JPH0768900B2 - Direct injection diesel engine - Google Patents

Direct injection diesel engine

Info

Publication number
JPH0768900B2
JPH0768900B2 JP4244602A JP24460292A JPH0768900B2 JP H0768900 B2 JPH0768900 B2 JP H0768900B2 JP 4244602 A JP4244602 A JP 4244602A JP 24460292 A JP24460292 A JP 24460292A JP H0768900 B2 JPH0768900 B2 JP H0768900B2
Authority
JP
Japan
Prior art keywords
injection
injection nozzle
gas
sub
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4244602A
Other languages
Japanese (ja)
Other versions
JPH0693863A (en
Inventor
辻村欽司
瀧口雅章
聡 丑久保
小森正憲
中平敏夫
Original Assignee
株式会社新燃焼システム研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新燃焼システム研究所 filed Critical 株式会社新燃焼システム研究所
Priority to JP4244602A priority Critical patent/JPH0768900B2/en
Publication of JPH0693863A publication Critical patent/JPH0693863A/en
Publication of JPH0768900B2 publication Critical patent/JPH0768900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0663Details related to the fuel injector or the fuel spray having multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スモークおよび窒素酸
化物(NOX )の同時低減を図るための直接噴射式ディ
ーゼル機関に関する。
The present invention relates to a direct injection diesel engine for achieving simultaneous reduction of smoke and nitrogen oxides (NO X).

【0002】[0002]

【従来の技術】直接噴射式ディーゼル機関においては、
スモークおよびNOX の低減に向けて排気ガス再循環法
(EGR)、水噴射、燃焼方式の改善等種々の提案が行
われている。このうちEGRには、燃費の悪化、スモー
クの増大、排ガスによるEGR装置の腐食、或いは機能
低下等、耐久性および信頼性の問題がある。また、水噴
射は、燃焼室内のさび、オイルの希釈、水の消費量が多
い等の問題がある。
2. Description of the Related Art In a direct injection diesel engine,
Towards the reduction of smoke and NO X exhaust gas recirculation method (EGR), water injection, the improvement various proposals combustion system have been made. Among them, EGR has problems of durability and reliability such as deterioration of fuel consumption, increase of smoke, corrosion of EGR device due to exhaust gas, or deterioration of function. Further, water injection has problems such as rust in the combustion chamber, oil dilution, and large water consumption.

【0003】また、燃焼方式の観点から見れば、現在広
く用いられている低圧噴射の場合、噴霧はノズル近傍で
着火した後、全体が火炎に包まれながら進行し、この
時、噴霧は、空気と同時に自己の生成した既燃ガスを巻
き込みながら燃焼するので、噴霧中心部において高温
部、酸素不足部が形成されスモークの生成要因となり、
既燃ガスの巻き込みはマイナス要因として働くと言われ
ている。このためスモークを低減するには、燃料と空気
を迅速に混合する必要があり、スワール、スキッシュ等
により空気利用率を向上する方法が採られているが、こ
れでは着火遅れの間の燃料、空気混合速度も増大するた
め、予混合燃焼の増加により燃焼初期の熱発生率が増大
し、NOX の増大を招くという相反する問題を有してお
り、これがスモークとNOX の同時低減を困難にしてい
る。
From the viewpoint of the combustion system, in the case of low-pressure injection, which is widely used at present, after the spray is ignited in the vicinity of the nozzle, it progresses while being wrapped in a flame, and at this time, the spray is air. At the same time, it burns while energizing the burnt gas generated by itself, so a high temperature part and an oxygen deficient part are formed in the center of the spray, which becomes a cause of smoke generation,
It is said that entrainment of burnt gas acts as a negative factor. Therefore, in order to reduce smoke, it is necessary to mix fuel and air rapidly, and methods such as swirl and squish are used to improve the air utilization rate. Since the mixing speed also increases, there is a contradictory problem that the heat release rate in the early stage of combustion increases due to the increase in premixed combustion, leading to an increase in NO X , which makes it difficult to reduce smoke and NO X simultaneously. ing.

【0004】上記問題を解決するために、高圧噴射、小
噴孔径ノズル、浅皿燃焼室および低スワールを組合せる
方式が提案されている。これを図6により説明すると、
31はピストン、32はピストンリング、33はシリン
ダライナ、34はガスケット、35はシリンダヘッド、
36はノズル37を有する燃料噴射弁を示し、ピストン
31の頂部には燃焼室39が形成されている。ピストン
31が上昇し上死点付近に達したとき、ノズル37から
噴射された燃料の噴霧Fは、壁面40で一気に着火した
後、火炎Hは燃焼室39の中心に向かって膨張するが、
噴射の終了まで中心部は不燃域として残る。すなわち、
噴霧Fは壁面40に到達するまで燃焼室39の中心に近
い不燃域側で十分に新気Aを巻き込みながら進行し、壁
面40側では既燃ガスを導入しながら壁面40に衝突す
る二段の燃焼経路をたどる。高圧噴射の場合、噴射時期
を大幅に遅らせても火がつくため噴射時期遅延との組み
合わせで、低圧噴射と比較してスモークおよびNOX
同時低減を図ることができる。
In order to solve the above problems, a system has been proposed in which a high pressure injection, a small injection hole diameter nozzle, a shallow dish combustion chamber and a low swirl are combined. This will be explained with reference to FIG.
31 is a piston, 32 is a piston ring, 33 is a cylinder liner, 34 is a gasket, 35 is a cylinder head,
Reference numeral 36 denotes a fuel injection valve having a nozzle 37, and a combustion chamber 39 is formed at the top of the piston 31. When the piston 31 rises and reaches the vicinity of the top dead center, the spray F of the fuel injected from the nozzle 37 ignites at once on the wall surface 40, and then the flame H expands toward the center of the combustion chamber 39.
The center remains as a non-combustible area until the end of injection. That is,
The spray F proceeds until it reaches the wall surface 40 while sufficiently entraining the fresh air A on the non-combustible region side near the center of the combustion chamber 39, and on the wall surface 40 side, the burned gas is introduced and the spray F collides with the wall surface 40. Follow the combustion path. In the case of high-pressure injection, even if the injection timing is significantly delayed, ignition will occur, so in combination with the injection timing delay, it is possible to reduce smoke and NO X simultaneously as compared with low-pressure injection.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、高圧噴
射は低圧噴射と比較して、噴霧のエネルギーが大きいた
め、火炎Hは噴射エネルギーにより燃焼室39の中心に
向かって広がるのが抑制される。従って、噴霧Fはノズ
ル37側で常に新気Aを導入するのでスモークは大幅に
低減するが、着火までの空気の導入量が多く既燃ガスの
巻き込みが少ないため、前述したように壁面で一気に着
火し、同一噴射タイミングで比較するとどうしてもNO
X の発生量が多くなるという問題を有している。
However, since the high-pressure injection has larger spray energy than the low-pressure injection, the flame H is suppressed from spreading toward the center of the combustion chamber 39 due to the injection energy. Therefore, since the spray F always introduces the fresh air A on the nozzle 37 side, the smoke is greatly reduced, but since the amount of air introduced until ignition is large and the amount of burned gas entrainment is small, as described above, all at once on the wall surface. Nothing happens if you ignite and compare at the same injection timing.
There is a problem that the amount of X generated increases.

【0006】本発明は、上記問題を解決するものであっ
て、スモーク及びNOX を同時にかつ大幅に低減させる
ことができる直接噴射式ディーゼル機関を提供すること
を目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a direct injection diesel engine capable of reducing smoke and NO x simultaneously and significantly.

【0007】[0007]

【課題を解決するための手段】そのために本発明の直接
噴射式ディーゼル機関は、燃料をシリンダ1内に噴射す
る主噴射ノズル5aと、排ガスの成分を前記主噴射ノズ
ル5aの近傍に噴射する副噴射ノズル6aとを有し、燃
料噴射開始前後および燃焼後期に前記排ガスの成分を噴
射するする直接噴射式ディーゼル機関であって、シリン
ダヘッド3の下面凹陥部3aに固定されるガス供給部材
21を備え、該ガス供給部材21は、副噴射ノズル6a
が嵌合される皿部23と、主噴射ノズル5aが貫通され
る貫通孔24と、該貫通孔24の外周に形成される環状
通路25と、該環状通路25と前記皿部24とを連通さ
せる連通路26と、前記環状通路25の底部に形成され
る複数のガス噴出孔27とからなることを特徴とする。
To this end, the direct injection diesel engine of the present invention has a main injection nozzle 5a for injecting fuel into the cylinder 1 and a secondary injection nozzle for injecting exhaust gas components into the vicinity of the main injection nozzle 5a. A direct injection diesel engine that has an injection nozzle 6a and injects the components of the exhaust gas before and after the start of fuel injection and in the latter stage of combustion, and includes a gas supply member 21 fixed to a lower surface recessed portion 3a of a cylinder head 3. The gas supply member 21 includes the sub injection nozzle 6a.
Is fitted, a through hole 24 through which the main injection nozzle 5a penetrates, an annular passage 25 formed on the outer periphery of the through hole 24, and the annular passage 25 and the dish portion 24 are communicated with each other. It is characterized in that it comprises a communicating passage 26 and a plurality of gas ejection holes 27 formed at the bottom of the annular passage 25.

【0008】なお、排ガスの成分および水を噴射する副
噴射ノズルを有し、副噴射ノズルから高負荷域では水を
噴射し、中低負荷域では排ガスの成分を噴射するように
してもよい。なお、上記構成に付加した番号は、理解を
容易にするために図面と対比させるためのもので、これ
により本発明の構成が何ら限定されるものではない。
It is also possible to have a sub-injection nozzle for injecting the exhaust gas component and water, and inject water in the high load region from the sub injection nozzle and inject the exhaust gas component in the medium to low load region. It should be noted that the numbers added to the above configurations are for comparison with the drawings for easy understanding, and the configurations of the present invention are not limited thereby.

【0009】[0009]

【作用】本発明においては、燃料噴射開始前後にEGR
ガスが噴射されると、EGRガスEが主噴射ノズル5a
近傍の燃料噴霧F部分に噴射され、新気とともにEGR
ガスEが燃料噴霧F内に巻き込まれるため、酸素濃度減
少により予混合燃焼が抑えられNOX が減少し、また、
燃焼後期にEGRガスが噴射されると、EGRガスEが
燃焼火炎の部分に噴射され、EGRガスの持つ運動エネ
ルギーにより燃焼室4内での燃料と空気との混合が一層
進み、燃焼が活発となり燃え残ったスモークが低減し、
従って、燃料噴射開始前後および燃焼後期の両方でEG
Rガスを噴射することにより、NOX とスモークの両方
を低減することができる。
In the present invention, EGR is performed before and after the start of fuel injection.
When the gas is injected, the EGR gas E becomes the main injection nozzle 5a.
EGR is injected into the nearby fuel spray F part and EGR along with fresh air.
Since the gas E is entrained in the fuel spray F, the premixed combustion is suppressed due to the decrease in oxygen concentration, and NO X is decreased.
When the EGR gas is injected in the latter stage of combustion, the EGR gas E is injected into the combustion flame portion, and the kinetic energy of the EGR gas further promotes the mixing of the fuel and air in the combustion chamber 4 and the combustion becomes active. Smoke left over is reduced,
Therefore, both before and after the start of fuel injection and in the latter stage of combustion, EG
By injecting R gas, it is possible to reduce both of the NO X and smoke.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1ないし図3は本発明の直接噴射式ディーゼ
ル機関の1実施例を示し、図1は概略構成図、図2は図
1のエンジンの構造を示し、図Aは拡大断面図、図Bは
ガス供給部材の斜視図、図Cは燃焼室の平面図、図3は
ガス噴射時期を説明するための図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show one embodiment of a direct injection diesel engine of the present invention, FIG. 1 is a schematic configuration diagram, FIG. 2 shows the structure of the engine of FIG. 1, FIG. A is an enlarged sectional view, and FIG. FIG. 3 is a perspective view of the gas supply member, FIG. C is a plan view of the combustion chamber, and FIG. 3 is a diagram for explaining gas injection timing.

【0011】図1において、ディーゼルエンジンは、シ
リンダブロック1、ピストン2およびシリンダヘッド3
からなりピストン2の頂部には燃焼室4が形成されてい
る。シリンダヘッド3には、軽油燃料を噴射する主噴射
弁5および排気の一部(以下EGRガスという)を噴射
する副噴射弁6が設けられている。エンジンの排気管7
にはEGRバルブ9が設けられ、EGRガスはトラップ
フィルタ10でスモーク等の成分が除去され、加圧ポン
プ11により加圧されて副噴射弁6から燃焼室4内に噴
射される。また、副噴射弁6には、エンジンにより駆動
される作動油ポンプ12により作動油が供給され、副噴
射弁6の弁の開閉が制御される。主噴射弁5には、燃料
ポンプ13から軽油燃料が供給され燃焼室4内に噴射さ
れる。電子制御装置15には、エンジン回転数、エンジ
ン負荷およびクランク角の信号が入力され、これらの入
力信号に基づいて演算処理が行われ、EGRバルブ9へ
バルブ開度信号が出力され、また、作動油ポンプ12へ
ガス噴射時期信号が出力されるように構成している。
In FIG. 1, a diesel engine includes a cylinder block 1, a piston 2 and a cylinder head 3.
A combustion chamber 4 is formed on the top of the piston 2. The cylinder head 3 is provided with a main injection valve 5 for injecting light oil fuel and a sub injection valve 6 for injecting a part of exhaust gas (hereinafter referred to as EGR gas). Engine exhaust pipe 7
Is provided with an EGR valve 9, and components such as smoke are removed from the EGR gas by a trap filter 10. The EGR gas is pressurized by a pressure pump 11 and injected into the combustion chamber 4 from the auxiliary injection valve 6. Further, hydraulic oil is supplied to the sub injection valve 6 by a hydraulic oil pump 12 driven by an engine, and opening / closing of the sub injection valve 6 is controlled. Light oil fuel is supplied to the main injection valve 5 from the fuel pump 13 and injected into the combustion chamber 4. Signals of engine speed, engine load, and crank angle are input to the electronic control unit 15, arithmetic processing is performed based on these input signals, a valve opening signal is output to the EGR valve 9, and operation is performed. A gas injection timing signal is output to the oil pump 12.

【0012】図2において、シリンダヘッド3の下面に
は、凹陥部3aが形成され、該凹陥部3a内にガス供給
部材21がビス22より固定される。ガス供給部材21
は、副噴射弁6の副噴射ノズル6aが嵌合される有底円
筒状の皿部23と、主噴射弁5の主噴射ノズル5aが貫
通される貫通孔24と、該貫通孔24の外周に形成され
る環状通路25と、該環状通路25と前記皿部23とを
連通させる連通路26と、環状通路25の底部に形成さ
れる複数のガス噴出孔27とを有する。この構成によ
り、図2(C)に示すように、主噴射ノズル5aから複
数の噴口から燃料Fが燃焼室4内に噴射され、副噴射ノ
ズル6aから噴射されるEGRガスEは、ガス供給部材
21の皿部23、連通路26、ガス噴出孔27を経て燃
焼室4内に噴射される。
In FIG. 2, a recess 3a is formed on the lower surface of the cylinder head 3, and the gas supply member 21 is fixed in the recess 3a with a screw 22. Gas supply member 21
Is a bottomed cylindrical dish 23 into which the sub-injection nozzle 6a of the sub-injection valve 6 is fitted, a through hole 24 through which the main injection nozzle 5a of the main injection valve 5 passes, and an outer periphery of the through-hole 24. And a communication passage 26 that connects the annular passage 25 and the dish portion 23, and a plurality of gas ejection holes 27 formed at the bottom of the annular passage 25. With this configuration, as shown in FIG. 2 (C), the fuel F is injected from the main injection nozzle 5a into the combustion chamber 4 from a plurality of injection holes, and the EGR gas E injected from the auxiliary injection nozzle 6a is the gas supply member. It is injected into the combustion chamber 4 through the dish portion 23 of 21, the communication passage 26, and the gas ejection hole 27.

【0013】なお、ガス噴出孔27から噴出されるEG
RガスEの方向は、図2(C)に示すように、噴霧Fの
間でもよいし、噴霧の方向に一致させるようにしてもよ
い。また、主噴射ノズル5aの噴口の数およびガス噴出
孔27の数は任意である。
The EG ejected from the gas ejection hole 27
The direction of the R gas E may be between the sprays F as shown in FIG. 2C, or may be the same as the direction of the sprays. Further, the number of injection ports of the main injection nozzle 5a and the number of gas ejection holes 27 are arbitrary.

【0014】上記構成からなる本発明の作用について説
明する。電子制御装置15により、クランク角の信号に
基づいて、EGRバルブ9へバルブ開度信号が出力さ
れ、また、作動油ポンプ12へガス噴射時期信号が出力
され、図3に示すように、燃料噴射開始前後および燃焼
後期に副噴射ノズル6aから燃焼室4内にEGRガスが
噴射される。燃料噴射開始前後にEGRガスが噴射され
ると、EGRガスEが主噴射ノズル5a近傍の燃料噴霧
F部分に噴射され、新気とともにEGRガスEが燃料噴
霧F内に巻き込まれるため、酸素濃度減少により予混合
燃焼が抑えられNOX が減少する。また、燃焼後期にE
GRガスが噴射されると、EGRガスEが燃焼火炎の部
分に噴射され、EGRガスの持つ運動エネルギーにより
燃焼室4内での燃料と空気との混合が一層進み、燃焼が
活発となり燃え残ったスモークが低減する。従って、燃
料噴射開始前後および燃焼後期の両方でEGRガスを噴
射することにより、NOX とスモークの両方を低減する
ことができる。
The operation of the present invention having the above structure will be described. The electronic control unit 15 outputs a valve opening signal to the EGR valve 9 and a gas injection timing signal to the hydraulic oil pump 12 based on the crank angle signal, and as shown in FIG. EGR gas is injected into the combustion chamber 4 from the sub-injection nozzle 6a before and after the start and in the latter stage of combustion. When the EGR gas is injected before and after the start of fuel injection, the EGR gas E is injected into the fuel spray F portion near the main injection nozzle 5a, and the EGR gas E is entrained in the fuel spray F along with the fresh air, so that the oxygen concentration is reduced. As a result, premixed combustion is suppressed and NO X is reduced. In the latter half of combustion, E
When the GR gas is injected, the EGR gas E is injected into the combustion flame portion, and the kinetic energy of the EGR gas further promotes the mixing of the fuel and the air in the combustion chamber 4 and the combustion becomes active and remains unburned. Smoke is reduced. Therefore, by injecting the EGR gas both before and after the start of fuel injection and in the latter stage of combustion, both NO X and smoke can be reduced.

【0015】図4は、上記実施例における実験結果を示
している。図中、点線は吸気管に排気ガスの1成分であ
るCO2 を噴射した場合(通常のEGR)を示し、実線
は本発明における副噴射ノズル6aからCO2を噴射し
た場合を示している。これによれば、吸気量の1%のC
2噴射で60%のNOX低減率が得られる。
FIG. 4 shows the experimental results in the above embodiment. In the figure, the dotted line shows the case where CO 2 which is one component of the exhaust gas is injected into the intake pipe (normal EGR), and the solid line shows the case where CO 2 is injected from the sub-injection nozzle 6a in the present invention. According to this, C of 1% of the intake amount
A NO x reduction rate of 60% is obtained with O 2 injection.

【0016】上記実施例においては、燃料噴射開始前後
および燃焼後期に副噴射ノズル6aから燃焼室4内にE
GRガスを噴射させるようにしているが、NOX および
スモークは、エンジン負荷、回転数で大きく変化するた
め、これらを検出してEGRガスの噴射時期を決めれ
ば、さらにNOX およびスモークの低減が可能となる。
図5は本発明の他の実施例を示している。エンジン高負
荷の場合、スモークレベルが高くEGRガスの噴射によ
りNOX を低減させようとすると、スモークが大幅に増
加するという問題がある。一方、吸気管内に水を噴射し
シリンダ内燃焼温度を下げることによりNOX を低減さ
せる技術が知られているが、吸気全体に水が混ざるの
で、水がシリンダライナ壁に付着し、特に中低負荷域で
は、さび、オイル希釈、パーティキュレートの増加等の
問題があり、この技術を採用することは適当でない。そ
こで、本実施例においては、副噴射ノズル6aから、図
5に示すように、高負荷域では水を噴射し、中低負荷域
ではEGRガスを噴射して、全負荷域でNOX を低減さ
せるようにしている。この副噴射ノズル6aより水を噴
射する方式は、燃料噴射前後、水を燃焼室内に主噴射ノ
ズル近傍に噴射するため、水が直接シリンダライナに触
れず、さび、オイル希釈等の悪影響が少なく、また、水
が直接噴霧に効果的に導入されるので、水の量が少なく
てすむため、さび、オイル希釈等の悪影響が少ない。
In the above embodiment, before and after the start of fuel injection and in the latter stage of combustion, E is introduced from the auxiliary injection nozzle 6a into the combustion chamber 4.
Although the GR gas is injected, NO X and smoke greatly change depending on the engine load and rotation speed. Therefore, if these are detected and the injection timing of EGR gas is determined, NO X and smoke can be further reduced. It will be possible.
FIG. 5 shows another embodiment of the present invention. For high engine loads, when an attempt to reduce the NO X by the injection of smoke level is high EGR gas, there is a problem that smoke is greatly increased. On the other hand, a technique is known in which NO X is reduced by injecting water into the intake pipe to lower the combustion temperature in the cylinder. However, since water mixes with the entire intake air, water adheres to the wall of the cylinder liner, especially in the low and medium range. In the load range, there are problems such as rust, oil dilution, and increase in particulates, and it is not appropriate to adopt this technique. Therefore, in the present embodiment, as shown in FIG. 5, water is injected from the sub injection nozzle 6a in the high load region, EGR gas is injected in the medium to low load region, and NO X is reduced in the entire load region. I am trying to let you. In the method of injecting water from the sub-injection nozzle 6a, water is injected into the combustion chamber in the vicinity of the main injection nozzle before and after fuel injection, so the water does not directly contact the cylinder liner, and the adverse effects such as rust and oil dilution are small. Further, since water is effectively introduced directly into the spray, the amount of water can be small, and therefore, adverse effects such as rust and oil dilution are small.

【0017】なお、本発明は上記実施例に限定されるも
のではなく、本発明の属する技術分野における通常の知
識を有する者にとって種々の変更が可能である。例え
ば、上記実施例においては、排気の一部を副噴射ノズル
6aから噴射するようにしているが、排ガスの成分であ
るCO2、N2等のガスをボンベに用意しておき、これを
単独で噴射するようにしてもよい。
The present invention is not limited to the above embodiments, and various modifications can be made by those having ordinary knowledge in the technical field to which the present invention belongs. For example, in the above embodiment, a part of the exhaust gas is injected from the sub-injection nozzle 6a, but gases such as CO 2 and N 2 which are the components of the exhaust gas are prepared in the cylinder and this gas is used alone. You may make it inject with.

【0018】[0018]

【発明の効果】以上の説明から明らかなように本発明に
よれば、高圧噴射の場合、燃料噴射中ノズル近傍は不燃
域として残るという特性を生かして、この不燃域に直接
EGRガスを噴射することにより以下の効果が期待でき
る。
As is apparent from the above description, according to the present invention, in the case of high-pressure injection, the EGR gas is directly injected into this incombustible region by utilizing the characteristic that the vicinity of the nozzle during fuel injection remains as an incombustible region. As a result, the following effects can be expected.

【0019】(イ)必要な時、必要な量および必要な場
所にEGRガスを噴射できるため、NOX およびスモー
クの同時低減の効果が大きい。すなわち、従来の、EG
Rガスを吸気管より直接燃焼室内に導入する外部EGR
の場合、吸気全体にEGRガスが混ざるためEGRガス
がシリンダライナ壁に付着し、ピストンリングおよびシ
リンダライナの摩耗、オイル劣化等に悪影響をおよぼす
が、本発明においては、EGRガスを燃焼室内で燃料噴
射開始前後の主噴射ノズル近傍或いは上死点後の火炎内
に噴射するため、EGRガスが直接シリンダライナに触
れず、ピストンリングおよびシリンダライナの摩耗、オ
イル劣化等の悪影響が少ない。また、EGRガスが直接
燃料噴霧に効果的に導入されるため、EGRガス量が少
なくてすみ、スモーク悪化への影響が少なく、かつ、エ
ンジンに与える摩耗、オイル劣化等の悪影響が少ない。
(A) Since the EGR gas can be injected into a required amount and a required place when needed, the effect of simultaneously reducing NO X and smoke is great. That is, the conventional EG
External EGR that introduces R gas directly into the combustion chamber from the intake pipe
In the case of, since the EGR gas is mixed in the entire intake air, the EGR gas adheres to the cylinder liner wall, which adversely affects the wear of the piston ring and the cylinder liner, the oil deterioration, and the like. Since the injection is performed near the main injection nozzle before and after the injection is started or in the flame after the top dead center, the EGR gas does not directly contact the cylinder liner, and the adverse effects such as wear of the piston ring and the cylinder liner and oil deterioration are small. Further, since the EGR gas is effectively introduced directly into the fuel spray, the amount of the EGR gas is small, the influence on smoke deterioration is small, and the adverse effects such as wear and oil deterioration on the engine are small.

【0020】(ロ)燃料噴射開始前後および燃焼後期の
両方で副噴射ノズル6aから燃焼室4内にEGRガスを
噴射することにより、スモークおよびNOX を同時にか
つ大幅に低減させることができる。
[0020] (ii) by injecting the EGR gas into the combustion chamber 4 from the secondary injection nozzle 6a at both of the fuel injection before and after the start and combustion late, it is possible to simultaneously and significantly reduce the smoke and NO X.

【0021】(ハ)副噴射ノズルを使用して、高負荷域
では水を噴射し、中低負荷域ではEGRガスを噴射すれ
ば、全負荷域でNOX とスモークの両方を低減できる。
また、吸気管噴射と異なり、燃焼室内に直接水を噴射す
るため水の量が少なくてすみ、さび、オイル希釈、パー
ティキュレートの増加等の問題がない。また、EGRガ
スにより通路に溜まったスス等が、水噴射により自動的
に洗い流されるためエンジンの耐久性が向上する。
[0021] (c) using the secondary injection nozzle, it is in the high load region by injecting water, if in injecting the EGR gas in the low load region, can be reduced both of the NO X and smoke at full load region.
Further, unlike the intake pipe injection, the amount of water is small because the water is directly injected into the combustion chamber, and there are no problems such as rust, oil dilution, and increase in particulates. Further, soot and the like accumulated in the passage due to the EGR gas are automatically washed away by the water injection, so that the durability of the engine is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の直接噴射式ディーゼル機関の1実施例
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing one embodiment of a direct injection diesel engine of the present invention.

【図2】図1のエンジンの構造を示し、図Aは拡大断面
図、図Bはガス供給部材の斜視図、図Cは燃焼室の平面
図である。
2 shows the structure of the engine of FIG. 1, FIG. A is an enlarged cross-sectional view, FIG. B is a perspective view of a gas supply member, and FIG. C is a plan view of a combustion chamber.

【図3】本発明におけるガス噴射時期を説明するための
図である。
FIG. 3 is a diagram for explaining a gas injection timing in the present invention.

【図4】本発明における実験結果を説明するための図で
ある。
FIG. 4 is a diagram for explaining an experimental result in the present invention.

【図5】本発明の他の実施例を説明するための図であ
る。
FIG. 5 is a diagram for explaining another embodiment of the present invention.

【図6】従来の直接噴射式ディーゼル機関の例を示し、
図Aは断面図、図Bは平面図である。
FIG. 6 shows an example of a conventional direct injection diesel engine,
FIG. A is a sectional view and FIG. B is a plan view.

【符号の説明】[Explanation of symbols]

1…シリンダ、2…ピストン、5a…主噴射ノズル、6
a…副噴射ノズル 21…ガス供給部材、23…皿部、24…貫通孔、25
…環状通路 26…連通路、27…ガス噴出孔、F…燃料噴霧、E…
EGRガス
1 ... Cylinder, 2 ... Piston, 5a ... Main injection nozzle, 6
a ... Sub injection nozzle 21 ... Gas supply member, 23 ... Plate portion, 24 ... Through hole, 25
... annular passage 26 ... communication passage, 27 ... gas ejection holes, F ... fuel spray, E ...
EGR gas

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02B 23/06 M F02M 25/022 25/07 570 L 580 C F02M 25/02 T (72)発明者 小森正憲 茨城県つくば市苅間2530番地 財団法人 日本自動車研究所内 株式会社 新燃焼シ ステム研究所内 (72)発明者 中平敏夫 茨城県つくば市苅間2530番地 財団法人 日本自動車研究所内 株式会社 新燃焼シ ステム研究所内 (56)参考文献 特開 平5−5467(JP,A) 実開 昭62−101057(JP,U) 実開 昭58−163634(JP,U)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location F02B 23/06 M F02M 25/022 25/07 570 L 580 C F02M 25/02 T (72) Invention Masanori Komori 2530, Kuma, Tsukuba-shi, Ibaraki Japan Automobile Research Institute, Inc., Shin-Combustion System Research Co., Ltd. Stem Research Institute (56) Reference Japanese Unexamined Patent Publication No. 5-5467 (JP, A) Actually opened 62-101057 (JP, U) Actually opened 58-163634 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】燃料をシリンダ内に噴射する主噴射ノズル
と、排ガスの成分を前記主噴射ノズルの近傍に噴射する
副噴射ノズルとを有し、燃料噴射開始前後および燃焼後
期に前記排ガスの成分を噴射するする直接噴射式ディー
ゼル機関であって、シリンダヘッドの下面凹陥部に固定
されるガス供給部材を備え、該ガス供給部材は、副噴射
ノズルが嵌合される皿部と、主噴射ノズルが貫通される
貫通孔と、該貫通孔の外周に形成される環状通路と、該
環状通路と前記皿部とを連通させる連通路と、前記環状
通路の底部に形成される複数のガス噴出孔とからなるこ
とを特徴とする直接噴射式ディーゼル機関。
1. A main injection nozzle for injecting fuel into a cylinder, and a sub-injection nozzle for injecting exhaust gas components in the vicinity of the main injection nozzle. The exhaust gas components before and after the start of fuel injection and in the latter stage of combustion. A direct injection diesel engine for injecting a gas, comprising: a gas supply member fixed to a recessed portion of a lower surface of a cylinder head, the gas supply member including a dish part to which a sub injection nozzle is fitted, and a main injection nozzle. Through hole, an annular passage formed on the outer periphery of the through hole, a communication passage communicating the annular passage and the dish portion, and a plurality of gas ejection holes formed at the bottom of the annular passage. A direct-injection diesel engine characterized by consisting of
【請求項2】排ガスの成分および水を噴射する副噴射ノ
ズルを有し、副噴射ノズルから高負荷域では水を噴射
し、中低負荷域では排ガスの成分を噴射することを特徴
とする請求項1に記載の直接噴射式ディーゼル機関。
2. A sub-injection nozzle for injecting exhaust gas components and water, wherein the sub-injection nozzle injects water in a high load region and injects an exhaust gas component in a medium to low load region. Item 1. A direct injection diesel engine according to Item 1.
JP4244602A 1992-09-14 1992-09-14 Direct injection diesel engine Expired - Lifetime JPH0768900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4244602A JPH0768900B2 (en) 1992-09-14 1992-09-14 Direct injection diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4244602A JPH0768900B2 (en) 1992-09-14 1992-09-14 Direct injection diesel engine

Publications (2)

Publication Number Publication Date
JPH0693863A JPH0693863A (en) 1994-04-05
JPH0768900B2 true JPH0768900B2 (en) 1995-07-26

Family

ID=17121173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4244602A Expired - Lifetime JPH0768900B2 (en) 1992-09-14 1992-09-14 Direct injection diesel engine

Country Status (1)

Country Link
JP (1) JPH0768900B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350427B2 (en) * 2015-07-22 2018-07-04 マツダ株式会社 Control device for premixed compression ignition engine
JP6350426B2 (en) * 2015-07-22 2018-07-04 マツダ株式会社 Control device for premixed compression ignition engine
KR102430585B1 (en) * 2017-11-30 2022-08-08 현대자동차주식회사 Fuel injection control method for vehicles

Also Published As

Publication number Publication date
JPH0693863A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
EP1302650B1 (en) Compression-ignition internal combustion engine
US5535716A (en) Compression ignition type gasoline engine injecting fuel inside intake port during exhaust stroke
JP3337307B2 (en) Water injection diesel engine
JP2003083119A (en) Direct injection type diesel engine
JPS5914609B2 (en) Whirlpool chamber diesel engine
JPH0610673A (en) Direct injection type diesel engine
JPH0586864A (en) Combustion chamber of direct injection type diesel engine
JP2653556B2 (en) Combustion chamber of direct injection diesel engine
JPH0768900B2 (en) Direct injection diesel engine
JP3024830B2 (en) Combustion chamber of direct injection diesel engine
JP2003148222A (en) Compression ignition type internal combustion engine
JP2561761B2 (en) Direct injection diesel engine
JP4134708B2 (en) Combustion assist device for internal combustion engine
JP2653571B2 (en) Combustion chamber of direct injection diesel engine
JPH05272338A (en) Combustion chamber of direct injection type diesel engine
WO2002101230A1 (en) CYLINDER IN A TWO-STROKE UNIFLOW SCAVENGED CROSSHEAD ENGINE, AND A METHOD FOR REDUCTION OF NO¿x?
JP3206280B2 (en) Compression ignition type internal combustion engine
JP3799675B2 (en) In-cylinder direct injection spark ignition engine
JP2003120391A (en) Compression ignition internal combustion engine
JPH0882219A (en) Combustion mechanism for diesel engine
JP3743575B2 (en) Fuel injection control device for diesel engine
JPH11182311A (en) Pressure accumulation type fuel injection device
JPH0510131A (en) Combustion chamber of directly injecting type diesel engine
JP2824349B2 (en) Combustion device for internal combustion engine
JP2653588B2 (en) Direct injection diesel engine combustion method