、Cu(II)とPd(II)に対して高い選
択性を発現し、かつ、それら金属イオンを極めて迅速に
吸着するが、樹脂の均一性及び吸着量が充分とは言えな
かった。
BACKGROUND ART A chelate resin is known as a functional polymer having an ability to collect, concentrate, and separate a specific metal ion from a solution containing a metal ion. However, the conventional chelate resin is a nitrogen having a high coordination ability. Since most of them support a coordination group containing an atom or an ionic atom on a polymer, the ability to collect metal ions is generally high, but it has been pointed out that the selectivity is not always good (Hojo Shousei) , "Chelate resin / ion exchange resin", 1976, Kodansha; Coord. Chem. Rev. 59, 1-139.
(1984)). In addition, the conventional one takes a long time to adsorb metal ions (Toshishige Suzuki, Toshiro Yokoyama, "Collecting and Separation of Metal Ions by Chelating Resins", Science Area, 3
7,74-84 (1983)). On the other hand, a resin carrying a coordination group containing only oxygen atom as a coordination atom generally does not have a high coordination ability, but it is possible to express excellent selectivity because a coordination group in which an oxygen atom is macrocyclic is formed. In the case of (F.
Vogtle, “Host Guest Complex Chemistry,” Vol.I, 43-1
06 (1981), Springer-verlag; RMIzatt, JJChristen
sen) Toshiyuki Shono, Shozo Yanagida, Keiichi Kimura, co-translated "Science of Crown Neetel and Cryptand", 217-326 (1979).
Chemistry coterie). The present inventors have also studied the adsorption behavior of metal ions by synthesizing a resin carrying a 2-hydroxyacetophenone type coordination group containing only oxygen atoms as coordination atoms. As a result, high selectivity was exhibited for Cu (II) and Pd (II), and these metal ions were adsorbed very quickly, but the uniformity and adsorption amount of the resin were not sufficient.

発明が解決しようとする課題 本発明は迅速で高選択的でかつ均一性及び吸着量の高い
高性能2−ヒドロキシアセトフェノン型キレート樹脂を
開発し、その樹脂を液体クロマトグラフィー用充填剤に
用いることにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention develops a high-performance 2-hydroxyacetophenone type chelate resin that is rapid, highly selective, and has high uniformity and adsorption amount, and uses the resin as a packing material for liquid chromatography. is there.

ここで2−ヒドロキシアセトフェノン型キレート樹脂と
は2−ヒドロキシアセトフェノンをキレート配位基とす
る樹脂で、4−ビニルベンジルオキシ−2−ヒドロキシ
アセトフェノン の金属錯体をそれぞれ各種重合剤及び各種橋かけ剤と共
重合させて得られる樹脂をさす。
Here, the 2-hydroxyacetophenone type chelate resin is a resin having 2-hydroxyacetophenone as a chelate coordination group, and is 4-vinylbenzyloxy-2-hydroxyacetophenone. The resin obtained by copolymerizing the metal complex of (1) with various polymerization agents and various crosslinking agents, respectively.

課題を解決するための手段 本発明者らは、迅速で高選択性を有し、かつ、均一性と
吸着能力の高い高性能2−ヒドロキシアセトフェノン型
樹脂を得るために鋭意研究の結果、該キレート樹脂を合
成するに当り、金属イオンを鋳型とする高分子合成法
(鋳型合成法)を試みたところ、、均一性が向上して
金属イオンの吸着時間を著しく短縮でき、かつ、金属イ
オンの吸着pH依存性の広がりを小さくできること、及び
金属イオンの捕集能力(吸着能)の向上が図れること
を見いだした。そして、かかる方法によって得られた該
キレート樹脂を液体クロマトグラフィー用充填剤として
用い、Pd(II)、Cu(II)及びGa(III)の捕集、濃
縮、分離ができることに到達した。
Means for Solving the Problems The inventors of the present invention have earnestly studied to obtain a high-performance 2-hydroxyacetophenone type resin having rapid and high selectivity and high uniformity and adsorption ability. When synthesizing a resin, we tried a polymer synthesis method using a metal ion as a template (template synthesis method). As a result, the uniformity was improved and the adsorption time of the metal ion was significantly shortened. It was found that the spread of pH dependence can be reduced and that the metal ion trapping ability (adsorption ability) can be improved. Then, it was reached that Pd (II), Cu (II) and Ga (III) can be collected, concentrated and separated by using the chelate resin obtained by such a method as a packing material for liquid chromatography.

2−ヒドロキシアセトフェノン型キレート樹脂(非鋳型
樹脂)と鋳型法による該キレート樹脂(鋳型樹脂)は第
1図に図示のスキームにより合成した。合成に当り、4
−ビニルベンジルオキシ−2−ヒドロキシ−アセトフェ
ノン(略号MVS)は2,4−ジヒドロキシアセトフェノンと
P−クロロメチルスチレン(略号P−CMS)を水酸化ナ
トリウムの存在下エタノール中で反応させて合成した
(Y.Fujii,K.Kikuchi,K.Matutani,K.Ota,M.Adachi,M.Sy
ouji,I.Haneishi,and Y.Kuwana,Chem.Lett.,1984,1487
−1490).MVSのNi(II)錯体とAl(III)錯体は対応す
るサリチルアルデヒド錯体の合成法を用いて合成した。
共重合剤にはアクリルアミド(略号AM)を用いた。ま
た、橋かけ剤としてはメチレンジアクリルアミド(略号
MDAA)を用いた。溶媒としてテトラヒドロフラン(略号
THF)を使用し、重合開始剤として2,2′−アゾビスイソ
ブチロニトリル(略号AIBN)を用いて、MVSとAMとMDAA
(またはその金属錯体)をモル比で1:5:0.15で反応させ
て樹脂を合成した。錯体を樹脂化したものについては、
それら樹脂を6N塩酸で処理して金属イオンを解離させた
後に使用した。樹脂は白色粉末であり、100−300メッシ
ュに紛砕して使用した。尚、Ni(II)錯体を鋳型とした
樹脂を1:2鋳型樹脂、Al(III)錯体を鋳型とした樹脂を
1:3鋳型樹脂と略称する。
The 2-hydroxyacetophenone type chelate resin (non-template resin) and the chelate resin (template resin) obtained by the template method were synthesized by the scheme shown in FIG. 4 when synthesizing
-Vinylbenzyloxy-2-hydroxy-acetophenone (abbreviation MVS) was synthesized by reacting 2,4-dihydroxyacetophenone and P-chloromethylstyrene (abbreviation P-CMS) in ethanol in the presence of sodium hydroxide (Y .Fujii, K.Kikuchi, K.Matutani, K.Ota, M.Adachi, M.Sy
ouji, I.Haneishi, and Y.Kuwana, Chem.Lett., 1984,1487
−1490) .MVS Ni (II) and Al (III) complexes were synthesized using the corresponding synthetic method of salicylaldehyde complex.
Acrylamide (abbreviation AM) was used as a copolymerizing agent. In addition, methylenediacrylamide (abbreviation) is used as a cross-linking agent.
MDAA) was used. Tetrahydrofuran (abbreviation as solvent)
THF) and 2,2′-azobisisobutyronitrile (AIBN abbreviation) as a polymerization initiator, MVS, AM and MDAA
(Or its metal complex) was reacted at a molar ratio of 1: 5: 0.15 to synthesize a resin. For the resinized complex,
The resins were used after being treated with 6N hydrochloric acid to dissociate the metal ions. The resin was a white powder and was used by pulverizing it into 100-300 mesh. In addition, the resin using Ni (II) complex as the template was 1: 2 and the resin using Al (III) complex was the template.
Abbreviated as 1: 3 mold resin.

樹脂の組成は元素分析(C,H,N)によって決定し、MVS:A
M:MDAAのモル比はどの樹脂でも1:5:0.15であることが判
明した。また、2価金属イオン(Pd(II),Cu(II),Co
(II),Ni(II),Zn(II))とこれら樹脂上の配位基と
の錯形成比を、金属イオンの樹脂に対する分配係数とPH
のブロットから求めたところ、1:2であることが判明し
た。
The composition of the resin is determined by elemental analysis (C, H, N) and MVS: A
The M: MDAA molar ratio was found to be 1: 5: 0.15 for all resins. In addition, divalent metal ions (Pd (II), Cu (II), Co
(II), Ni (II), Zn (II)) and the complexing ratio of the coordination groups on these resins are determined by the distribution coefficient of metal ion to the resin and PH.
It was found to be 1: 2 when determined from the blot of.

バッチ法における上記樹脂の飽和吸着量をCu(III)を
用いて測定した結果と各樹脂の膨潤度を第1表に示し
た。
Table 1 shows the results of measuring the saturated adsorption amount of the above resin in the batch method using Cu (III) and the swelling degree of each resin.

上表が示すように、鋳型樹脂は非鋳型樹脂に比べ金属イ
オンの飽和吸着量が約10%向上している。また、膨潤度
も鋳型樹脂の方が12〜19%高い。この吸着能の向上は鋳
型合成によってもたらされる“配位基を金属イオンの吸
着に好都合な位置に配置する効果”に起因するものであ
る。
As shown in the above table, the template resin has a metal ion saturated adsorption amount improved by about 10% as compared with the non-template resin. Also, the degree of swelling is 12 to 19% higher for the mold resin. This improvement in adsorptivity is due to the "effect of arranging the coordinating group at a position convenient for adsorbing metal ions" brought about by template synthesis.

第2図にバッチ法における上記樹脂の各種2価金属イオ
ンの吸着に及ぼすPH依存性を図示した。
FIG. 2 shows the PH dependence on the adsorption of various divalent metal ions of the above resins in the batch method.

第2図に記載の2価金属イオンの他にPd(II)とCd(I
I)の吸着もテストしたが、それらの金属イオンはpH6以
下で全く吸着されなかった。これらの結果から、該キレ
ート樹脂はpH6以下では2価金属イオンとしてPd(II)
とCu(II)のみを選択的に吸着する特性を有することが
判明した。また、Pd(II)とCu(II)の吸着PHの差は2
以上あり該キレート樹脂はバッチ法でもpHの調整により
pd(II)とCu(II)を完全に分離できることが判明し
た。
In addition to the divalent metal ions shown in Fig. 2, Pd (II) and Cd (I
The adsorption of I) was also tested, but those metal ions were not adsorbed at all below pH 6. From these results, it was confirmed that the pH of the chelate resin was Pd (II) as a divalent metal ion at pH 6 or lower.
And Cu (II) were selectively adsorbed. Also, the difference in the adsorbed PH between Pd (II) and Cu (II) is 2
With the above, the chelate resin can be adjusted by adjusting the pH even in the batch method.
It was found that pd (II) and Cu (II) can be completely separated.

第3図にバッチ法における上記樹脂のGa(III)の吸着p
H依存性を図示した。この他AI(III)及びIn(III)に
ついてもテストしたが、それらイオンはpH5以下では該
キレート樹脂に吸着しなかった。従って、該キレート樹
脂は3価金属イオンとしてはGa(III)に対し選択性を
示す。該キレート樹脂のGa(III)吸着pHは非鋳型樹脂
<1:2鋳型樹脂<1:3鋳型樹脂の順に酸性側にシフトし、
吸着pH範囲が鋳型合成によってシャープになることが判
明した。この酸性側へのシフトに伴うシャープ化は水酸
化ガリウム(III)の沈澱生成を避けるのに重要な役割
をはたすものである。
Figure 3 shows the adsorption of Ga (III) on the above resin by the batch method.
The H dependence is illustrated. In addition, AI (III) and In (III) were also tested, but those ions did not adsorb to the chelate resin at pH 5 or lower. Therefore, the chelate resin exhibits selectivity for Ga (III) as a trivalent metal ion. Ga (III) adsorption pH of the chelate resin shifts to the acidic side in the order of non-template resin <1: 2 template resin <1: 3 template resin,
It was found that the adsorption pH range was sharpened by template synthesis. The sharpening associated with the shift to the acidic side plays an important role in avoiding the precipitation of gallium (III) hydroxide.

第4図にバッチ法における該キレート樹脂の金属イオン
吸着時間の測定結果を図示した。その吸着時間は検討し
たPd(II)とCu(II)の両イオンについて鋳型樹脂で約
5分、非鋳型樹脂で20分であった。鋳型樹脂が非鋳型樹
脂にくらべ吸着時間が4倍短縮するのは、非鋳型樹脂に
見られる金属イオンの再配列の時間を“鋳型合成による
配位基の位置の効果”によって短縮できるためと考えら
れる。従来のキレート樹脂が数時間以上を要するのと比
較すると、該キレート樹脂は吸着時間が格段に向上する
ことが判明した。
FIG. 4 shows the measurement result of the metal ion adsorption time of the chelate resin in the batch method. The adsorption time was about 5 minutes with the template resin and 20 minutes with the non-template resin for both the Pd (II) and Cu (II) ions studied. The reason why the adsorption time of the template resin is reduced by 4 times compared with the non-template resin is that the time for rearrangement of metal ions found in the non-template resin can be shortened by "the effect of the position of the coordinating group by template synthesis" To be It was found that the adsorption time of the chelate resin is remarkably improved as compared with the conventional chelate resin which requires several hours or more.

実施例 以下実施例を説明する。Examples Examples will be described below.

第5図に示す実験条件により、鋳型樹脂と非鋳型樹脂を
それぞれカラムとする液体クロマトグラフィーによる金
属イオンの吸着実験を行った。その結果、第5図に見ら
れるように、鋳型樹脂のCu(II)保持量は非鋳型樹脂の
ものより約20%多かった。また、同一条件で行ったPd
(II)の場合は約50%も多かった。さらに、金属イオン
を含む溶液の流速を毎時10mlに設定できた。
Under the experimental conditions shown in FIG. 5, a metal ion adsorption experiment was performed by liquid chromatography using a template resin and a non-template resin as columns. As a result, as shown in FIG. 5, the amount of Cu (II) retained in the template resin was about 20% higher than that in the non-template resin. In addition, Pd performed under the same conditions
In the case of (II), it was about 50% higher. Furthermore, the flow rate of the solution containing metal ions could be set to 10 ml per hour.

第6図に1:2鋳型樹脂を溶液クロマトグラフィー用充填
剤とするCu(II)とZn(II)のカラム分離の実験結果を
示した。Zn(II)は吸着されないためカラム内での保持
容量が少なく短時間内に流出するが、Cu(II)は吸着さ
れるので保持容量が大きくCu(II)の流出までの時間が
Zn(II)と異なること、及びCu(II)が保持されている
容量内でCu(II)とZn(II)を完全に分離出来ることを
示す。
Fig. 6 shows the experimental results of column separation of Cu (II) and Zn (II) using 1: 2 template resin as a packing material for solution chromatography. Since Zn (II) is not adsorbed, the retention capacity in the column is small and it flows out within a short time, but since Cu (II) is adsorbed, the retention capacity is large and the time until the outflow of Cu (II) is large.
We show that Zn (II) is different from Zn (II) and that Cu (II) and Zn (II) can be completely separated within the capacity of Cu (II).

第7図に樹脂に吸着したCu(II)の0.001N塩酸による溶
離及びPd(II)の1N塩酸による溶離結果を図示した。両
金属イオンの分離は完全であり、かつ短時間内に溶離で
き、テイリングもないことが判明した。
Fig. 7 shows the results of elution of Cu (II) adsorbed on the resin with 0.001N hydrochloric acid and Pd (II) with 1N hydrochloric acid. It was found that the separation of both metal ions was complete, that they could be eluted within a short time, and that there was no tailing.

発明の効果 本発明に係わる液体クロマトグラフィー用充填剤は、鋳
型合成によって得られる2−ヒドロキシアセトフェノン
型キレート樹脂を主体とすることにより、Pd(II),Cu
(II),及びGa(III)イオンを高選択的に、かつ迅速
に、しかも高い捕集能力で吸着・濃縮・分離することが
できる。本発明において、鋳型合成によって得られる2
−ヒドロキシアセトフェノン型キレート樹脂は、クロマ
トグラフィー用充填剤のほか、必要に応じてマスキング
剤などの分析試剤などに使用することができる。
EFFECTS OF THE INVENTION The packing material for liquid chromatography according to the present invention is mainly composed of a 2-hydroxyacetophenone type chelate resin obtained by template synthesis, whereby Pd (II), Cu
(II) and Ga (III) ions can be adsorbed / concentrated / separated with high selectivity, quickly and with high collection ability. In the present invention, 2 obtained by template synthesis
The -hydroxyacetophenone type chelate resin can be used not only as a packing material for chromatography but also as an analytical reagent such as a masking agent, if necessary.

【図面の簡単な説明】[Brief description of drawings]

第1図は該キレート樹脂の製法の説明図、第2〜7図は
本発明の実験結果を示すグラフである。
FIG. 1 is an explanatory view of the method for producing the chelate resin, and FIGS. 2 to 7 are graphs showing the experimental results of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋳型合成によって得られた2−ヒドロキシ
アセトフェノン型キレート樹脂からなることを特徴とす
る金属イオンの捕集、濃縮、または分離のための液体ク
ロマトグラフィー用充填剤。
1. A packing material for liquid chromatography for collecting, concentrating or separating metal ions, comprising a 2-hydroxyacetophenone type chelate resin obtained by template synthesis.
JP2073356A 1990-03-26 1990-03-26 Packing material for liquid chromatography Expired - Lifetime JPH076963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073356A JPH076963B2 (en) 1990-03-26 1990-03-26 Packing material for liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073356A JPH076963B2 (en) 1990-03-26 1990-03-26 Packing material for liquid chromatography

Publications (2)

Publication Number Publication Date
JPH03274458A JPH03274458A (en) 1991-12-05
JPH076963B2 true JPH076963B2 (en) 1995-01-30

Family

ID=13515806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073356A Expired - Lifetime JPH076963B2 (en) 1990-03-26 1990-03-26 Packing material for liquid chromatography

Country Status (1)

Country Link
JP (1) JPH076963B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182554A (en) * 2015-03-26 2016-10-20 東京応化工業株式会社 Filtration medium, filtration filter, filtration method, production method of phenylimine compound, production method of alkoxyphenylimine compound, compound

Also Published As

Publication number Publication date
JPH03274458A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
Lintschinger et al. Determination of antimony species with high-performance liquid chromatography using element specific detection
CA1094731A (en) Chelate exchange resins from aminopyridines
Raber et al. Determination of ‘arsenosugars’ in algae with anion-exchange chromatography and an inductively coupled plasma mass spectrometer as element-specific detector
Efendiev et al. Selective polymer complexons prearranged for metal ions sorption
US5817239A (en) Method of removing heavy metal ions from a liquid with chemically active ceramic compositions with an hydroxyquinoline moiety
Sayin et al. Synthesis and oxoanions (dichromate/arsenate) sorption study of N-methylglucamine derivative of calix [4] arene immobilized onto poly [(phenyl glycidyl ether)-co-formaldehyde]
Hayashita et al. Selective sorption and column concentration of alkali-metal cations by carboxylic acid resins with dibenzo-14-crown-4 subunits and their acyclic polyether analogs
JPH0420930B2 (en)
Soliman et al. Reactivity of thioglycolic acid physically and chemically bound to silica gel as new selective solid phase extractors for removal of heavy metal ions from natural water samples
Liu et al. Chelation ion chromatography as a technique for trace elemental analysis in complex matrix samples
Akoz et al. Immobilization of novel the semicarbazone derivatives of calix [4] arene onto magnetite nanoparticles for removal of Cr (VI) ion
JPH076963B2 (en) Packing material for liquid chromatography
Dzhardimalieva et al. Preparation and reactivity of metal-containing monomers. 78. Scandium-containing monomers and polymers: synthesis, structure and properties
Elliger et al. p-Vinylbenzeneboronic acid polymers for separation of vicinal diols
Dey et al. Extraction of metal ions using chemically modified silica gel covalently bonded with 4, 4’-diaminodiphenylether and 4, 4’-diaminodiphenylsulfone-salicylaldehyde Schiff bases
Sud Chelating ion exchangers: theory and applications
US20080128357A1 (en) Separation of platinum group metals
Chessa et al. Sorption and separation of palladium, platinum and gold chlorocomplexes by means of a dipicolinic acid polystyrene-based chelating resin
Wei et al. Simultaneous determination of organic acids and nitrate in xylem saps of the hyperaccumulator Alyssum murale by RP-HPLC after solid-phase extraction with nanosized hydroxyapatite
Sugii et al. Preparation and analytical properties of a chelating resin containing phenylalanine groups
Hodgkin et al. Ferric-ion chelation by aminophenol resins
JPH0446622B2 (en)
Nishizawa et al. Selective adsorption of molybdenum (VI) and/or vanadium (V) using cross-linked polystyrene resins with bis (2-hydroxyethyl) amino, bis (carboxymethyl) amino, and bis (phosphonomethyl) amino groups.
Warshawsky The search for nickel-selective polymers—A review
Prasad et al. Preparation, characterization and performance of silica gel-immobilized poly [N-chloranil N, N, N′, N′-tetramethylethylenediammonium di-sulfosalicylate] for chromatographic separation of heavy metals