JPH0769304B2 - Detector for electrical analysis - Google Patents

Detector for electrical analysis

Info

Publication number
JPH0769304B2
JPH0769304B2 JP1336886A JP33688689A JPH0769304B2 JP H0769304 B2 JPH0769304 B2 JP H0769304B2 JP 1336886 A JP1336886 A JP 1336886A JP 33688689 A JP33688689 A JP 33688689A JP H0769304 B2 JPH0769304 B2 JP H0769304B2
Authority
JP
Japan
Prior art keywords
detector
temperature
detection electrode
electrode chamber
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1336886A
Other languages
Japanese (ja)
Other versions
JPH03197859A (en
Inventor
修 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP1336886A priority Critical patent/JPH0769304B2/en
Publication of JPH03197859A publication Critical patent/JPH03197859A/en
Publication of JPH0769304B2 publication Critical patent/JPH0769304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気分析用検出器に係り、特に分析時間が短
く、かつ広範囲の分野に適用できる電気分析用検出器に
関するものである。
TECHNICAL FIELD The present invention relates to a detector for electric analysis, and more particularly to a detector for electric analysis which has a short analysis time and can be applied to a wide range of fields.

〔従来の技術〕[Conventional technology]

電量分析法は、重量分析法と同じく絶対定量法であり、
原理的には極めて有用である。しかし、電極上で速やか
に電解されて定量される物質は一部の金属イオンや有機
化合物などに限定され、その用途は限られたものになっ
ていた。そのため、被定量物質をある種の物質と反応さ
せた後、電解により反応前の状態に再生して測定を行う
酸化還元メディエータ方式を採用することによって電量
分析法の用途を大きく広げることができる。
The coulometric method is an absolute quantitative method like the gravimetric method,
It is extremely useful in principle. However, the substances that are rapidly electrolyzed and quantified on the electrodes are limited to some metal ions, organic compounds, and the like, and their applications have been limited. Therefore, the use of the coulometric method can be greatly expanded by adopting a redox mediator method in which a substance to be quantified is reacted with a certain substance and then regenerated to a state before the reaction by electrolysis for measurement.

本発明者らは、特開平1−195358号公報において、電解
液静止方式の電気分析方法を提案し、酸化還元メディエ
ータを用いることにより反応を速やかに進行させるとと
もに、表面処理により水素過電圧を大きくした炭素電極
を用いて水溶液系の電解液における使用可能な電極電位
領域を拡大した。
The inventors of the present invention proposed in JP-A-1-195358 a method for electroanalyzing a static electrolyte method, which uses a redox mediator to accelerate the reaction and increase the hydrogen overvoltage by surface treatment. A carbon electrode was used to expand the usable electrode potential region in an aqueous electrolyte solution.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明者等は、さらに研究を重ねた結果、上記電気分析
方法における酸化還元メディエータと被定量物質との反
応は、温度に対する依存性が強く、反応温度が高いほど
その反応速度は大きくなり、例えば常温ではほとんど反
応しないものが所定温度に昇温するだけで、速やかにこ
とがわかった。そこで、所要の反応温度で素早く、しか
も精度の高い電気分析を行うための電気分析検出器が必
要であったが、上記水溶液系の電解液を使用する従来技
術では、昇温にはおのずと限界がある上に、耐熱材料、
特に隔膜の選定等多くの障害があり、高温使用に耐え得
る電気分析用検出器は実用化されていなかった。
As a result of further studies by the present inventors, the reaction between the redox mediator and the substance to be determined in the electroanalytical method has a strong dependence on temperature, and the higher the reaction temperature, the higher the reaction rate. It was found that a substance that hardly reacts at room temperature can be quickly heated to a predetermined temperature. Therefore, an electroanalytical detector for performing a quick and highly accurate electric analysis at a required reaction temperature was necessary, but in the conventional technology using the above-mentioned aqueous solution-based electrolytic solution, there is naturally a limit to the temperature rise. In addition, there are heat-resistant materials,
In particular, there are many obstacles such as the selection of the diaphragm, and an electric analysis detector that can withstand high temperature use has not been put into practical use.

本発明の目的は、上記従来技術に鑑み、検出極室内を所
要反応温度に昇温して分析時間を短縮するとともに、選
択性が高く、広範囲に適用できる電気分析用検出器を提
供することにある。
In view of the above-mentioned conventional techniques, an object of the present invention is to provide a detector for electrical analysis which has a high selectivity and can be applied to a wide range while heating the detection electrode chamber to a required reaction temperature to shorten the analysis time. is there.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するため本発明は、電解時の電流、電圧
または電気量のうち少なくとも1つ以上を測定すること
により、被定量物質を絶対定量する電気分析用検出器で
あって、フッ素樹脂系の隔膜と、該隔膜を介して隣接す
る、耐熱性および耐薬品性の材料からなる検出極室およ
び対極室と、該検出極室および対極室内にそれぞれ設け
られた水より沸点の高い非水系電解液を含浸した検出極
および対極と、前記検出極室および対極室の温度を70℃
以上に昇温する手段とを有することを特徴とする。
In order to achieve the above-mentioned object, the present invention is a detector for electric analysis for absolute quantification of a substance to be quantified by measuring at least one of current, voltage or quantity of electricity during electrolysis, which is a fluororesin-based detector. Diaphragm, a detection electrode chamber and a counter electrode chamber made of a heat-resistant and chemical-resistant material, which are adjacent to each other through the diaphragm, and a nonaqueous electrolysis having a boiling point higher than that of water provided in the detection electrode chamber and the counter electrode chamber, respectively. The temperature of the detecting electrode and the counter electrode impregnated with the liquid and the temperature of the detecting electrode chamber and the counter electrode are 70 ° C.
And a means for increasing the temperature.

検出極室および対極室を耐熱材料で構成し、これらを昇
温する手段を設けたことにより、電極および隔膜の耐熱
温度範囲内で検出器、特に検出極を加熱して70℃以上の
所要温度に保持することができるので、化学反応および
電極反応速度が増大し、分析時間が短縮されるととも
に、適用範囲が広くなる。
The detection electrode chamber and the counter electrode chamber are made of heat-resistant material, and a means for heating them is provided, so that the detector, especially the detection electrode, is heated within the heat-resistant temperature range of the electrode and diaphragm, and the required temperature of 70 ° C or higher Since it can be maintained at a high temperature, the chemical reaction and the electrode reaction rate are increased, the analysis time is shortened, and the application range is widened.

本発明では、このように検出器を70℃以上に昇温して電
量分析を行うことができるため、酸化還元メディエータ
を用いる場合のみならず、酸化還元メディエータを用い
ない場合でも迅速かつ広範囲に電量分析を行うことがで
きる。
In the present invention, since it is possible to perform coulometric analysis by raising the temperature of the detector to 70 ° C. or higher in this way, not only when using the redox mediator, but also when not using the redox mediator, the coulometry can be rapidly and widely applied. Analysis can be performed.

本発明において、電極室の枠体材としては、熱硬化性樹
脂、フッ素系樹脂、ガラス等が使用される。
In the present invention, a thermosetting resin, a fluorinated resin, glass or the like is used as the frame material of the electrode chamber.

隔膜としては、耐熱性および耐薬品性に優れた、例えば
フッ素樹脂系のイオン交換膜が使用される。隔膜は、検
出極側と対極側の電解液のクロスミキシングをできるだ
け防止する意味で用いられるもので、酸化還元メディエ
ータを用いる検出器ではイオン交換膜を用いることが好
ましく、とりわけフッ素樹脂系のイオン交換膜は、特に
熱的安定性、薬品安定性に優れている。酸化還元メディ
エータを用いず、試料を直接検出極で電解する検出器な
どでは微多孔膜が好ましく用いられる場合もある。
As the diaphragm, for example, a fluororesin ion exchange membrane having excellent heat resistance and chemical resistance is used. The diaphragm is used to prevent cross-mixing of the electrolytic solution on the detection electrode side and the counter electrode side as much as possible, and it is preferable to use an ion exchange membrane in a detector using a redox mediator, especially a fluorine resin-based ion exchange membrane. The membrane is particularly excellent in thermal stability and chemical stability. The microporous membrane may be preferably used in a detector in which a sample is directly electrolyzed by a detection electrode without using a redox mediator.

本発明において、検出極としては、例えば炭素繊維フェ
ルト、炭素繊維布、多孔質焼結炭素、金属フェルト、金
属網、金属製布、多孔質金属、多孔体にメッキを施した
もの等が用いられる。炭素繊維布や炭素繊維フェルトは
捕捉性の点で特に好ましい。また、耐酸性を要求される
場合は貴金属および酸化鉛材などが好ましい。ハロゲン
イオンまたは硫化物添加によって生じる銀溶出液を検出
する検出極としては、例えば銀または銀が担持された多
孔性物質が使用される。また、アミン等の含窒素化合物
または硫化物添加によって生じる銅溶出液を検出する検
出極としては、銅または銅が担持された多孔性物質が使
用される。
In the present invention, as the detection electrode, for example, carbon fiber felt, carbon fiber cloth, porous sintered carbon, metal felt, metal net, metal cloth, porous metal, or one obtained by plating a porous body is used. . Carbon fiber cloth and carbon fiber felt are particularly preferable in terms of trapping property. When acid resistance is required, noble metals and lead oxide materials are preferable. As the detection electrode for detecting the silver eluate generated by the addition of halogen ions or sulfide, for example, silver or a porous material supporting silver is used. Further, as a detection electrode for detecting a copper eluate generated by the addition of a nitrogen-containing compound such as amine or sulfide, copper or a porous substance supporting copper is used.

対極材は、検出極材と同様広い選択範囲を有するが、通
常、カーボンフェルト、カーボンクロス、銀−塩化銀電
極などが用いられる。
The counter electrode material has a wide selection range like the detection electrode material, but carbon felt, carbon cloth, silver-silver chloride electrode, etc. are usually used.

本発明の昇温手段としては、例えば検出器の内部および
/または外部に、電熱素子、集電用炭素板、スチームラ
イン、温水ラインまたは誘導加熱手段を設けたものがあ
げられるが、検出器全体のコンパクト化および取扱い性
を高める上で、温度センサ付の電熱方式が好ましい。た
だし、本電気分析用検出器は、フローインジェクション
におけるボルタンメトリーやアンペロメトリー型検出器
と異なり、温度制御範囲を厳しく限定する必要がないの
で、温度センサを省くことも可能である。また、発熱材
や蓄熱材などによる保温でも充分に対応できる。
Examples of the temperature raising means of the present invention include those provided with an electrothermal element, a carbon plate for current collection, a steam line, a hot water line, or an induction heating means inside and / or outside the detector. An electric heating system with a temperature sensor is preferable in terms of downsizing and improvement of handling. However, unlike the voltammetry or amperometry type detector in flow injection, the present electroanalytical detector does not need to severely limit the temperature control range, and thus the temperature sensor can be omitted. Also, it is possible to sufficiently deal with the heat retention by heat generating material or heat storage material.

本発明においては、電解液として従来の水溶液系でな
く、支持電解質を溶解した非水系有機溶剤を使用する点
に大きな特徴がある。非水系有機溶剤は、一般に粘度が
水よりも大きく、室温で用いると拡散速度が小さいため
良好な検出、定量ができないが、昇温手段を有する検出
極では、昇温により非水系有機溶媒の粘度を良好な値ま
で低下させて使用することができる。また、非水系有機
溶媒を使用しても、本発明に用いる前記耐熱性電極室材
料はフッ素樹脂などと同様、化学的耐久性にも優れてお
り、膨潤を起こすことはない。非水系の有機溶媒として
は、水よりも沸点が高く、蒸発しにくい安定な物質、例
えばプロピレンカーボネート、ジメチルスルホキシド、
ジメチルホルムアミド等が用いられ、支持電解質として
は、例えば過塩素酸アルカリ塩、ハロゲン化アルカリ塩
などが用いられる。酸化還元メディエータを共存させる
場合は、上記電解液に酸化還元メディエータとして、例
えばハロゲン、遷移金属錯体、金属酸化物イオンなどが
添加される。このように調製された電解液は、検出極に
非流動状態で含浸される。
The present invention is greatly characterized in that a nonaqueous organic solvent in which a supporting electrolyte is dissolved is used as the electrolytic solution instead of the conventional aqueous solution system. Non-aqueous organic solvents generally have a higher viscosity than water, and when used at room temperature, the diffusion rate is low, so good detection and quantification are not possible, but with a detection electrode having a temperature raising means, the viscosity of the non-aqueous organic solvent increases due to temperature rise. Can be reduced to a good value before use. Even when a non-aqueous organic solvent is used, the heat-resistant electrode chamber material used in the present invention has excellent chemical durability as well as a fluororesin, and does not swell. The non-aqueous organic solvent has a boiling point higher than that of water, a stable substance that is difficult to evaporate, such as propylene carbonate, dimethyl sulfoxide,
Dimethylformamide or the like is used, and as the supporting electrolyte, for example, alkali salt of perchloric acid, alkali salt of halogen or the like is used. When a redox mediator is allowed to coexist, a halogen, a transition metal complex, a metal oxide ion or the like is added as a redox mediator to the electrolytic solution. The electrolyte thus prepared is impregnated into the detection electrode in a non-flowing state.

本発明において、水は蒸気圧が大きいため、蒸発による
消耗が大きく、常に補給しなければならず、この常時の
水の補給は、検出セルの電気的安定を阻害するため、電
解液としては好ましくない。
In the present invention, since water has a large vapor pressure, it is highly consumed due to evaporation and must be constantly replenished. This constant water replenishment hinders the electrical stability of the detection cell and is therefore preferable as an electrolytic solution. Absent.

〔実施例〕〔Example〕

第1図は、本発明の一実施例を示す電気分析用検出器の
構成を示す断面図である。
FIG. 1 is a sectional view showing the structure of a detector for electrical analysis showing an embodiment of the present invention.

この検出器は、隔膜3と、該隔膜3を介して隣接する検
出極室4および対極室5と、これらを構成する枠体6
と、前記検出極室4および対極室5内に設けられた検出
極1および対極2と、前記枠体6の外側に検出器全体を
収納するように設けられた外側枠体7と、枠体6および
外側枠体7の間に設けられた加熱手段8とから主として
構成されている。なお、枠体6の検出極部分には試料投
入口9が設けられている。
This detector includes a diaphragm 3, a detection electrode chamber 4 and a counter electrode chamber 5 which are adjacent to each other with the diaphragm 3 interposed therebetween, and a frame body 6 which constitutes them.
A detection electrode 1 and a counter electrode 2 provided in the detection electrode chamber 4 and a counter electrode chamber 5, an outer frame body 7 provided outside the frame body 6 so as to house the entire detector, and a frame body. 6 and the heating means 8 provided between the outer frame body 7 and mainly. A sample inlet 9 is provided at the detection electrode portion of the frame 6.

このような構成において、検出極室4に添加された試料
は、電解液が含浸された多孔性の検出極1内に分散し、
電解分析される。電解液中に酸化還元メディエータが共
存する場合は、まず試料と酸化還元メディエータとが反
応し、その後、酸化還元メディエータが電極反応によっ
て再生される。
In such a configuration, the sample added to the detection electrode chamber 4 is dispersed in the porous detection electrode 1 impregnated with the electrolytic solution,
Electrolytically analyzed. When a redox mediator coexists in the electrolytic solution, the sample first reacts with the redox mediator, and then the redox mediator is regenerated by an electrode reaction.

次に、本発明を第1図の装置を用いた具体的実施例によ
りさらに詳細に説明する。
Next, the present invention will be described in more detail with reference to specific examples using the apparatus shown in FIG.

実施例1 検出極としてカーボンフェルトを、隔膜としてフッ素樹
脂系陽イオン交換膜を、対極としてカーボンフェルトを
それぞれ用いて構成された、電熱ヒーターを備えた電気
分析用検出器により、検出極側電解液として、支持電解
質としての過塩素酸カリウムを溶解した炭酸プロピレ
ン、酸化還元メディエータとして銅ビスフェナンスロリ
ンを用い、濃度既知(1×10-3M/)のグルコースの定
量を行なった。測定温度は約80℃とし、供試試料液を10
μ/回として10回定量したところ、定量値の範囲は0.
98〜1.05×10-3M/と極めて安定したものであった。ま
た、10回の分析時間の平均は25秒であった。
Example 1 An electrolysis detector equipped with an electrothermal heater configured by using carbon felt as a detection electrode, a fluororesin-based cation exchange membrane as a diaphragm, and carbon felt as a counter electrode, and an electrolyte solution on the detection electrode side. As a supporting electrolyte, propylene carbonate in which potassium perchlorate was dissolved was used, and as a redox mediator, copper bisphenanthroline was used to quantify glucose at a known concentration (1 × 10 −3 M /). The measurement temperature is approximately 80 ° C, and the test sample solution is 10
When quantified 10 times at μ / time, the range of quantified value is 0.
It was extremely stable at 98 to 1.05 × 10 -3 M /. The average of 10 times of analysis was 25 seconds.

本実施例によれば、電熱ヒータにより測定温度を高くし
たこと、および酸化還元メディエータを用いたことによ
り、従来グルコースの電量分析で必要とされていたグル
コースオキシダーゼおよび異性体を統一する酵素ムタロ
ターゼ等の酵素を用いることなく、簡便で寿命特性のよ
い電量分析が行なえる。常温でこのような酸化還元メデ
ィエータを見出すのは極めて困難であるが、80℃前後の
高温領域で有効なものがすでに数種見出されている。
According to this example, by increasing the measurement temperature with an electric heater and using a redox mediator, glucose oxidase and an enzyme that unifies isomers, such as glucose oxidase and isomers, which were conventionally required for coulometric analysis of glucose, were used. Coulometric analysis can be performed easily and with good life characteristics without using an enzyme. It is extremely difficult to find such a redox mediator at room temperature, but several types have already been found to be effective in the high temperature region around 80 ° C.

本実施例は、その温度領域からいってバイオセンサには
なりにくいが、昇温することにより反応性が向上するの
で、バイオセンサ以上に適用範囲が広くなる。
Although it is difficult for the present embodiment to be a biosensor due to its temperature range, since the reactivity is improved by raising the temperature, the applicable range is wider than that of the biosensor.

比較例1 温度調節機能のない検出器を想定して電解温度を30℃と
した以外は、実施例1と同様にグルコースを定量したと
ころ、グルコースと酸化還元メディエータとの反応速度
が極めて遅く、定量は不可能であった。
Comparative Example 1 When glucose was quantified in the same manner as in Example 1 except that the electrolysis temperature was set to 30 ° C. assuming a detector having no temperature control function, the reaction rate between glucose and a redox mediator was extremely slow, and quantification was performed. Was impossible.

実施例2 検出極として微小球の銀電極を用いた以外は実施例1と
同様(検出極温度、80℃)にして、濃度既知(1.0×10
-3M/)の塩素溶液中の塩素イオンを、10μの試料を
用いて定量した。
Example 2 The concentration was known (1.0 × 10 6) in the same manner as in Example 1 (detection electrode temperature, 80 ° C.) except that a silver microsphere electrode was used as the detection electrode.
Chloride ion in -3 M /) chlorine solution was quantified using a 10μ sample.

比較例2 検出極温度を20℃とした以外は実施例2と同様にして塩
素イオンの定量を行なった。
Comparative Example 2 Chloride ion was quantified in the same manner as in Example 2 except that the detection electrode temperature was 20 ° C.

実施例3 検出極として微小球の銅電極を用いた以外は実施例1と
同様(検出極温度、80℃)にして、濃度既知(1.0×10
-3M/)のエチレンジアミンテトラカルボナト溶液中の
エチレンジアミンテトラカルボナトイオンを10μの試
料を用いて定量した。
Example 3 The concentration was known (1.0 × 10 6) in the same manner as in Example 1 (detection electrode temperature, 80 ° C.) except that a microspherical copper electrode was used as the detection electrode.
Ethylenediaminetetracarbonate ion in -3 M /) ethylenediaminetetracarbonate solution was quantified using a 10μ sample.

比較例3 検出極温度を20℃とした以外は実施例4と同様にして同
様の定量分析を行なった。
Comparative Example 3 The same quantitative analysis was performed as in Example 4 except that the detection electrode temperature was 20 ° C.

実施例2〜3および比較例2〜3の結果を第2表に示
す。
The results of Examples 2-3 and Comparative Examples 2-3 are shown in Table 2.

本実施例によれば、実用化が難しいとされていた溶出波
を測定する定量法により、ハロゲンおよびアミンを高捕
捉率で、しかも安定して定量することができた。
According to this example, halogen and amine could be stably quantified with a high trapping rate by the quantitative method for measuring the elution wave, which was considered difficult to put into practical use.

〔発明の効果〕〔The invention's effect〕

本発明によれば、電量分析法の適用範囲を数倍に広げる
とともに、電解時間の短縮が図れる。また、非水高温型
の検出器に水溶液試料を添加する場合、水は蒸発するの
で、検出極内の液量の増加はなく、長期にわたり液抜出
しが不要となるなどメンテナンスが容易である。
According to the present invention, the application range of the coulometric analysis method can be expanded several times and the electrolysis time can be shortened. In addition, when an aqueous solution sample is added to the non-aqueous high temperature type detector, water evaporates, so that the amount of liquid in the detection electrode does not increase, and liquid removal is not required for a long period of time, which facilitates maintenance.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の電気分析用検出器の一実施例を示す
断面図である。 1……検出極、2……対極、3……隔膜、8……加熱手
段。
FIG. 1 is a sectional view showing an embodiment of the detector for electrical analysis of the present invention. 1 ... Detection electrode, 2 ... Counter electrode, 3 ... Diaphragm, 8 ... Heating means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解時の電流、電圧または電気量のうち少
なくとも1つ以上を測定することにより、被定量物質を
絶対定量する電気分析用検出器であって、フッ素樹脂系
の隔膜と、該隔膜を介して隣接する、耐熱性および耐薬
品性の材料からなる検出極室および対極室と、該検出極
室および対極室内にそれぞれ設けられた水より沸点の高
い非水系電解液を含浸した検出極および対極と、前記検
出極室および対極室の温度を70℃以上に昇温する手段と
を有することを特徴とする電気分析用検出器。
1. An electroanalytical detector for absolute quantification of a substance to be quantified by measuring at least one of current, voltage or quantity of electricity during electrolysis, which comprises a fluororesin-based diaphragm, A detection electrode chamber and a counter electrode chamber made of a heat-resistant and chemical-resistant material, which are adjacent to each other via a diaphragm, and a detection which is provided in the detection electrode chamber and the counter electrode chamber and which is impregnated with a non-aqueous electrolyte solution having a boiling point higher than that of water. A detector for electrical analysis, comprising a pole and a counter electrode, and means for raising the temperature of the detection electrode chamber and the counter electrode chamber to 70 ° C. or higher.
JP1336886A 1989-12-26 1989-12-26 Detector for electrical analysis Expired - Lifetime JPH0769304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336886A JPH0769304B2 (en) 1989-12-26 1989-12-26 Detector for electrical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336886A JPH0769304B2 (en) 1989-12-26 1989-12-26 Detector for electrical analysis

Publications (2)

Publication Number Publication Date
JPH03197859A JPH03197859A (en) 1991-08-29
JPH0769304B2 true JPH0769304B2 (en) 1995-07-26

Family

ID=18303562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336886A Expired - Lifetime JPH0769304B2 (en) 1989-12-26 1989-12-26 Detector for electrical analysis

Country Status (1)

Country Link
JP (1) JPH0769304B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259947A (en) * 1984-06-06 1985-12-23 Toshiba Corp Ion selective electrode
EP0248304A3 (en) * 1986-06-06 1989-08-23 Kontron Instruments Holding N.V. Electrodes arrangement
JPH01117762U (en) * 1988-01-28 1989-08-09
JP2633280B2 (en) * 1988-01-29 1997-07-23 三井造船株式会社 Electrical analysis method

Also Published As

Publication number Publication date
JPH03197859A (en) 1991-08-29

Similar Documents

Publication Publication Date Title
Edmonds Electroanalytical applications of carbon fibre electrodes
Kano et al. Electrocatalytic oxidation of carbohydrates at copper (II)-modified electrodes and its application to flow-through detection
Broder et al. Electrochemical oxidation of nitrite and the oxidation and reduction of NO2 in the room temperature ionic liquid [C2mim][NTf2]
Dong et al. An electrochemical microsensor for chloride
Bontempelli et al. Electroanalytical sensors for nonconducting media based on electrodes supported on perfluorinated ion‐exchange membranes
JP6240543B2 (en) Electrode tip and method for quantitative determination of chemical substance
JP5832453B2 (en) Electrochemical detection cell for liquid chromatography systems.
Yoshizumi et al. Rapid and coulometric electrolysis for ion transfer at the aqueous| organic solution interface
Šišoláková et al. Comparison of insulin determination on NiNPs/chitosan‐MWCNTs and NiONPs/chitosan‐MWCNTs modified pencil graphite electrode
Wang et al. Ion-exchange voltammetry at poly (ester-sulfonic acid) film coated electrodes for trace analysis
JP2015516581A (en) Method and apparatus for measuring the total organic content of an aqueous stream
OsAKAI et al. A novel amperometric ammonia sensor
Bühre et al. Application and analysis of a salt bridge reference electrode setup for PEM water electrolysis: Towards an extended voltage loss break down
JPH01195358A (en) Electroanalysis
Jaworska et al. Implementation of a Chloride‐selective Electrode Into a Closed Bipolar Electrode System with Fluorimetric Readout
JPH0769304B2 (en) Detector for electrical analysis
Afshar et al. Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis
Roy et al. Activity coefficients for HCl+ BaCl sub 2+ H sub 2 O at different temperatures and effects of higher order electrostatic terms
Lexa et al. Preparation of a mercury film electrode modified by tri-n-octylphosphine oxide and the electrochemical properties of this electrode
US3315271A (en) Cell for dissolved oxidant analysis
JP3093086B2 (en) Electric analysis method using battery cells
Kitatsuji et al. Transfer of actinide ion at the interface between aqueous and nitrobenzene solutions studied by controlled-potential electrolysis at the interface
JPH0375063B2 (en)
JPH0446378B2 (en)
Katano et al. Voltammetric study of the transfer of heavy metal ions at nitrobenzene/water interface assisted by 1, 4, 7, 10, 13, 16-hexathiacyclooctadecane