JPH0766816B2 - Method for manufacturing gas diffusion type composite electrode - Google Patents

Method for manufacturing gas diffusion type composite electrode

Info

Publication number
JPH0766816B2
JPH0766816B2 JP1343365A JP34336589A JPH0766816B2 JP H0766816 B2 JPH0766816 B2 JP H0766816B2 JP 1343365 A JP1343365 A JP 1343365A JP 34336589 A JP34336589 A JP 34336589A JP H0766816 B2 JPH0766816 B2 JP H0766816B2
Authority
JP
Japan
Prior art keywords
electrode
gas diffusion
diffusion type
base material
conductive base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1343365A
Other languages
Japanese (ja)
Other versions
JPH02297865A (en
Inventor
美紀 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Publication of JPH02297865A publication Critical patent/JPH02297865A/en
Publication of JPH0766816B2 publication Critical patent/JPH0766816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は,燃料電池,金属/空気電池,炭酸ガスの電解
還元電極,ガスセンサ,湿度センサなどに用いられるガ
ス拡散型複合電極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a gas diffusion type composite used for a fuel cell, a metal / air battery, a carbon dioxide electrolytic reduction electrode, a gas sensor, a humidity sensor and the like. The present invention relates to a method for manufacturing an electrode.

(従来の技術) 燃料電池,金属/空気電池,炭酸ガスの電解還元電極,
ガスセンサ,湿度センサなどに用いられるガス拡散型複
合電極の多孔構造の本体としては、従来,ガス酸化還元
過電圧の低いニッケルタングステン酸,パラジウムやコ
バルトで被覆された炭化タングステン,ペロブスカイト
型構造の酸化物,ニッケル,銀,白金,パラジウムなど
を触媒として用い,これらの触媒を活性炭粉末などの導
電性粉末に担持させた粉末,および成膜性が比較的低い
ポリテトラフルオロエチレンなどの結着剤からなるもの
を,さらに,金属多孔体,カーボン多孔体,カーボン繊
維不織布などの導電性基材と一体化させたものが用いら
れている。しかしながら,触媒,導電性粉末および結着
剤からなるこのような組成物は,多量の導電性粉末を含
み,しかも成膜性の低い結着剤を用いているため,きわ
めて脆く,亀裂が発生しやすく,電極寿命が短くなると
いう欠点とともに,触媒の欠損を生じるという欠点があ
った。また,このような組成物では,成形加工性にとぼ
しいため薄膜化が困難であるとともに,細孔径の制御が
困難なため,電極として用いたときに,電解液の液もれ
を生じやすいという欠点があった。
(Prior art) Fuel cell, metal / air cell, carbon dioxide electrolytic reduction electrode,
As the main body of the porous structure of the gas diffusion type composite electrode used for the gas sensor, the humidity sensor, etc., nickel tungstic acid having a low gas oxidation-reduction overvoltage, tungsten carbide coated with palladium or cobalt, oxide having a perovskite type structure, Containing nickel, silver, platinum, palladium, etc. as a catalyst and supporting these catalysts on a conductive powder such as activated carbon powder, and a binder having a relatively low film-forming property such as polytetrafluoroethylene Further, a material in which a conductive base material such as a metal porous body, a carbon porous body, or a carbon fiber nonwoven fabric is integrated is used. However, such a composition comprising a catalyst, a conductive powder and a binder contains a large amount of the conductive powder and uses a binder having a low film-forming property, so that it is extremely brittle and cracks do not occur. In addition to the drawback that the electrode life is short and the electrode life is shortened, there is a drawback that the catalyst is lost. In addition, such a composition has a drawback that it is difficult to form a thin film because of poor molding processability, and that it is difficult to control the pore size, so that the electrolyte is liable to leak when used as an electrode. was there.

(発明が解決しようとする課題) 本発明者は,導電性粉末を使わず,電解重合可能な芳香
族化合物および(または)複素環化合物を電解重合して
形成させた導電性の重合体を用いることによって,従来
のガス拡散型複合電極の上記の種々の欠点を改良できる
ことを見出し,本発明にいたったもので,本発明は,電
極寿命が長い,触媒の欠損のないガス拡散型複合電極の
製造方法を提供するものである。
(Problems to be Solved by the Invention) The present inventor uses a conductive polymer formed by electrolytic polymerization of an electropolymerizable aromatic compound and / or a heterocyclic compound without using a conductive powder. It has been found that the above-mentioned various drawbacks of the conventional gas diffusion type composite electrode can be improved by the present invention, and the present invention has been made. The present invention provides a gas diffusion type composite electrode having a long electrode life and no loss of catalyst. A manufacturing method is provided.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 本発明は、導電性基材上に樹脂溶液に有機金属錯体を溶
解または分散させた塗布剤を塗布、乾燥して樹脂部材を
形成した複合材の上記導電性基材上で、電解重合可能な
芳香族化合物または複素環化合物を電解重合し、次いで
上記導電性基材を除去することを特徴とするガス拡散型
薄膜状複合電極の製造方法である。
(Means for Solving the Problems) The present invention provides the above-mentioned conductivity of a composite material in which a coating material prepared by dissolving or dispersing an organometallic complex in a resin solution is applied onto a conductive substrate and dried to form a resin member. A method for producing a gas diffusion type thin film composite electrode, characterized in that an electropolymerizable aromatic compound or heterocyclic compound is electropolymerized on a substrate, and then the conductive substrate is removed.

本発明において用いられる樹脂としては,ポリテトラフ
ルオロエチレンなどのふっ素系樹脂,シリコーン樹脂,
ポリサルホンなどのいおう系樹脂,ビニル系樹脂,オレ
フィン系樹脂,フェノール系樹脂などの樹脂をあげるこ
とができる。
Examples of the resin used in the present invention include fluororesins such as polytetrafluoroethylene, silicone resins,
Examples include sulfur-based resins such as polysulfone, vinyl-based resins, olefin-based resins, and phenol-based resins.

本発明においてガス拡散型複合電極の触媒として用いら
れる有機金属錯体としては,フタロシアニン,ナフタロ
シアニン,ポルフィリン,フェナトポルフィリン,ビス
シクロペンタジエニル,カルボニル,ヒドリド,カルベ
ン,カルビン,アセチルアセトン錯塩,サリチルアミン
キレート,サリチルアルデヒド錯塩,エチレンジアミン
四酢酸塩,グリシンキレート,フェロセンなど,あるい
はこれらに,ハロゲン原子,ニトロ基,スルホン基,ス
ルホン酸塩基,アルキル基,アリル基,水酸基,カルボ
キシル基などの原子または置換基が導入された誘導体
の,白金,鉄,コバルト,ニッケル,銅,パラジウム,
モリブデンなどの金属の錯体である。
Examples of the organometallic complex used as the catalyst of the gas diffusion type composite electrode in the present invention include phthalocyanine, naphthalocyanine, porphyrin, phenatoporphyrin, biscyclopentadienyl, carbonyl, hydride, carbene, carbine, acetylacetone complex salt, salicylamine chelate. , Salicylaldehyde complex salt, ethylenediaminetetraacetic acid salt, glycine chelate, ferrocene, etc., or these atoms or substituents such as halogen atom, nitro group, sulfone group, sulfonate group, alkyl group, allyl group, hydroxyl group, carboxyl group, etc. Of the introduced derivatives, platinum, iron, cobalt, nickel, copper, palladium,
It is a complex of a metal such as molybdenum.

また,触媒の有効利用率を向上させるためには,これら
の有機金属錯体のうち,用いる樹脂部材と同一の溶媒に
可溶性のものを用いることが望ましく,例えば,有機金
属錯体,溶媒,樹脂の組み合わせとしては,アセチルア
セトン錯塩では,アセトン溶媒,ポリビニルハロゲン化
合物および(または)ポリスチレン樹脂の組み合わせ,
サリチルアミンキレートでは,ジメチルホルムアミドお
よび(または)ピリジン溶媒,ポリビニルアルコールお
よび(または)ピリジン溶媒,ポリビニルアルコールお
よび(または)ポリアセチレンおよび(または)ポリビ
ニルハロゲン化物樹脂の組み合わせ,サリチルアルデヒ
ド錯塩では,クロロホルム溶媒,ポリビニルアセテート
および(または)ポリビニルスルホキシド樹脂の組み合
わせ,フェロセンでは,ベンゼン溶媒,ポリビニルアセ
テートおよび(または)ポリスチレン樹脂の組み合わ
せ,ポルフィリン,フタロシアニンなどのスルホン酸塩
誘導体,カルボキシル誘導体では,ジメチルホルムアミ
ドまたはジメチルスルホキシド溶媒,ポリビニルアルコ
ールおよび(または)ポリビニルハロゲン化物および
(または)ポリアクロニトリルブタジエンスチレンおよ
び(または)ポリアクリロニトリルおよび(または)ポ
リアセチレン樹脂等を挙げることができるが,これらに
限定されるものではない。
Further, in order to improve the effective utilization rate of the catalyst, it is desirable to use one of these organometallic complexes which is soluble in the same solvent as the resin member used, for example, a combination of the organometallic complex, the solvent and the resin. As for acetylacetone complex salt, a combination of acetone solvent, polyvinyl halogen compound and / or polystyrene resin,
For salicylamine chelate, dimethylformamide and / or pyridine solvent, polyvinyl alcohol and / or pyridine solvent, polyvinyl alcohol and / or polyacetylene and / or polyvinyl halide resin combination, salicylaldehyde complex salt, chloroform solvent, polyvinyl solvent Acetate and / or polyvinyl sulfoxide resin combination, for ferrocene, benzene solvent, polyvinyl acetate and / or polystyrene resin combination, porphyrin, sulfonate derivative such as phthalocyanine, for carboxyl derivative, dimethylformamide or dimethylsulfoxide solvent, polyvinyl Alcohol and / or polyvinyl halide and / or polyacrylo Tolyl-butadiene-styrene and (or) polyacrylonitrile and (or) can be exemplified polyacetylene resin or the like, but is not limited thereto.

上記有機金属錯体と樹脂とからなる樹脂部材は,本発明
にかかわるガス拡散型複合電極において利用されるガス
を透過する性質を有するものでなければならない。例え
ば,ガスが酸素である場合に,樹脂部材の酸素透過係数
は,1×10-15{cm3(STP)cm・cm-2s-1(cmHg)-1}以上,
好ましくは1×10-10{cm3(STP)cm・cm-2s-1(cmH
g)-1}以上である。
The resin member composed of the organometallic complex and the resin must have a property of permeating the gas used in the gas diffusion type composite electrode according to the present invention. For example, when the gas is oxygen, the oxygen permeability coefficient of the resin member is 1 × 10 -15 {cm 3 (STP) cm · cm -2 s -1 (cmHg) -1 } or more,
Preferably 1 × 10 -10 {cm 3 (STP) cm · cm -2 s -1 (cmH
g) -1 } or more.

本発明において電解重合の電極として用いられる導電性
基材としては,白金,ニッケル,銅,銀,金,パラジウ
ムなどの金属材料,およびグラシーカーボンなどの炭素
質材料からなるものの他,インジウムトリオキシドなど
を蒸着させた透明電極(ITOガラスなど)を用いること
ができる。導電性基材の形状としては,特に限定はな
く,線状,板状,棒状,球状,メッシュ状,ペーパー
状,クロス状などのものを用いることができる。
In the present invention, the conductive base material used as the electrode for electrolytic polymerization includes metal materials such as platinum, nickel, copper, silver, gold and palladium, and carbonaceous materials such as glassy carbon, as well as indium trioxide. It is possible to use a transparent electrode (ITO glass or the like) vapor-deposited with. The shape of the conductive base material is not particularly limited, and linear, plate-like, rod-like, spherical, mesh-like, paper-like, cloth-like and the like can be used.

本発明において複合材は上記樹脂部材と導電性基材とか
らなる。複合材は,上記有機金属錯体および樹脂を,テ
トラヒドロフランなどのエーテル系溶媒,ジアミノジフ
ェニルメタンなどのアミン系溶媒,アセトン,メチルエ
チルケトンなどのケトン系溶媒,フェノール,トルエ
ン,キシレンなどの芳香族系溶媒,シクロヘキセンなど
の脂肪族化合物系溶媒など適切な有機溶媒に溶解(溶融
溶解を含む)または分散させた塗布剤を,上記導電性基
材上に塗布し,乾燥させて得られたものである。
In the present invention, the composite material comprises the above resin member and a conductive base material. As the composite material, the above organometallic complex and resin are used as an ether solvent such as tetrahydrofuran, an amine solvent such as diaminodiphenylmethane, a ketone solvent such as acetone and methyl ethyl ketone, an aromatic solvent such as phenol, toluene and xylene, and cyclohexene. The coating agent obtained by dissolving (including melt-dissolving) or dispersing in a suitable organic solvent such as the aliphatic compound solvent is applied onto the conductive base material and dried.

このようにして得られた複合材の導電性基材上で,電解
重合可能な芳香族化合物および(または)複素環化合物
が電解重合される。電解重合可能な芳香族化合物または
複素環化合物としては,アズレン,ピレン,トリフェニ
レン,アニリン,ピロール,チオフェン,3−メチルチオ
フェン,フラン,ピペラジン,イソチアナフテンなどを
あげることができる。
On the conductive base material of the composite material thus obtained, the electropolymerizable aromatic compound and / or heterocyclic compound are electropolymerized. Examples of the electropolymerizable aromatic compound or heterocyclic compound include azulene, pyrene, triphenylene, aniline, pyrrole, thiophene, 3-methylthiophene, furan, piperazine and isothianaphthene.

これら電解重合可能な芳香族化合物および(または)複
素環化合物,通電させるための電解質,および有機溶媒
からなる溶液中に,上記複合材を対向電極とともに入
れ,通電させることにより,複合材の導電性基材上で,
すなわち,導電性基材の樹脂部材で覆われた部分の上,
樹脂部材中で,また,導電性基材上に樹脂部材で覆われ
ていない部分がある場合には,この樹脂部材で覆われて
いない部分の上で,それぞれ電解重合がおこり,重合体
が堆積(生長)する。電解重合は,少なくとも,導電性
基材の樹脂部材で覆われた部分の上,樹脂部材中だけで
おこればよく,電解重合による重合体の形成効率の面か
ら,導電性基材上の樹脂部材で覆われていない部分を剥
離可能なまたは不可能な絶縁材料で覆ってから,電解重
合を行なうことが好ましい。
Conductivity of the composite material is improved by putting the composite material together with a counter electrode into a solution consisting of these electrolytically polymerizable aromatic compound and / or heterocyclic compound, an electrolyte for applying electric current, and an organic solvent and applying electric current. On the substrate,
That is, on the portion of the conductive base material covered with the resin member,
If there is a part not covered with the resin member in the resin member or on the conductive base material, electrolytic polymerization occurs on the part not covered with the resin member, and the polymer is deposited. (Grow). The electrolytic polymerization may be performed at least on the portion of the conductive base material covered with the resin member and only in the resin member. From the viewpoint of the efficiency of polymer formation by electrolytic polymerization, the resin on the conductive base material may be used. It is preferable to cover the part not covered with the member with a peelable or non-releasable insulating material and then carry out the electropolymerization.

上記電解質を構成するカチオンとしては,アルカリ金属
イオン,アルカリ土類金属イオン,第4アルキルアンモ
ニウムイオン,第4アルキルホスホニウムイオン,第4
アルキルアルセニウムイオン,第4スルホニウムイオ
ン,あるいはこれらの置換体などがあり,アニオンとし
ては,スルホン酸イオン,硝酸イオン,過塩素酸イオ
ン,カルボン酸イオン,テトラフルオロほう酸イオン,
ヘキサフルオロりん酸イオン,あるいはこれらの置換体
がある。これらのカチオンおよびアニオンから構成され
る電解質のうち,有機溶媒への溶解性などの面から,特
に,テトラブチルアンモニウムパークロレート,テトラ
エチルアンモニウムパークロレート,テトラブチルアン
モニウムテトラフルオロほう酸塩,テトラフルオロほう
酸ナトリウムなどを用いることが好ましい。電解重合の
際に用いられる有機溶媒としては,アセトニトリル,ベ
ンジルニトリル,ベンゾニトリルなどのニトリル類,ジ
メチルホルムアミド,ジメチルアセトアミド,N−メチル
アセトアミドなどのアミド類,エチレンジアミン,ヘキ
サメチルホスホルアミド,ピリジンなどのアミン類,テ
トラヒドロフラン,ジオキサン,1,2−ジメトキシエタン
などのエーテル類,酢酸,無水酢酸などのカルボン酸
類,メタノール,エタノールなどのアルコール類,ジメ
チルスルホキシド,スルホラン,ジメチルスルホンなど
のいおう化合物,プロピレンカーボネート,ニトロメタ
ン,塩化メチレン,アセトンなどを用いることができ
る。電離係数を考慮するなら,これらの有機溶媒のうち
でも,特に,メタノール,エタノール,アセトニトリ
ル,ジメチルホルムアミド,ジメチルスルホキシド,テ
トラヒドロフラン,プロピレンカーボネート,ニトロメ
タンなどを用いることが好ましい。
As the cations constituting the electrolyte, alkali metal ions, alkaline earth metal ions, quaternary alkylammonium ions, quaternary alkylphosphonium ions, quaternary alkylphosphonium ions,
There are alkylarsenium ions, quaternary sulfonium ions, or their substitution products, and the anions include sulfonate ions, nitrate ions, perchlorate ions, carboxylate ions, tetrafluoroborate ions,
There are hexafluorophosphate ions or their substitution products. Among the electrolytes composed of these cations and anions, tetrabutylammonium perchlorate, tetraethylammonium perchlorate, tetrabutylammonium tetrafluoroborate, sodium tetrafluoroborate, etc. are particularly preferred in terms of solubility in organic solvents. Is preferably used. Organic solvents used in electrolytic polymerization include nitriles such as acetonitrile, benzyl nitrile and benzonitrile, amides such as dimethylformamide, dimethylacetamide and N-methylacetamide, ethylenediamine, hexamethylphosphoramide and pyridine. Amines, tetrahydrofuran, dioxane, ethers such as 1,2-dimethoxyethane, carboxylic acids such as acetic acid and acetic anhydride, alcohols such as methanol and ethanol, sulfur compounds such as dimethyl sulfoxide, sulfolane and dimethyl sulfone, propylene carbonate, Nitromethane, methylene chloride, acetone, etc. can be used. Considering the ionization coefficient, it is preferable to use methanol, ethanol, acetonitrile, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, propylene carbonate, nitromethane among these organic solvents.

電解重合時の通電量は,通常,0.1〜100C/cm2であるが,
通電量を1〜10C/cm2に設定するなら,電解重合によっ
て堆積(生長)する重合体の表面を平滑とすることがで
き,導電性の高いガス拡散型複合電極を得ることができ
る。このようにして電解重合を行ない,上記導電性基材
が除去され,ガス拡散型複合電極が得られる。また,導
電性基材を除去することによって,さらに軽量化・薄膜
化をはかることができるとともに,成形などの加工をよ
り容易に行なうことができる。
The amount of electricity applied during electrolytic polymerization is usually 0.1 to 100 C / cm 2 ,
If the amount of electricity is set to 1 to 10 C / cm 2 , the surface of the polymer deposited (grown) by electrolytic polymerization can be made smooth, and a gas diffusion type composite electrode with high conductivity can be obtained. In this way, electrolytic polymerization is performed, the conductive base material is removed, and a gas diffusion type composite electrode is obtained. Further, by removing the conductive base material, it is possible to further reduce the weight and the film thickness, and it is possible to easily perform processing such as molding.

(作用) 本発明において導電性基材は電解重合時の電極として作
用する。
(Function) In the present invention, the conductive base material functions as an electrode during electrolytic polymerization.

本発明により得られたガス拡散型複合電極において,有
機金属錯体は触媒として作用し,電解重合によって堆積
(生長)した重合体は電極本体における導電性として作
用する。
In the gas diffusion type composite electrode obtained by the present invention, the organometallic complex acts as a catalyst, and the polymer deposited (grown) by electrolytic polymerization acts as conductivity in the electrode body.

(実施例) 以下,実施例により本発明をより詳細に説明する。な
お,例中,部とは重量部を表わす。
(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples. In the examples, “part” means “part by weight”.

実施例1. ポリサルホン50部およびジメチルホルムアミド200部か
らなる溶液250部にコバルトフタロシアニン25部を分散
させて得られた分散液をITOガラス上に塗布し,120℃で
2時間乾燥し,複合材を得た。得られた複合材を電極と
して用い,対向電極として白金板を用いて,アセトニト
リル100部,ピロール0.7部およびテトラブチルアンモニ
ウムパークロレート3.5部からなる電解質含有溶液中
で,通電量が3C/cm2に達するまで電解重合を行ない,つ
ぎにITOガラスを剥離させ,アセトニトリルで十分洗浄
し,80℃で5時間乾燥し,厚さ20μmの薄膜状の電極を
得た。得られた電極中には,ポリピロールが3重量%含
まれていた。
Example 1. A dispersion obtained by dispersing 25 parts of cobalt phthalocyanine in 250 parts of a solution consisting of 50 parts of polysulfone and 200 parts of dimethylformamide was coated on ITO glass and dried at 120 ° C. for 2 hours to form a composite material. Obtained. Using the obtained composite material as an electrode and a platinum plate as a counter electrode, in a solution containing an electrolyte consisting of 100 parts of acetonitrile, 0.7 part of pyrrole and 3.5 parts of tetrabutylammonium perchlorate, the energization amount was 3 C / cm 2 . Electropolymerization was performed until the temperature reached, then ITO glass was peeled off, thoroughly washed with acetonitrile, and dried at 80 ° C for 5 hours to obtain a thin-film electrode with a thickness of 20 µm. The obtained electrode contained 3% by weight of polypyrrole.

このようにして得られた電極を用い,電解液として水酸
化カリウム1規定水溶液を,対向電極として白金板をそ
れぞれ用い,酸素ガス圧を1atm,酸素ガス供給速度を100
ml/分,設定電流密度を0.1mA/cm2として酸素半電池を組
み立て,電極電位を測定したところ,電極電位は−0.39
Vであった。測定開始後1000時間以上経過しても,電極
電位に変化はなく,電解液の液もれも生じなかった。な
お,この際,参照電極としてはHg/HgO電極を用いた。
Using the electrode thus obtained, a 1N aqueous solution of potassium hydroxide was used as the electrolytic solution, and a platinum plate was used as the counter electrode. The oxygen gas pressure was 1 atm, and the oxygen gas supply rate was 100 atm.
When an oxygen half-cell was assembled with the set current density of 0.1 mA / cm 2 at ml / min and the electrode potential was measured, the electrode potential was −0.39.
It was V. The electrode potential did not change and the electrolyte did not leak even after 1000 hours had elapsed since the start of measurement. At this time, an Hg / HgO electrode was used as the reference electrode.

比較例1. ポリサルホン50部およびジメチルホルムアミド200部か
らなる溶液250部に,コバルトフタロシアニン25部およ
びカーボンブラック2.25部を分散させて得られた分散液
を,乾燥膜厚20μmとなるようにITOガラス上に塗布し,
120℃で2時間乾燥した後,ITOガラスを剥離させ,薄膜
状の電極を得た。得られた電極を用い,実施例1と同様
にして,酸素半電池を組み立てようとしたが,電極電位
は−1.0V以下であり,酸素半電池としての実用性はない
ことがわかった。
Comparative Example 1. A dispersion obtained by dispersing 25 parts of cobalt phthalocyanine and 2.25 parts of carbon black in 250 parts of a solution consisting of 50 parts of polysulfone and 200 parts of dimethylformamide was applied on an ITO glass to give a dry film thickness of 20 μm. Applied to
After drying at 120 ° C for 2 hours, the ITO glass was peeled off to obtain a thin film electrode. An oxygen half-cell was tried to be assembled using the obtained electrode in the same manner as in Example 1, but the electrode potential was −1.0 V or less, and it was found that the oxygen half-cell was not practical.

比較例2. ポリサルホン50部およびジメチルホルムアミド200部か
らなる溶液250部に,コバルトフタロシアニン25部およ
びカーボンブラック50部を分散させて得られた分散液
を,乾燥膜厚20μmとなるようにITOガラス上に塗布し,
120℃で2時間乾燥した後,ITOガラスを剥離させ,薄膜
状の電極を得た。得られた電極を用い,実施例1と同様
にして,酸素半電池を組み立て,電極電位を測定したと
ころ,電極電位は−0.39Vであったが、測定開始後100時
間で電解液の液もれが生じ,電極電位も−1.0Vとなっ
た。
Comparative Example 2. A dispersion obtained by dispersing 25 parts of cobalt phthalocyanine and 50 parts of carbon black in 250 parts of a solution consisting of 50 parts of polysulfone and 200 parts of dimethylformamide was applied on an ITO glass to give a dry film thickness of 20 μm. Applied to
After drying at 120 ° C for 2 hours, the ITO glass was peeled off to obtain a thin film electrode. Using the obtained electrode, an oxygen half-cell was assembled in the same manner as in Example 1 and the electrode potential was measured. The electrode potential was -0.39 V. However, 100 hours after the start of measurement, the electrolyte solution was also discharged. This occurred and the electrode potential became -1.0V.

実施例2. ポリアクリロニトリルブタジエンスチレン10部,ジメチ
ルホルムアミド90部からなる溶液100部に,コバルトフ
タロシアニントリスルホン酸ナトリウム5部を溶解させ
て得られた混合溶液をITOガラス上に塗布し,100℃で2
時間乾燥し,複合材を得た。得られた複合材を電極とし
て用い,対向電極として白金板を用いて,実施例1と同
様にしてポリピロールを複合して得られた薄膜状の電極
を用い実施例1と同様にして酸素半電池を組み立て電極
電位を測定したところ,電極電位は−0.24Vに向上し
た。
Example 2 A mixed solution obtained by dissolving 5 parts of sodium cobalt phthalocyanine trisulfonate in 100 parts of a solution consisting of 10 parts of polyacrylonitrile butadiene styrene and 90 parts of dimethylformamide was applied on ITO glass, and then at 100 ° C. Two
After drying for an hour, a composite material was obtained. Using the obtained composite material as an electrode, using a platinum plate as a counter electrode, and using a thin film electrode obtained by compounding polypyrrole in the same manner as in Example 1, an oxygen half-cell was prepared in the same manner as in Example 1. When assembled and measured the electrode potential, the electrode potential improved to -0.24V.

〔発明の効果〕〔The invention's effect〕

本発明により,電極寿命が長い,触媒の欠損のないガス
拡散型複合電極が得られるようになった。
According to the present invention, a gas diffusion type composite electrode having a long electrode life and no loss of catalyst can be obtained.

また,導電性基材を除去することによって,さらに軽量
化・薄膜化をはかることができるとともに,成形などの
加工もより容易に行なうことができる。
Further, by removing the conductive base material, the weight and the thickness can be further reduced, and the processing such as molding can be performed more easily.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 27/333 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G01N 27/333

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性基材上に樹脂溶液に有機金属錯体を
溶解または分散させた塗布剤を塗布、乾燥して樹脂部材
を形成した複合材の上記導電性基材上で、電解重合可能
な芳香族化合物または複素環化合物を電解重合し、次い
で上記導電性基材を除去することを特徴とするガス拡散
型薄膜状複合電極の製造方法。
1. A composite material in which a resin member is formed by coating a coating solution prepared by dissolving or dispersing an organometallic complex in a resin solution on a conductive base material, and electrolytically polymerizing the composite material on the conductive base material. A method for producing a gas diffusion type thin film composite electrode, which comprises electrolytically polymerizing an aromatic compound or a heterocyclic compound, and then removing the conductive base material.
JP1343365A 1989-01-13 1989-12-29 Method for manufacturing gas diffusion type composite electrode Expired - Lifetime JPH0766816B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-7412 1989-01-13
JP741289 1989-01-13

Publications (2)

Publication Number Publication Date
JPH02297865A JPH02297865A (en) 1990-12-10
JPH0766816B2 true JPH0766816B2 (en) 1995-07-19

Family

ID=11665150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343365A Expired - Lifetime JPH0766816B2 (en) 1989-01-13 1989-12-29 Method for manufacturing gas diffusion type composite electrode

Country Status (1)

Country Link
JP (1) JPH0766816B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852973B1 (en) * 2003-03-28 2006-05-26 Atofina PROCESS FOR FORMING A COATING OF METAL OXIDES ON AN ELECTROCONDUCTIVE SUBSTRATE; RESULTING ACTIVE CATHODE AND USE THEREOF FOR THE ELECTROLYSIS OF ACQUEUS SOLUTIONS OF ALKALINE COIL CHORIDES.
US7250189B2 (en) * 2004-08-05 2007-07-31 General Motors Corporation Increasing the hydrophilicity of carbon fiber paper by electropolymerization
JP2006344525A (en) * 2005-06-09 2006-12-21 Toyota Motor Corp Gas diffuser, its manufacturing method and fuel cell
JP6926433B2 (en) * 2016-09-30 2021-08-25 三菱ケミカル株式会社 Laminated film and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624898A (en) * 1985-07-01 1987-01-10 Agency Of Ind Science & Technol Production of electrically conductive polymer film containing particle

Also Published As

Publication number Publication date
JPH02297865A (en) 1990-12-10

Similar Documents

Publication Publication Date Title
US4556623A (en) Electroconductive porous film and process for producing same
JP5308661B2 (en) Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
KR101177188B1 (en) Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
JP4915785B2 (en) Counter electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
JPH0564970B2 (en)
JP4895361B2 (en) Electrolyte-catalyst composite electrode for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell provided with the same
Liu et al. Purification of lutetium diphthalocyanine and electrochromism of its Langmuir-Blodgett films
Maruyama et al. . pi.-Conjugated soluble poly (6-hexylpyridine-2, 5-diyl) and poly (6, 6'-dihexyl-2, 2'-bipyridine-5, 5'-diyl) with high molecular weights and n-type conducting properties. Synthesis, electrical and optical properties, and chemical reactivities of the polymers
JPH0766816B2 (en) Method for manufacturing gas diffusion type composite electrode
Pournaghi-Azar et al. Attempt to incorporate ferrocenecarboxylic acid into polypyrrole during the electropolymerization of pyrrole in chloroform: its application to the electrocatalytic oxidation of ascorbic acid
JP5339799B2 (en) Conductive polymer electrode and method for producing the same, coating solution for forming conductive polymer layer, and dye-sensitized solar cell including the same
Saito et al. Poly (1, 5-naphthyridine-2, 6-diyl) Having a Highly Extended and Electron-Withdrawing. pi.-Conjugation System. Preparation, Optical Properties, and Electrochemical Redox Reaction
JP2005310722A (en) Dye-sensitized solar cell
KR20070075186A (en) Dye having a function of surfactant and solar cells using the same
EP0376689A2 (en) Polymeric films of metalloporphyrins as conductive materials for electrocatalysis
JPH07113621B2 (en) Electrode for gas sensor using electrode reaction
JP2006310384A (en) Process for producing porous electrode, porous electrode, and electrochemical device
JPH0832815B2 (en) Polymer composition
JP2005353318A (en) Dye sensitized solar battery
KR0149830B1 (en) Process for preparing an aqueous and conductive high molecular compound and its composite
JP2819679B2 (en) Method for producing conductive polypyrrole solution
Xu et al. Preparation and properties of conductive metallophthalocyanine films
JP3299608B2 (en) Method for producing conductive organic polymer and method for producing solid electrolytic capacitor using the same
JP2640548B2 (en) Electrochromic material and display element
JP2006318771A (en) Catalyst electrode of dye-sensitized solar battery, and dye-sensitized solar battery with same