JPH0768353B2 - Method of manufacturing composite material - Google Patents

Method of manufacturing composite material

Info

Publication number
JPH0768353B2
JPH0768353B2 JP61045056A JP4505686A JPH0768353B2 JP H0768353 B2 JPH0768353 B2 JP H0768353B2 JP 61045056 A JP61045056 A JP 61045056A JP 4505686 A JP4505686 A JP 4505686A JP H0768353 B2 JPH0768353 B2 JP H0768353B2
Authority
JP
Japan
Prior art keywords
composite material
tensile strength
amorphous metal
producing
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61045056A
Other languages
Japanese (ja)
Other versions
JPS62201934A (en
Inventor
亨 山本
Original Assignee
株式会社中戸研究所内
井狩 雅道
吉川 里乃
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社中戸研究所内, 井狩 雅道, 吉川 里乃 filed Critical 株式会社中戸研究所内
Priority to JP61045056A priority Critical patent/JPH0768353B2/en
Publication of JPS62201934A publication Critical patent/JPS62201934A/en
Publication of JPH0768353B2 publication Critical patent/JPH0768353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,複合材料およびその製造方法,特に,無機高
分子に,有機高分子が分子スケールで結合した複合材料
およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a composite material and a method for producing the same, and more particularly to a composite material in which an organic polymer is bonded to an inorganic polymer on a molecular scale and a method for producing the same.

(従来の技術) 無機高分子は,熱安定性,機械的強度,耐化学薬品性に
優れている。しかも,比重が小さくかつもろくない。従
って,耐熱性を要する炉材などに広く用いられている。
他方,有機高分子は,弾性率,加工性が良好であり,有
機溶剤にも可溶である。アラミド繊維のような,引っ張
り強度,弾性率,耐熱性に優れた有機高分子も開発され
ている。
(Prior Art) Inorganic polymers have excellent thermal stability, mechanical strength, and chemical resistance. Moreover, it has a low specific gravity and is not brittle. Therefore, it is widely used for furnace materials that require heat resistance.
On the other hand, organic polymers have good elastic modulus and workability, and are soluble in organic solvents. Organic polymers with excellent tensile strength, elastic modulus, and heat resistance, such as aramid fiber, have also been developed.

このようなことから,非晶質金属のような無機材料と有
機高分子とを複合化することにより,有機高分子に無機
質物性を付与することが試みられている。この複合化の
方法としては,有機高分子に対し,(1)無機質粉末を
含有させる方法,(2)無機質繊維を含有させる方法,
(3)ガラスミクロバルーンを含有させる方法,などが
ある。しかし,これらの方法により得られた複合材料
は,いずれも,有機高分子に無機材料が単に物理的に混
和されたにすぎず,その熱安定性や機械的強度は充分で
はない。しかも,無機材料と有機高分子とを均一に混和
することは困難であり,均一な混和を達成するために
は,複雑な製造工程が必要となる。その結果,得られた
複合材料は高価となる 上記欠点を解決するために,無機高分子の化学結合を変
えたり,結合密度を調整することにより,無機高分子に
有機質物性を付与することが提案されている。また,有
機高分子に金属化合物を反応させたり,無機高分子の骨
格に有機官能基を導入する方法もある。例えば,ホウ素
含有シリカ高分子や窒素含有無機高分子が挙げられる。
しかし,これらの複合材料は,無機質分子と有機質分子
とが分子スケールで結合したものではなく,無機高分子
または有機高分子のいずれか一方を主体とし,これに官
能基を導入したりその一部を変性しているにすぎない。
それゆえ,得られた複合材料の物性は,主体とした高分
子の物性(すなわち,無機高分子としての物性かそれと
も有機高分子としての物性)と変わらない。しかも,無
機高分子への有機官能基の導入は,使用物質が希少かつ
高価であるうえに激しい化学反応を要するため,実用上
困難である。
Therefore, it has been attempted to impart an inorganic physical property to the organic polymer by combining an inorganic material such as an amorphous metal and the organic polymer. As a method of this compounding, (1) a method of adding an inorganic powder to the organic polymer, (2) a method of adding an inorganic fiber to the organic polymer,
(3) There is a method of incorporating glass microballoons. However, in any of the composite materials obtained by these methods, the organic polymer is merely physically mixed with the inorganic material, and the thermal stability and mechanical strength thereof are not sufficient. Moreover, it is difficult to mix the inorganic material and the organic polymer uniformly, and a complicated manufacturing process is required to achieve the uniform mixing. As a result, the obtained composite material becomes expensive. In order to solve the above-mentioned drawbacks, it is proposed to give the inorganic polymer organic properties by changing the chemical bond of the inorganic polymer or adjusting the bond density. Has been done. There is also a method of reacting an organic polymer with a metal compound or introducing an organic functional group into the skeleton of an inorganic polymer. Examples thereof include boron-containing silica polymers and nitrogen-containing inorganic polymers.
However, these composite materials are not composed of inorganic and organic molecules bonded on a molecular scale, and are mainly composed of either an inorganic polymer or an organic polymer, into which a functional group is introduced or a part of them is introduced. Is only denatured.
Therefore, the physical properties of the obtained composite material are the same as those of the polymer mainly used (that is, the physical properties of an inorganic polymer or an organic polymer). Moreover, the introduction of an organic functional group into an inorganic polymer is practically difficult because the substance used is rare and expensive and requires a vigorous chemical reaction.

(発明が解決しようとする問題点) 本発明は上記従来の問題点を解決するものであり,その
目的とするところは,熱安定性,機械的強度,耐化学薬
品性,弾性率および加工性(熱可塑性,溶剤の利用性,
機械加工性)に優れた複合材料およびその製造方法を提
供することにある。本発明の他の目的は,簡単な工程に
よる複合材料の製造方法を提供することにある。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional problems, and aims to solve the problems, such as thermal stability, mechanical strength, chemical resistance, elastic modulus and workability. (Thermoplasticity, solvent availability,
It is to provide a composite material having excellent machinability) and a method for producing the same. Another object of the present invention is to provide a method for manufacturing a composite material by a simple process.

(問題点を解決するための手段) 本発明は,非晶質金属アルコキシドのような無機質モノ
マーと,有機質モノマーとを,同時に重合させることに
より,無機高分子に,有機高分子が分子スケールで結合
し,熱安定性,機械的強度,耐化学薬品性,弾性率およ
び加工性(熱可塑性,溶剤の利用性,機械加工性)に優
れた複合材料が得られうる,との発明者の知見にもとづ
いて完成された。
(Means for Solving Problems) In the present invention, an organic polymer is bonded to an inorganic polymer on a molecular scale by simultaneously polymerizing an inorganic monomer such as an amorphous metal alkoxide and an organic monomer. However, the inventor's finding that a composite material having excellent thermal stability, mechanical strength, chemical resistance, elastic modulus, and processability (thermoplasticity, solvent availability, machinability) can be obtained. It was originally completed.

本発明の複合材料の製造方法は,非晶質金属アルコキシ
ド,重合性有機質モノマー,水,および酸または塩基触
媒を含有する液体混合物に,紫外線および電子線のうち
の少なくとも一方を照射することにより,該非晶質金属
アルコキシドの加水分解・重縮合反応および該有機質モ
ノマーの重合反応を同時に進行させる工程,を包含し,
そのことにより上記目的が達成される。
The method for producing the composite material of the present invention comprises irradiating a liquid mixture containing an amorphous metal alkoxide, a polymerizable organic monomer, water, and an acid or base catalyst with at least one of ultraviolet rays and electron beams, A step of simultaneously advancing a hydrolysis / polycondensation reaction of the amorphous metal alkoxide and a polymerization reaction of the organic monomer,
Thereby, the above object is achieved.

本発明の他の複合材料の製造方法は,無機質モノマーの
水溶液に,少なくとも有機質モノマーを加えて混合する
工程,該混合物に紫外線および電子線のうちの少なくと
も一方を照射して,該無機質モノマーと該有機質モノマ
ーとを同時に重合させる工程,および該重合化物を焼成
する工程,を包含し,そのことにより上記目的が達成さ
れる。
Another method for producing a composite material according to the present invention is a step of adding at least an organic monomer to an aqueous solution of an inorganic monomer and mixing the mixture, irradiating the mixture with at least one of ultraviolet rays and electron beams, It includes a step of simultaneously polymerizing with an organic monomer, and a step of baking the polymerized product, whereby the above object is achieved.

無機質モノマーには,例えば,非晶質金属アルコキシド
がある。
Inorganic monomers include, for example, amorphous metal alkoxides.

非晶質金属アルコキシドを出発原料として,非晶質の無
機高分子を得る方法は,既に知られている。この方法で
は,非晶質金属アルコキシドの水溶液を,常温付近で,
鉱酸のような触媒の存在下で加水分解し,さらに重縮合
反応によって高分子化して無機高分子が合成される。得
られた無機高分子はゲル状となっている。これはゾル−
ゲル法と呼ばれ,ガラスの低温合成法の1つである。本
発明は,上記重縮合反応による無機高分子の生成過程に
おいて,有機質モノマーの光重合・高分子化を同時に起
こさせ,それにより,無機質高分子に,有機高分子が分
子スケールで結合する,との発明者の独特の思想にもと
づいている。この思想にもとづいて得られる無機高分子
と有機高分子とが結合した複合高分子は,架橋などによ
り三次元的な拡がりを有しており,無機高分子と有機高
分子とがサンドイッチ状に配列されるか,あるいは無機
高分子のカゴの中に有機高分子がとりこまれていると考
えられる。
A method for obtaining an amorphous inorganic polymer using an amorphous metal alkoxide as a starting material is already known. In this method, an aqueous solution of an amorphous metal alkoxide is prepared at around room temperature.
It is hydrolyzed in the presence of a catalyst such as mineral acid, and is polymerized by a polycondensation reaction to synthesize an inorganic polymer. The obtained inorganic polymer is in a gel form. This is a sol
It is called the gel method and is one of the low-temperature synthesis methods for glass. According to the present invention, in the process of producing an inorganic polymer by the polycondensation reaction, photopolymerization / polymerization of an organic monomer is caused at the same time, whereby the organic polymer is bonded to the inorganic polymer on a molecular scale. It is based on the unique idea of the inventor of. A composite polymer obtained by combining an inorganic polymer and an organic polymer based on this idea has a three-dimensional spread due to cross-linking, etc., and the inorganic polymer and the organic polymer are arranged in a sandwich form. It is thought that the organic polymer is incorporated into the cage of the inorganic polymer.

本発明に用いられる無機質モノマーとしての非晶質金属
アルコキシドは,アルミナ,シリカ,酸化チタン(I
V),酸化ジルコニウム(IV)のような非晶質金属酸化
物;または非晶質金属塩化物に,メタノール,エタノー
ル,イソプロパノールのような公知のアルコールを加え
て得られる。このような非晶質金属アルコキシドとして
は,例えば,エチルシリケート,アルミニウムイソプロ
ポキシド,チタニウムイソプロポキシド,ジルコニウム
イソプロポキシドがある。非晶質金属のアルコキシド溶
液には,常温付近にて水および鉱酸が加えられ,水溶液
とされる。鉱酸は,非晶質金属アルコキシドの加水分解
のための触媒であり,塩酸,硫酸,硝酸,酢酸などがあ
る。鉱酸に変えてカセイソーダを触媒としてもよい。加
えられる水の量は,非晶質金属アルコキシド100重量部
に対し,30〜2500重量部,好ましくは,100〜200重量部と
される。
Amorphous metal alkoxides as inorganic monomers used in the present invention include alumina, silica, titanium oxide (I
V), an amorphous metal oxide such as zirconium (IV) oxide; or an amorphous metal chloride obtained by adding a known alcohol such as methanol, ethanol or isopropanol. Examples of such amorphous metal alkoxides include ethyl silicate, aluminum isopropoxide, titanium isopropoxide, and zirconium isopropoxide. Water and mineral acid are added to the alkoxide solution of amorphous metal at around room temperature to form an aqueous solution. Mineral acids are catalysts for the hydrolysis of amorphous metal alkoxides, such as hydrochloric acid, sulfuric acid, nitric acid and acetic acid. Instead of mineral acid, sodium hydroxide may be used as a catalyst. The amount of water added is 30 to 2500 parts by weight, preferably 100 to 200 parts by weight, based on 100 parts by weight of the amorphous metal alkoxide.

このように調製された非晶質金属アルコキシドの水溶液
に,ジアセチルなどの光増感剤および有機質モノマーが
加えられる。この水溶液には,光重合反応を促進するた
め,および異種ポリマーどうしの混和性を向上させるた
めに,必要に応じて,ポリマーが添加されてもよい。
A photosensitizer such as diacetyl and an organic monomer are added to the aqueous solution of the amorphous metal alkoxide thus prepared. If necessary, a polymer may be added to this aqueous solution in order to accelerate the photopolymerization reaction and improve the miscibility of different polymers.

有機質モノマーには,例えば,アクリロニトリル,スチ
レン,アクリル酸メチル,アクリル酸エチル,メタクリ
ル酸メチル,メタクリル酸エチルがある。しかし,これ
に限定されず,他のビニル系モノマーも使用可能であ
る。ポリマーには,上記有機質モノマーの重合体のほか
に,例えば,塩化ビニル,酢酸ビニル,ブタジエンの重
合体や,これらモノマーおよび上記有機質モノマーから
任意に選択されたモノマー同士の共重合体がある。
Examples of organic monomers include acrylonitrile, styrene, methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate. However, the present invention is not limited to this, and other vinyl monomers can be used. Examples of the polymer include polymers of the above organic monomers, polymers of vinyl chloride, vinyl acetate, and butadiene, and copolymers of these monomers and monomers arbitrarily selected from the above organic monomers.

非晶質金属アルコキシドの水溶液と有機質モノマーとの
混合物には,紫外線および/または電子線が照射され
る。紫外線および/または電子線の照射により,光増感
剤からラジカルが発生し,このラジカルが,有機質モノ
マーのラジカル重合(光重合または電子線重合)を開始
させる。他方,非晶質金属アルコキシドは,水および鉱
酸を添加した時点で,既に加水分解反応および重縮合反
応が順次進行しているものの,反応速度は極めて遅く,
反応完結までに200〜300時間を要する。しかし,この非
晶質金属アルコキシドの水溶液に紫外線および/または
電子線を照射することにより,重縮合反応が著しく促進
される。
The mixture of the aqueous solution of the amorphous metal alkoxide and the organic monomer is irradiated with ultraviolet rays and / or electron beams. Radiation of ultraviolet rays and / or electron beams causes radicals to be generated from the photosensitizer, and the radicals initiate radical polymerization (photopolymerization or electron beam polymerization) of the organic monomer. On the other hand, in the case of amorphous metal alkoxide, the hydrolysis reaction and polycondensation reaction have already proceeded sequentially when water and mineral acid are added, but the reaction rate is extremely slow,
It takes 200 to 300 hours to complete the reaction. However, the polycondensation reaction is significantly accelerated by irradiating the aqueous solution of the amorphous metal alkoxide with ultraviolet rays and / or electron beams.

このようにして,有機質モノマーのラジカル重合(光重
合または電子線重合)と非晶質金属アルコキシドの加水
分解反応・重縮合反応とが同時に進行する。ラジカル重
合(光重合または電子線重合)により得られる有機高分
子は,重縮合反応による無機高分子の三次元的なカゴの
中に取り込まれるか,あるいは,有機高分子と無機高分
子とがサンドイッチ状に配列される。両高分子は,この
ように分子レベルで結合し,得られた複合材料は,有機
質物性と無機質物性との両方の性質を有している。しか
も,その物理的性質は均質である。上記重縮合反応およ
びラジカル重合(光重合または電子線重合)は,20〜30
℃といった低温で容易に進行しうる。
In this way, the radical polymerization (photopolymerization or electron beam polymerization) of the organic monomer and the hydrolysis reaction / polycondensation reaction of the amorphous metal alkoxide simultaneously proceed. An organic polymer obtained by radical polymerization (photopolymerization or electron beam polymerization) is incorporated into a three-dimensional cage of an inorganic polymer by a polycondensation reaction, or an organic polymer and an inorganic polymer are sandwiched. Arranged in a shape. Both polymers are bound at the molecular level in this way, and the resulting composite material has both organic and inorganic physical properties. Moreover, its physical properties are homogeneous. The above-mentioned polycondensation reaction and radical polymerization (photopolymerization or electron beam polymerization) can be performed in 20 to 30
It can easily proceed at a low temperature such as ℃.

紫外線の波長は250nm以下とされる。250nmを上まわる
と,上記ラジカル重合(光重合または電子線重合)およ
び重縮合反応が充分に進行しない。電子線の照射量は,
0.1〜50メガラドの範囲とされる。エネルギー量は150〜
200KVが好ましい。0.5メガラドを下まわると,上記ラジ
カル重合(光重合または電子線重合)および重縮合反応
が充分に進行しない。50メガラドを上まわる量の電子線
は必要としない。電子線照射装置としては,例えば,エ
リアビーム形電子線照射装置(キュアトロン,日新電機
社製)が用いられる。
The wavelength of ultraviolet rays is 250 nm or less. Above 250 nm, the radical polymerization (photopolymerization or electron beam polymerization) and polycondensation reaction do not proceed sufficiently. The electron beam dose is
It is in the range of 0.1 to 50 megarads. Energy amount is 150 ~
200KV is preferred. Below 0.5 megarad, the radical polymerization (photopolymerization or electron beam polymerization) and polycondensation reaction do not proceed sufficiently. It does not require an electron beam in excess of 50 megarads. As the electron beam irradiation device, for example, an area beam type electron beam irradiation device (Curetron, manufactured by Nissin Electric Co., Ltd.) is used.

前記有機質モノマーは,前記無機質モノマー100重量部
に対し,10〜300重量部,好ましくは30〜100重量部の範
囲で含有される。10重量部を下まわると,得られた複合
材料の有機質物性が低下する。300重量部を上まわる
と,得られた複合材料の無機質物性が低下する。
The organic monomer is contained in an amount of 10 to 300 parts by weight, preferably 30 to 100 parts by weight, based on 100 parts by weight of the inorganic monomer. If it is less than 10 parts by weight, the organic properties of the obtained composite material deteriorate. When it exceeds 300 parts by weight, the inorganic physical properties of the obtained composite material deteriorate.

このように得られた複合材料は,さらに焼成することに
より,有機高分子の一部が分解するため,無機質物性の
高い複合材料とされる。焼成温度は300〜1300℃の範囲
が好ましい。
When the composite material thus obtained is further fired, a part of the organic polymer is decomposed, so that the composite material has high inorganic physical properties. The firing temperature is preferably in the range of 300 to 1300 ° C.

本発明の複合材料は,このように,無機質物性と有機質
物性の両方の性質を有している。この複合材料の用途と
しては,耐熱性や耐化学薬品性を有する特殊塗料,繊維
強化金属複合材料や繊維強化セラミック複合材料の分散
材,ウイスカー材料,アラミド繊維に対抗する引っ張り
強度と弾性率のある繊維素材,各種ポリマーの耐熱改質
材料,各種接着材(ポリイミド接着剤,エポキシ接着剤
など)の耐熱改質材料などがある。このような複合材料
の耐熱温度は350℃以上,引っ張り強度は,15,000〜20,0
00kg/mm2程度である。これを焼成して得られた複合材料
の耐熱温度は約1350℃,弾性率は1〜10ton/mm2,そして
引っ張り強度は約20ton/mm2である。
Thus, the composite material of the present invention has both inorganic and organic physical properties. Applications of this composite material include special coatings with heat resistance and chemical resistance, dispersion materials for fiber-reinforced metal composite materials and fiber-reinforced ceramic composite materials, whiskers, and tensile strength and elastic modulus against aramid fibers. There are fiber materials, heat-resistant modified materials of various polymers, and heat-resistant modified materials of various adhesives (polyimide adhesives, epoxy adhesives, etc.). The heat-resistant temperature of such composite materials is 350 ℃ or higher, and the tensile strength is 15,000 to 20,0.
It is about 00 kg / mm 2 . The heat-resistant temperature of the composite material obtained by firing this is about 1350 ° C, the elastic modulus is 1 to 10 ton / mm 2 , and the tensile strength is about 20 ton / mm 2 .

本発明の複合材料の製造方法では,紫外線および/また
は電子線の照射により重合を行っているものの,これに
限定されず,他の放射線重合や通常の熱重合でも可能で
あると考えられる。また,非晶質金属アルコキシドの水
溶液にカルコゲン元素や窒素などを含有させることによ
り、得られた複合材料に電機伝導性や光導電性を付与す
ることができる。
In the method for producing the composite material of the present invention, the polymerization is carried out by irradiation with ultraviolet rays and / or electron beams, but the present invention is not limited to this, and it is considered that other radiation polymerization or ordinary thermal polymerization is also possible. Further, by adding a chalcogen element, nitrogen, or the like to the aqueous solution of the amorphous metal alkoxide, it is possible to impart electric conductivity or photoconductivity to the obtained composite material.

(実施例) 以下に本発明を実施例について述べる。(Examples) The present invention will be described below with reference to Examples.

実施例1 エチルシリケート170gに対し,水15g,エタノール40gお
よび触媒量の塩酸を加え,さらにアクロニトリル170gお
よび触媒量のジアセチルを添加して混合した。これら混
合物に,紫外線照射装置(岩崎電機社製)を用いて,250
nm(ピーク波長),4KWの紫外線を10分間照射した。照射
時の温度は40℃であった。紫外線の照射により複合材料
が生成した。この複合材料を紡糸して繊維状とし,その
引っ張り強度および耐熱温度を測定したところ,引っ張
り強度は1500kg/mm2,そして耐熱温度は350℃であった。
Example 1 To 170 g of ethyl silicate, 15 g of water, 40 g of ethanol and a catalytic amount of hydrochloric acid were added, and 170 g of acronitrile and a catalytic amount of diacetyl were added and mixed. Using an ultraviolet irradiator (made by Iwasaki Electric Co., Ltd.) on these mixtures,
Ultraviolet rays of 4 KW (nm (peak wavelength)) were irradiated for 10 minutes. The temperature during irradiation was 40 ° C. The composite material was formed by irradiation with ultraviolet rays. The composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1500 kg / mm 2 , and the heat resistant temperature was 350 ° C.

実施例2 アクリロニトリルに代えてスチレンを用いたこと以外
は,実施例1と同様にして複合材料を得た。この複合材
料を紡糸して繊維状とし,その引っ張り強度および耐熱
温度を測定したところ,引っ張り強度は1500kg/mm2,そ
して耐熱温度は350℃であった。
Example 2 A composite material was obtained in the same manner as in Example 1 except that styrene was used instead of acrylonitrile. The composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1500 kg / mm 2 , and the heat resistant temperature was 350 ° C.

実施例3 アクリロニトリルに代えてアクリル酸メチルを用いたこ
と以外は,実施例1と同様にして複合材料を得た。この
複合材料を紡糸して繊維状とし,その引っ張り強度およ
び耐熱温度を測定したところ,引っ張り強度は1000kg/m
m2,そして耐熱温度は250℃であった。
Example 3 A composite material was obtained in the same manner as in Example 1 except that methyl acrylate was used instead of acrylonitrile. This composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1000 kg / m.
m 2 , and the heat resistant temperature was 250 ℃.

実施例4 実施例1と同様にして得た混合物に,エリアビーム形電
子線照射装置(キュアトロン,日新電機社製)を用い
て,40メガラドの電子線を秒単位で照射した。照射時の
温度は25℃であった。電子線の照射により複合材料が生
成した。この複合材料を紡糸して繊維状とし,その引っ
張り強度および耐熱温度を測定したところ,引っ張り強
度は1500kg/mm2,そして耐熱温度は350℃であった。
Example 4 The mixture obtained in the same manner as in Example 1 was irradiated with an electron beam of 40 megarad in seconds by using an area beam type electron beam irradiation device (Curetron, manufactured by Nissin Electric Co., Ltd.). The temperature during irradiation was 25 ° C. A composite material was produced by electron beam irradiation. The composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1500 kg / mm 2 , and the heat resistant temperature was 350 ° C.

実施例5 アクリロニトリルに代えてスチレンを用いたこと以外
は,実施例1と同様にして混合物を得た。この混合物
に,実施例4と同様の方法により電子線を照射したとこ
ろ,複合材料が生成した。この複合材料を紡糸して繊維
状とし,その引っ張り強度および耐熱温度を測定したと
ころ,引っ張り強度は1500kg/mm2,そして耐熱温度は350
℃であった。
Example 5 A mixture was obtained in the same manner as in Example 1 except that styrene was used instead of acrylonitrile. When this mixture was irradiated with an electron beam in the same manner as in Example 4, a composite material was produced. The composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1500 kg / mm 2 , and the heat resistant temperature was 350.
It was ℃.

実施例6 アクリロニトリルに代えてアクリル酸メチルを用いたこ
と以外は,実施例1と同様にして混合物を得た。この混
合物に,実施例4と同様の方法により電子線を照射した
ところ,複合材料が生成した。この複合材料を紡糸して
繊維状とし,その引っ張り強度および対熱温度を測定し
たところ,引っ張り強度は1500kg/mm2,そして耐熱温度
は350℃であった。
Example 6 A mixture was obtained in the same manner as in Example 1 except that methyl acrylate was used instead of acrylonitrile. When this mixture was irradiated with an electron beam in the same manner as in Example 4, a composite material was produced. The composite material was spun into a fibrous form, and its tensile strength and heat resistance temperature were measured. The tensile strength was 1500 kg / mm 2 , and the heat resistance temperature was 350 ° C.

実施例7 塩酸に代えて酢酸を用いたこと以外は,実施例1と同様
にして複合材料を得た。この複合材料を紡糸して繊維状
とし,その引っ張り強度および耐熱温度を測定したとこ
ろ,引っ張り強度は200kg/mm2,そして耐熱温度は300℃
であった。
Example 7 A composite material was obtained in the same manner as in Example 1 except that acetic acid was used instead of hydrochloric acid. This composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 200 kg / mm 2 , and the heat resistant temperature was 300 ° C.
Met.

実施例8 塩酸に代えて硫酸を用いたこと以外は,実施例1と同様
にして複合材料を得た。この複合材料を紡糸して繊維状
とし,その引っ張り強度および耐熱温度を測定したとこ
ろ,引っ張り強度は1000kg/mm2,そして耐熱温度は300℃
であった。
Example 8 A composite material was obtained in the same manner as in Example 1 except that sulfuric acid was used instead of hydrochloric acid. The composite material was spun into a fibrous form, and the tensile strength and heat resistance temperature were measured. The tensile strength was 1000 kg / mm 2 , and the heat resistance temperature was 300 ° C.
Met.

実施例9 塩酸に代えてカセイソーダを用いたこと以外は,実施例
1と同様にして複合材料を得た。この複合材料を紡糸し
て繊維状とし,その引っ張り強度および耐熱温度を測定
したところ,引っ張り強度は400kg/mm2,そして耐熱温度
は200℃であった。
Example 9 A composite material was obtained in the same manner as in Example 1 except that caustic soda was used instead of hydrochloric acid. When this composite material was spun into a fibrous form and its tensile strength and heat resistance temperature were measured, the tensile strength was 400 kg / mm 2 , and the heat resistance temperature was 200 ° C.

実施例10 エチルシリケート100gおよびアルミニウムイソプポロキ
シド40gに対し,水15g,エタノール70gおよび触媒量の塩
酸を加え,さらにアクリロニトリル170gおよび触媒量の
ジアセチルを添加して混合した、この混合物に,実施例
1と同様の方法により紫外線を照射したところ,複合材
料が生成した。この複合材料を紡糸して繊維状とし,そ
の引っ張り強度および耐熱温度を測定したところ,引っ
張り強度は1500kg/mm2,そして耐熱温度は350℃であっ
た。
Example 10 To 100 g of ethyl silicate and 40 g of aluminum isopoxide, 15 g of water, 70 g of ethanol and a catalytic amount of hydrochloric acid were added, and 170 g of acrylonitrile and a catalytic amount of diacetyl were further added and mixed. Ultraviolet irradiation was carried out in the same manner as in 1. and a composite material was formed. The composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1500 kg / mm 2 , and the heat resistant temperature was 350 ° C.

実施例11 アクリロニトリルに代えてスチレンを用いたこと以外
は,実施例10と同様にして複合材料を得た。この複合材
料を紡糸して繊維状とし,その引っ張り強度および耐熱
温度を測定したところ,引っ張り強度は1500kg/mm2,そ
して耐熱温度は350℃であった。
Example 11 A composite material was obtained in the same manner as in Example 10 except that styrene was used instead of acrylonitrile. The composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1500 kg / mm 2 , and the heat resistant temperature was 350 ° C.

実施例12 アクリロニトリルに代えてアクリル酸メチルを用いたこ
と以外は,実施例10と同様にして複合材料を得た。この
複合材料を紡糸して繊維状とし,その引っ張り強度およ
び耐熱温度を測定したところ,引っ張り強度は1000kg/m
m2,そして耐熱温度は300℃であった。
Example 12 A composite material was obtained in the same manner as in Example 10 except that methyl acrylate was used instead of acrylonitrile. This composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1000 kg / m.
m 2 , and the heat resistant temperature was 300 ℃.

実施例13 実施例10と同様にして得た混合物に,エリアビーム形電
子線照射装置(キュアトロン,日新電機社製)を用い
て,40メガラドの電子線を秒単位で照射した。電子線の
照射により複合材料が生成した。この複合材料を紡糸し
て繊維状とし,その引っ張り強度および耐熱温度を測定
したところ,引っ張り強度は1500kg/mm2,そして耐熱温
度は350℃であった。
Example 13 The mixture obtained in the same manner as in Example 10 was irradiated with an electron beam of 40 megarads for each second by using an area beam type electron beam irradiation device (Curetron, manufactured by Nissin Electric Co., Ltd.). A composite material was produced by electron beam irradiation. The composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1500 kg / mm 2 , and the heat resistant temperature was 350 ° C.

実施例14 アルミニウムイソプロポキシドに代えてチタニウムイソ
プロポキシドを用い,エタノール70gに代えてエタノー
ル40gとプロパノール30gとの混合溶媒を溶いたこと以外
は,実施例10と同様にして混合物を得た。この混合物
に,実施例1と同様の方法により紫外線を照射したとこ
ろ,複合材料が生成した。この複合材料を紡糸して繊維
状とし,その引っ張り強度および耐熱温度を測定したと
ころ,引っ張り強度は1500kg/mm2,そして耐熱温度は350
℃であった。
Example 14 A mixture was obtained in the same manner as in Example 10 except that titanium isopropoxide was used instead of aluminum isopropoxide, and a mixed solvent of 40 g of ethanol and 30 g of propanol was dissolved instead of 70 g of ethanol. When this mixture was irradiated with ultraviolet rays in the same manner as in Example 1, a composite material was produced. The composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1500 kg / mm 2 , and the heat resistant temperature was 350.
It was ℃.

実施例15 アルミニウムイソプロポキシドに代えてジルコニウムイ
ソプロポキシドを用い,エタノール70gに代えてエタノ
ール40gとプロパノール30gとの混合溶媒を用いたこと以
外は,実施例10と同様にして混合物を得た。この混合物
に,実施例1と同様の方法により紫外線を照射したとこ
ろ,複合材料が生成した。この複合材料を紡糸して繊維
状とし,その引っ張り強度および耐熱温度を測定したと
ころ,引っ張り強度は1500kg/mm2,そして耐熱温度は350
℃であった。
Example 15 A mixture was obtained in the same manner as in Example 10 except that zirconium isopropoxide was used instead of aluminum isopropoxide, and a mixed solvent of 40 g of ethanol and 30 g of propanol was used instead of 70 g of ethanol. When this mixture was irradiated with ultraviolet rays in the same manner as in Example 1, a composite material was produced. The composite material was spun into a fibrous form, and its tensile strength and heat resistant temperature were measured. The tensile strength was 1500 kg / mm 2 , and the heat resistant temperature was 350.
It was ℃.

実施例16 実施例1により得られた繊維状の複合材料を,1000℃に
て1時間焼成した。焼成した複合材料の引っ張り強度お
よび耐熱温度を測定したところ,引っ張り強度は2000kg
/mm2,そして耐熱温度は1350℃であった。
Example 16 The fibrous composite material obtained in Example 1 was fired at 1000 ° C. for 1 hour. When the tensile strength and heat resistant temperature of the fired composite material were measured, the tensile strength was 2000 kg.
/ mm 2 , and the heat resistant temperature was 1350 ℃.

実施例17 実施例4により得られた繊維状の複合材料を,1300℃に
て1時間焼成した。焼成した複合材料の引っ張り強度お
よび耐熱温度を測定したところ,引っ張り強度は2000kg
/mm2,そして耐熱温度は1350℃であった。
Example 17 The fibrous composite material obtained in Example 4 was fired at 1300 ° C. for 1 hour. When the tensile strength and heat resistant temperature of the fired composite material were measured, the tensile strength was 2000 kg.
/ mm 2 , and the heat resistant temperature was 1350 ℃.

実施例1〜17から明らかなように,本発明の複合材料
は,機械的強度および熱安定性に優れている。これを焼
成すれば,さらに機械的強度および熱安定性に優れた複
合材料が得られる。
As is clear from Examples 1 to 17, the composite material of the present invention is excellent in mechanical strength and thermal stability. If this is fired, a composite material with even better mechanical strength and thermal stability can be obtained.

(発明の効果) 本発明によれば,このように,簡単な工程にて,熱安定
性,機械的強度,耐化学薬品性,弾性率および加工性
(熱可塑性,溶剤の利用性,機械加工性)に優れた無機
質高分子と有機質高分子との複合材料が得られる。この
複合材料は,特殊塗料,繊維強化金属複合材料や繊維強
化セラミック複合材料の分散材,ウイスカー材料,繊維
素材,各種ポリマーや各種接着剤の耐熱改質材料などに
有効に利用されうる。この繊維素材を焼成すれば,無機
繊維質物性が高い複合材料が容易に得られる。
(Effects of the Invention) According to the present invention, as described above, thermal stability, mechanical strength, chemical resistance, elastic modulus and workability (thermoplasticity, solvent availability, machining) can be achieved in a simple process. A composite material of an inorganic polymer and an organic polymer having excellent properties is obtained. This composite material can be effectively used as a special coating material, a dispersion material of a fiber-reinforced metal composite material or a fiber-reinforced ceramic composite material, a whisker material, a fiber material, a heat-resistant modification material of various polymers and various adhesives, and the like. By firing this fiber material, a composite material having high inorganic fiber physical properties can be easily obtained.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−43146(JP,A) 特開 昭56−147101(JP,A) 特開 昭54−115324(JP,A) 特開 昭58−132025(JP,A) 特開 昭61−146345(JP,A) 特開 昭46−4044(JP,A) 特開 昭49−30465(JP,A) 特公 昭51−46081(JP,B1) 特公 昭49−48199(JP,B1) 特公 昭48−26400(JP,B1) ─────────────────────────────────────────────────── --Continued from the front page (56) Reference JP-A-55-43146 (JP, A) JP-A-56-147101 (JP, A) JP-A-54-115324 (JP, A) JP-A 58- 132025 (JP, A) JP 61-146345 (JP, A) JP 46-4044 (JP, A) JP 49-30465 (JP, A) JP 51-46081 (JP, B1) JP-B-49-48199 (JP, B1) JP-B-48-26400 (JP, B1)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】非晶質金属アルコキシド,重合性有機質モ
ノマー,水,および酸または塩基触媒を含有する液体混
合物に,紫外線および電子線のうちの少なくとも一方を
照射することにより,該非晶質金属アルコキシドの加水
分解・重縮合反応および該有機質モノマーの重合反応を
同時に進行させる工程を包含する複合材料の製造方法。
1. An amorphous metal alkoxide by irradiating a liquid mixture containing an amorphous metal alkoxide, a polymerizable organic monomer, water, and an acid or base catalyst with at least one of ultraviolet rays and electron beams. A method for producing a composite material, which comprises the steps of simultaneously advancing the hydrolysis / polycondensation reaction and the polymerization reaction of the organic monomer.
【請求項2】前記非晶質金属アルコキシドが,エチルシ
リケート,アルミニウムイソプロポキシド,チタニウム
イソプロポキシドおよびジルコニウムイソプロポキシド
のうちの少なくとも一種である特許請求の範囲第1項に
記載の複合材料の製造方法。
2. The composite material according to claim 1, wherein the amorphous metal alkoxide is at least one of ethyl silicate, aluminum isopropoxide, titanium isopropoxide and zirconium isopropoxide. Production method.
【請求項3】前記有機質モノマーが,アクリロニトリ
ル,スチレン,アクリル酸メチル,アクリル酸エチル,
メタクリル酸メチルおよびメタクリル酸エチルのうちの
少なくとも一種である特許請求の範囲第1項に記載の複
合材料の製造方法。
3. The organic monomer is acrylonitrile, styrene, methyl acrylate, ethyl acrylate,
The method for producing a composite material according to claim 1, wherein the composite material is at least one of methyl methacrylate and ethyl methacrylate.
【請求項4】前記紫外線の波長が250nm以下の範囲であ
る特許請求の範囲第1項に記載の複合材料の製造方法。
4. The method for producing a composite material according to claim 1, wherein the wavelength of the ultraviolet rays is in the range of 250 nm or less.
【請求項5】前記電子線の照射量が,0.1〜50メガラドの
範囲である特許請求の範囲第1項に記載の複合材料の製
造方法。
5. The method for producing a composite material according to claim 1, wherein the irradiation dose of the electron beam is in the range of 0.1 to 50 megarads.
【請求項6】前記有機質モノマーが,前記非晶質金属ア
ルコキシド100重量部に対し,10〜300重量部の範囲で含
有される特許請求の範囲第1項に記載の複合材料の製造
方法。
6. The method for producing a composite material according to claim 1, wherein the organic monomer is contained in the range of 10 to 300 parts by weight with respect to 100 parts by weight of the amorphous metal alkoxide.
JP61045056A 1986-02-28 1986-02-28 Method of manufacturing composite material Expired - Fee Related JPH0768353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045056A JPH0768353B2 (en) 1986-02-28 1986-02-28 Method of manufacturing composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045056A JPH0768353B2 (en) 1986-02-28 1986-02-28 Method of manufacturing composite material

Publications (2)

Publication Number Publication Date
JPS62201934A JPS62201934A (en) 1987-09-05
JPH0768353B2 true JPH0768353B2 (en) 1995-07-26

Family

ID=12708697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045056A Expired - Fee Related JPH0768353B2 (en) 1986-02-28 1986-02-28 Method of manufacturing composite material

Country Status (1)

Country Link
JP (1) JPH0768353B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070149675A1 (en) 2005-12-26 2007-06-28 Industrial Technology Research Institute Organic polymer/inorganic particles composite materials
US8330045B2 (en) 2005-12-26 2012-12-11 Industrial Technology Research Institute Fire-resistant wire/cable
JP4985112B2 (en) * 2007-06-04 2012-07-25 Dic株式会社 Organic-inorganic hybrid resin aqueous dispersion, curable resin composition, paint and paint

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721352A (en) * 1971-08-06 1973-03-20 E Messmer Drive mechanism employing suction cup coupling
JPS5543146A (en) * 1978-09-23 1980-03-26 Matsushita Electric Works Ltd Production of solid resol resin
JPS56147101A (en) * 1980-04-17 1981-11-14 Seiko Epson Corp Material for plastic lens

Also Published As

Publication number Publication date
JPS62201934A (en) 1987-09-05

Similar Documents

Publication Publication Date Title
JP2619905B2 (en) Composite material and method for producing the same
US4889876A (en) Composite substance and a method for the production of the same
JP3040993B2 (en) Manufacturing method of nanocomposite material
JPH01126A (en) Composite materials and their manufacturing methods
JP2619910B2 (en) Composite material and method for producing the same
JP2006193708A (en) Fluorene skeleton-containing (meth)acrylic polymer and method for producing the same
JPH0768353B2 (en) Method of manufacturing composite material
KR100317169B1 (en) Potential Curing Agents of Epoxy Resin and Epoxy Resin Containing It and Epoxy Curing Products
Allen et al. Composites formed by interstitial polymerization of vinyl monomers in polyurethane elastomers: 4. Preparation, properties and structure of acrylonitrile and styrene based composites
JPH06157767A (en) Organic polymer-titanium-based compound oxide composite
JPS62500795A (en) Crosslinking method for organopolysilane polymers
CN111217968A (en) Polyolefin triblock copolymer responding to multiple effects on environment and preparation method thereof
EP0318325A2 (en) Resin composition for artificial marble
JPS6020904A (en) Novel thermoplastic polymer
JPH09263616A (en) Production of heat-resistant resin
US5212217A (en) Artificial marble from reactive thermoplastic, monomer and anhydride
JPH1129623A (en) Thermosetting resin composition
CN116574520B (en) Fireproof gel and preparation method and application thereof
JPH0460127B2 (en)
Gao et al. Preparation of styrene–maleic anhydride copolymer/Si O network nanocomposites by the sol–gel process
CA1098275A (en) Process for producing glass fiber-reinforced resin molded products
Misra et al. Grafting onto poly (vinyl alcohol). II. Graft copolymerization of methyl acrylate and vinyl acetate and their binary mixture using γ‐rays as initiator
JPH0618907B2 (en) Fiber reinforced composite material
JPH0345542A (en) Production of artificial marble
JPS61192730A (en) Novel reactive oligomer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees