JPH0766013A - Support insulator - Google Patents
Support insulatorInfo
- Publication number
- JPH0766013A JPH0766013A JP5209090A JP20909093A JPH0766013A JP H0766013 A JPH0766013 A JP H0766013A JP 5209090 A JP5209090 A JP 5209090A JP 20909093 A JP20909093 A JP 20909093A JP H0766013 A JPH0766013 A JP H0766013A
- Authority
- JP
- Japan
- Prior art keywords
- support insulator
- main body
- insulator
- main
- closed container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
- Insulators (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は避雷器としての機能を備
えた支持碍子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a support insulator having a function as a lightning arrester.
【0002】[0002]
【従来の技術】一般に電力系統においては正常な電圧に
重畳される過電圧を除去して電力系統や電気機器を保護
するため避雷器などの過電圧保護装置が用いられてい
る。従来の避雷器と主回路との接続は図4に示すように
構成されている。密閉容器1内の主導電部を構成する主
回路導体2は、エポキシ樹脂を注型成形した柱状の支持
碍子3によって密閉容器1内に絶縁状態で支持されてい
る。この主回路導体2から分岐した分岐導体4は密閉容
器1に配設された絶縁スペーサ5を貫通し、この絶縁ス
ペーサ5を介して密閉容器1に接続された避雷器容器6
内に突出している。避雷器容器6内には非直線抵抗体7
を積層した積層体が収納されており、この積層体と、避
雷器容器6内に突出した分岐導体4とを電気的に接続す
る。2. Description of the Related Art Generally, in a power system, an overvoltage protection device such as a lightning arrester is used to remove an overvoltage superimposed on a normal voltage to protect the power system and electric equipment. The conventional connection between the arrester and the main circuit is configured as shown in FIG. The main circuit conductor 2 forming the main conductive portion in the closed container 1 is supported in an insulated state in the closed container 1 by a pillar-shaped support insulator 3 made by casting epoxy resin. A branch conductor 4 branched from the main circuit conductor 2 penetrates an insulating spacer 5 arranged in the closed container 1, and a lightning arrester container 6 connected to the closed container 1 via the insulating spacer 5.
It projects inside. A non-linear resistor 7 is placed in the arrester container 6.
Is housed, and this laminated body is electrically connected to the branch conductor 4 protruding into the lightning arrester container 6.
【0003】このように、従来の避雷器を主回路に接続
するには分岐導体4が必要であり、避雷器容器6の大き
さ分だけ装置が大型化してしまうという問題があった。
この問題を解決するために、避雷器としての機能を備え
た支持碍子が出願されている(実開平3 −1607号公
報)。この支持碍子は図3に示すように主回路に接続さ
れている。即ち、非直線抵抗体7を積層した積層体をエ
ポキシ樹脂8の中に埋め込み、この積層体の両端面に導
電性の接続部9を配設して支持碍子を構成し、この支持
碍子を介して主回路導体2と密閉容器1を接続する。従
って主回路導体2に過電圧がかかると、主回路導体2、
接続部9、非直線抵抗体7、接続部9、密閉容器1とい
う電路が形成され、主回路を過電圧から保護することが
できる。As described above, there is a problem that the branch conductor 4 is required to connect the conventional lightning arrester to the main circuit, and the device becomes large in size by the size of the lightning arrester container 6.
In order to solve this problem, a support insulator having a function as a lightning arrester has been filed (Japanese Utility Model Laid-Open No. 3-1607). This supporting insulator is connected to the main circuit as shown in FIG. That is, a laminated body in which the non-linear resistors 7 are laminated is embedded in an epoxy resin 8, and conductive connecting portions 9 are provided on both end faces of the laminated body to form a support insulator, and the support insulator is interposed therebetween. To connect the main circuit conductor 2 and the closed container 1. Therefore, when an overvoltage is applied to the main circuit conductor 2,
An electric path including the connecting portion 9, the non-linear resistor 7, the connecting portion 9, and the closed casing 1 is formed, and the main circuit can be protected from overvoltage.
【0004】このように、非直線抵抗体と一体化した支
持碍子を使用することによって、従来のような避雷器容
器を用いた避雷器を接続する場合よりも構成部品を削減
することができ、避雷器接続部を小型化することができ
る。As described above, by using the support insulator integrated with the non-linear resistor, it is possible to reduce the number of components as compared with the case of connecting a lightning arrester using a lightning arrester container as in the related art, and to connect the lightning arrester. The part can be miniaturized.
【0005】しかしながら、支持碍子が配設される密閉
容器内の電界強度は、主回路導体側と密閉容器側とで異
なり、電界強度の強い主回路導体側の非直線抵抗体のエ
ッジ部分に電界が集中する。これにもかかわらず、従来
の支持碍子は、非直線抵抗体を一様に積層して使用して
いたので、主回路導体側の非直線抵抗体のエッジ部分で
絶縁破壊が起こりやすいという問題があった。However, the electric field strength in the closed container in which the supporting insulator is arranged differs between the main circuit conductor side and the closed container side, and an electric field is generated at the edge portion of the non-linear resistor on the main circuit conductor side where the electric field strength is high. Concentrates. Despite this, in the conventional support insulator, since the non-linear resistors are uniformly laminated and used, there is a problem that dielectric breakdown easily occurs at the edge portion of the non-linear resistors on the main circuit conductor side. there were.
【0006】また、主回路に過電圧が印加され、支持碍
子中の非直線抵抗体に大電流が流れると、非直線抵抗体
のエッジ部分と注型樹脂との境界に機械的応力が発生す
る。この機械的応力は支持碍子中で一様ではなく密閉容
器側の非直線抵抗体のエッジ部分と注型樹脂との境界で
最大となる。このため、大電流が流れると支持碍子の密
閉容器側が破壊されやすいという問題があった。このよ
うな支持碍子の機械的強度を向上させるためには支持碍
子を大型化しなければならず、密閉容器1に凹部を形成
して支持碍子を配設する必要があり、密閉容器1の大型
化及び形状の複雑化を招くという問題があった。When an overvoltage is applied to the main circuit and a large current flows through the non-linear resistor in the support insulator, mechanical stress is generated at the boundary between the edge portion of the non-linear resistor and the casting resin. This mechanical stress is not uniform in the supporting insulator and becomes maximum at the boundary between the edge portion of the non-linear resistor on the closed container side and the casting resin. For this reason, there has been a problem that when a large current flows, the support vessel side of the support insulator is easily destroyed. In order to improve the mechanical strength of such a support insulator, it is necessary to enlarge the support insulator, and it is necessary to form a recess in the closed container 1 to dispose the support insulator. In addition, there is a problem that the shape is complicated.
【0007】[0007]
【発明が解決しようとする課題】以上のように避雷器と
しての機能を有する従来の支持碍子は電界強度の集中の
ために主回路導体側の非直線抵抗体のエッジ部分で絶縁
破壊が起こりやすいという問題があった。また大電流が
流れる際に発生する機械的応力のために密閉容器側の非
直線抵抗体のエッジ部分と注型樹脂との境界が破壊され
やすく、破壊を防ぐためには支持碍子を大型化しなけれ
ばならなかった。そこで本発明の目的は、小型で絶縁性
及び機械的強度に優れた避雷器の機能を有する支持碍子
を提供することにある。As described above, in the conventional support insulator having a function as a lightning arrester, dielectric breakdown is likely to occur at the edge portion of the non-linear resistor on the main circuit conductor side due to concentration of electric field strength. There was a problem. In addition, the boundary between the edge portion of the non-linear resistor on the closed container side and the casting resin is easily broken due to mechanical stress generated when a large current flows, and in order to prevent damage, the support insulator must be enlarged. did not become. Therefore, an object of the present invention is to provide a small-sized support insulator having the function of a lightning arrester which is excellent in insulation and mechanical strength.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に本発明においては、第一の発明として密閉容器と主導
電部の間に配設され、この主導電部を前記密閉容器内に
支持する支持碍子において、前記支持碍子の本体を非直
線電圧電流特性を有する無機半導体粒子を充填した注型
樹脂で構成し、前記本体の両端面に導電性の接続部を配
設し、この接続部を介して前記密閉容器と前記主導電部
を接続したことを特徴とする支持碍子を提供する。また
第二の発明として前記無機半導体粒子の粒径が前記主導
電部からの距離に応じた変化し、前記主導電部の近傍の
前記粒径が前記密閉容器の近傍の前記粒径よりも大きい
ことを特徴とする支持碍子を提供する。また第三の発明
として前記無機半導体粒子の充填量が前記主導電部から
の距離に応じて変化し、前記主導電部の近傍の前記充填
量が前記密閉容器の近傍の前記充填量よりも多いことを
特徴とする支持碍子を提供する。なお無機半導体粒子は
酸化亜鉛を主成分とするのが望ましい。In order to achieve the above object, in the present invention, the first invention is arranged between a closed container and a main conductive portion, and the main conductive portion is supported in the closed container. In the support insulator, the main body of the support insulator is composed of a casting resin filled with inorganic semiconductor particles having a non-linear voltage-current characteristic, and conductive connecting portions are provided on both end faces of the main body, and the connecting portion is formed. Provided is a support insulator characterized in that the closed container and the main conductive portion are connected via the. Further, as a second invention, the particle diameter of the inorganic semiconductor particles changes according to the distance from the main conductive portion, and the particle diameter in the vicinity of the main conductive portion is larger than the particle diameter in the vicinity of the closed container. A support insulator characterized by the above is provided. Further, as a third invention, the filling amount of the inorganic semiconductor particles changes according to the distance from the main conductive portion, and the filling amount near the main conductive portion is larger than the filling amount near the closed container. A support insulator characterized by the above is provided. The inorganic semiconductor particles preferably contain zinc oxide as a main component.
【0009】[0009]
【作用】注型樹脂に充填された無機半導体粒子(以下無
機粒子という)は非直線抵抗体として機能し、支持碍子
に避雷器としての性質を与える。また無機粒子の粒径を
主導電部側で大きくすることにより、電界集中を緩和し
支持碍子の絶縁性を向上させることができる。無機粒子
の充填量を主導電部側で多くし、密閉容器側では少なく
することによって、避雷器としての機能を維持しつつ、
大電流が流れても機械的強度が低下しにくい支持碍子と
なる。The inorganic semiconductor particles (hereinafter referred to as inorganic particles) filled in the casting resin function as a non-linear resistor, and give the support insulator the property of a lightning arrester. In addition, by increasing the particle size of the inorganic particles on the main conductive portion side, it is possible to alleviate the electric field concentration and improve the insulating properties of the supporting insulator. By increasing the filling amount of inorganic particles on the main conductive part side and decreasing it on the closed container side, while maintaining the function as a lightning arrester,
It becomes a supporting insulator whose mechanical strength does not easily decrease even when a large current flows.
【0010】[0010]
【実施例】本発明の第一の実施例を図1及び表1を参照
して説明する。主成分である配化亜鉛に、添加物として
例えば酸化ビスマス、酸化アンチモン等を添加物として
加え、さらに水や有機バンイダ類を加えて混合装置で混
合する。得られた混合物を乾燥させ、例えば直径100 μ
m程度の造粒粉を作製し、この造粒粉を直径0.5 〜10m
mの略球状に成形する。得られた成形体から有機バイン
ダ類を除くため、例えば500 ℃で成形体を焼成し、さら
に空気中1200℃で焼成して無機粒子とする。EXAMPLE A first example of the present invention will be described with reference to FIG. 1 and Table 1. For example, bismuth oxide, antimony oxide, etc. are added as additives to the zinc oxide, which is the main component, and further water and organic bainidae are added and mixed in a mixing device. The mixture obtained is dried, for example 100 μm in diameter.
The granulated powder of about m is produced, and this granulated powder has a diameter of 0.5 to 10 m.
m is molded into a substantially spherical shape. In order to remove the organic binders from the obtained molded product, the molded product is calcined at, for example, 500 ° C. and further calcined at 1200 ° C. in air to obtain inorganic particles.
【0011】得られた無機粒子を粒径によって下記のよ
うに無機粒子a〜eに分類する。 a:0.1 〜 0.5mm b:0.5 〜 1.0mm c:1.0 〜 3.0mm d:3.0 〜 5.0mm e:5.0 〜10.0mm 夫々の無機粒子a〜eをエポキシ樹脂に充填し、得られ
た五種類の混合樹脂A〜Eを支持碍子用注型金型に注入
して図1に示す支持碍子の本体10aを作製する。混合樹
脂A〜Eは本体10aの高さを五等分し、密閉容器1側か
ら順に混合樹脂A、混合樹脂B、という具合に1/5づ
つ異なるものを使用する。混合樹脂A〜Eを熱硬化させ
る際に、本体10aの両端面に導電性の接続部9を配設
し、本体10aと接続部9を一体化して支持碍子を構成す
る。エポキシ樹脂は熱硬化する際に収縮するので充填さ
れた無機粒子a〜eは互いに密着して非直線抵抗体とし
て働くようになる。The obtained inorganic particles are classified into inorganic particles a to e according to the particle size as follows. a: 0.1 to 0.5 mm b: 0.5 to 1.0 mm c: 1.0 to 3.0 mm d: 3.0 to 5.0 mm e: 5.0 to 10.0 mm The respective inorganic particles a to e are filled in an epoxy resin to obtain five types of The mixed resins A to E are poured into a casting mold for a supporting insulator to prepare a supporting insulator body 10a shown in FIG. As the mixed resins A to E, the height of the main body 10a is divided into five equal parts, and the mixed resin A and the mixed resin B which are different from each other in order from the side of the closed container 1 are used. When the mixed resins A to E are thermoset, conductive connecting portions 9 are provided on both end surfaces of the main body 10a, and the main body 10a and the connecting portions 9 are integrated to form a support insulator. Since the epoxy resin shrinks when it is heat-cured, the filled inorganic particles a to e come into close contact with each other to act as a nonlinear resistor.
【0012】次に本実施例の作用及び効果について説明
する。本実施例の支持碍子に波形4/10μsの衝撃電流
を3分間隔で印加し、50%の支持碍子が破壊する回数
(以下50%破壊回数という)を測定したところ表1のよ
うになった。Next, the operation and effect of this embodiment will be described. A shock current having a waveform of 4/10 μs was applied to the supporting insulator of this example at intervals of 3 minutes, and the number of times 50% of the supporting insulator was destroyed (hereinafter referred to as 50% number of times of destruction) was measured. .
【0013】[0013]
【表1】 [Table 1]
【0014】衝撃電流として30kAを使用した場合、図
3に示した従来の支持碍子の50%破壊回数は20.2回であ
ったのに対し、本実施例は21.4回であった。また衝撃電
流として40kAを使用した場合は従来の支持碍子が9.5
回であるのに対し本実施例は18.6回、また衝撃電流とし
て50kAを使用した場合は従来が6.8 回で本実施例では
14.1回であった。When a shock current of 30 kA was used, the conventional supporting insulator shown in FIG. 3 had a 50% failure frequency of 20.2 times, whereas this embodiment had a frequency of 21.4 times. When a shock current of 40 kA is used, the conventional support insulator is 9.5
In this embodiment, 18.6 times, and in the case of using a shock current of 50 kA, the conventional number is 6.8 times.
It was 14.1 times.
【0015】本実施例で支持碍子の電気的特性が向上し
た理由は以下のように考えられる。積層した非直線抵抗
体をエポキシ樹脂に埋め込んだ従来の支持碍子は、非直
線抵抗体のエッジ部分に電界が集中しやすく、主回路導
体に近いほど電界強度は大きい。このため主回路導体に
異常電圧が発生すると、主回路導体近傍の非直線抵抗体
のエッジ部分で絶縁破壊が起こり、放電耐量が低下す
る。The reason why the electrical characteristics of the supporting insulator are improved in this embodiment is considered as follows. In the conventional support insulator in which the laminated non-linear resistors are embedded in the epoxy resin, the electric field is likely to be concentrated on the edge portion of the non-linear resistor, and the electric field strength increases as the electric circuit is closer to the main circuit conductor. Therefore, if an abnormal voltage is generated in the main circuit conductor, dielectric breakdown occurs at the edge portion of the non-linear resistor near the main circuit conductor, and the discharge withstand capability decreases.
【0016】これに対し、本実施例の支持碍子において
は、円板状に成形された非直線抵抗体の代わりに、無機
粒子a〜eをエポキシ樹脂に充填する構成としたため、
電界強度の強弱に応じて混合樹脂A〜Eの絶縁特性を変
化させることができ、過剰設計をすることなしに優れた
放電耐量を得ることができる。On the other hand, in the supporting insulator of the present embodiment, the inorganic resin particles a to e are filled in the epoxy resin instead of the non-linear resistor formed in the shape of a disk.
The insulating characteristics of the mixed resins A to E can be changed according to the strength of the electric field strength, and an excellent discharge withstand capability can be obtained without overdesigning.
【0017】なお、無機粒子a〜eの粒径は本実施例に
限るものではなく、またその主成分も酸化亜鉛に限らず
非直線特性を有するものであれば同様の作用及び効果を
奏することはもちろんである。The particle diameters of the inorganic particles a to e are not limited to those of this embodiment, and the same action and effect can be obtained as long as the main component is not limited to zinc oxide and has non-linear characteristics. Of course.
【0018】次に本発明の第二の実施例を図2、表1及
び表2を参照して説明する。酸化亜鉛を主成分とする第
一の実施例と同じ原料に、水及び有機バインダ類を加え
て混合装置で混合し、得られた混合物を乾燥させて例え
ば0.5 〜1.0 mm程度の造粒粉を作る。この造粒粉を空
気中で例えば500 ℃で焼成した後さらに1200℃で焼成し
て無機粒子とする。こうして得られた無機粒子とエポキ
シ樹脂を以下の割合で混合し、混合樹脂E〜Iを作製す
る。Next, a second embodiment of the present invention will be described with reference to FIG. 2, Table 1 and Table 2. Water and organic binders are added to the same raw material as in the first embodiment containing zinc oxide as a main component and mixed in a mixing device, and the resulting mixture is dried to form a granulated powder of, for example, about 0.5 to 1.0 mm. create. The granulated powder is calcined in air at, for example, 500 ° C. and then at 1200 ° C. to obtain inorganic particles. The inorganic particles thus obtained and the epoxy resin are mixed in the following proportions to prepare mixed resins E to I.
【0019】[0019]
【表2】 [Table 2]
【0020】この混合樹脂E〜Iを支持碍子用注型金属
に注入して図2に示す支持碍子の本体10bを作製する。
本体10bの高さを五等分し、密閉容器1側から1/5づ
つ順番に混合樹脂E、混合樹脂Fという具合に五種類の
混合樹脂E〜Iを注入する。本体10bを熱硬化させる際
に、本体10bの両端面に導電性の接続部9を配設し、本
体10bと接続部9を一体化して支持碍子を構成する。エ
ポキシ樹脂は熱硬化する際に収縮するので、充填された
無機粒子は互いに密着して非直線抵抗体として働くよう
になる。The mixed resins E to I are poured into a casting metal for a supporting insulator to prepare a supporting insulator body 10b shown in FIG.
The height of the main body 10b is divided into five equal parts, and five kinds of mixed resins E to I are sequentially injected from the closed container 1 side in the order of ⅕, such as mixed resin E and mixed resin F. When thermosetting the main body 10b, conductive connecting portions 9 are provided on both end surfaces of the main body 10b, and the main body 10b and the connecting portions 9 are integrated to form a support insulator. Since the epoxy resin shrinks when it is thermoset, the filled inorganic particles come into close contact with each other to act as a nonlinear resistor.
【0021】次に本実施例の作用及び効果について説明
する。本実施例の支持碍子に波形4/10μsの衝撃電流
を3分間隔で印加したときの50%破壊回数は表1に示す
ようになった。衝撃電流として30kAを使用した場合、
従来の支持碍子の50%破壊回数は20.2回であったのに対
し、本実施例は20.8回であった。また衝撃電流として40
kAを使用した場合は、従来の支持碍子が9.5回であっ
たのに対し本実施例は19.2回、また衝撃電流として50k
Aを使用した場合は従来が6.8 回で本実施例は15.5回で
あった。Next, the operation and effect of this embodiment will be described. Table 1 shows the number of 50% breakdowns when an impact current of 4/10 μs waveform was applied to the support insulator of this example at intervals of 3 minutes. When 30kA is used as the shock current,
The number of times of 50% destruction of the conventional supporting insulator was 20.2 times, whereas this example was 20.8 times. Also, the impact current is 40
When kA was used, the conventional supporting insulator was 9.5 times, whereas in the present embodiment, it was 19.2 times, and the impact current was 50 k.
When A was used, it was 6.8 times in the past and 15.5 times in this example.
【0022】本実施例で支持碍子の電気的特性が向上し
た理由は以下のように考えられる。非直線抵抗体の積層
体をエポキシ樹脂に埋め込んだ従来の支持碍子では、非
直線抵抗体に大電流が流れること、非直線抵抗体のエッ
ジ部分と注型樹脂との境界で機械的応力が生じる。この
機械的応力は密閉容器側の前記境界で最大となるため、
大電流が連続して流れると支持碍子の密閉容器側が破壊
されやすくなる。The reason why the electrical characteristics of the supporting insulator are improved in this embodiment is considered as follows. In a conventional support insulator in which a laminated body of non-linear resistors is embedded in epoxy resin, a large current flows through the non-linear resistors, and mechanical stress occurs at the boundary between the edge of the non-linear resistors and the casting resin. . Since this mechanical stress is maximum at the boundary on the side of the closed container,
If a large current flows continuously, the side of the supporting insulator in the closed container is easily broken.
【0023】これに対し、本実施例の支持碍子は、円板
状に成形した非直線抵抗体の使用をやめ、無機粒子をエ
ポキシ樹脂に充填する構成とした。このため大きな機械
的応力が集中するエッジ部分が存在しなくなり、また密
閉容器近傍では無機粒子の充填量を減じてエポキシ樹脂
を多くしたため、支持碍子を大型化することなく機械的
強度を向上させることができる。本実施例は機械的強度
の向上によって優れた放電耐量の支持碍子を提供できる
ばかりでなく、支持碍子を大型化する必要がないため密
閉容器に凹部を形成せずにすみ装置の大型化や形状の複
雑化及びそれに伴うコストの上昇をも防ぐことができ
る。On the other hand, in the supporting insulator of this embodiment, the use of the non-linear resistor formed in the shape of a disk is stopped and the inorganic particles are filled in the epoxy resin. Therefore, there is no edge where large mechanical stress concentrates, and the amount of epoxy resin is increased in the vicinity of the closed container by reducing the filling amount of inorganic particles, improving the mechanical strength without increasing the size of the supporting insulator. You can This embodiment can not only provide a support insulator having an excellent discharge withstanding by improving the mechanical strength, but also because the support insulator does not need to be upsized, the size and shape of the device can be increased without forming a recess in the closed container. It is possible to prevent the complication of the above and increase of the cost associated therewith.
【0024】なお、無機粒子の充填量は本実施例に限ら
ず、主回路導体からの距離に応じて変化し、無機粒子が
互いに密着する量であれば良い。また、本実施例におい
ては酸化亜鉛を主成分とする無機粒子について示した
が、非直線特性を有するものであれば同様の効果を奏す
ることはもちろんである。The filling amount of the inorganic particles is not limited to this embodiment, and may be any amount as long as the inorganic particles are in close contact with each other depending on the distance from the main circuit conductor. In addition, although the inorganic particles containing zinc oxide as the main component have been shown in this example, it is needless to say that the same effect can be obtained as long as the particles have nonlinear characteristics.
【0025】[0025]
【発明の効果】以上のように本発明においては非直線特
性を有する無機粒子を充填した注型樹脂で支持碍子の本
体を構成し、前記無機粒子の粒径を主導電部側で大きく
し、あるいはまた前記無機粒子の充填量を密閉容器側で
少なくしたことにより小型で放電耐量に優れた支持碍子
を提供することができる。As described above, in the present invention, the main body of the support insulator is made of the casting resin filled with the inorganic particles having the non-linear characteristic, and the particle size of the inorganic particles is increased on the main conductive portion side, Alternatively, by reducing the filling amount of the inorganic particles on the closed container side, it is possible to provide a small-sized supporting insulator having excellent discharge withstand capability.
【図1】本発明の第一の実施例を示す支持碍子の断面図FIG. 1 is a sectional view of a support insulator showing a first embodiment of the present invention.
【図2】本発明の第二の実施例を示す支持碍子の断面図FIG. 2 is a sectional view of a support insulator showing a second embodiment of the present invention.
【図3】従来の支持碍子の断面図FIG. 3 is a sectional view of a conventional support insulator.
【図4】従来の避雷器と主回路との接続部を示す断面図FIG. 4 is a cross-sectional view showing a connecting portion between a conventional lightning arrester and a main circuit.
1…密閉容器、2…主回路導体、9…接続部、10a,10
b…支持碍子の本体。1 ... Airtight container, 2 ... Main circuit conductor, 9 ... Connection part, 10a, 10
b ... The main body of the support insulator.
Claims (3)
の主導電部を前記密閉容器内に支持する支持碍子におい
て、 前記支持碍子の本体を非直線電圧電流特性を有する無機
半導体粒子を充填した注型樹脂で構成し、前記本体の両
端面に導電性の接続部を配設し、この接続部を介して前
記密閉容器と前記主導電部を接続したことを特徴とする
支持碍子。1. A support insulator which is disposed between a closed container and a main conductive part and supports the main conductive part in the closed container, wherein the main body of the support insulator is an inorganic semiconductor particle having a non-linear voltage-current characteristic. A support insulator characterized in that it is made of a casting resin filled with, conductive connection parts are provided on both end faces of the main body, and the closed container and the main conductive part are connected via the connection parts. .
導体粒子が充填され、この無機半導体粒子の粒径が前記
主導電部の近傍になるほど大きくなることを特徴とする
請求項1記載の支持碍子。2. The casting resin is filled with the inorganic semiconductor particles having different particle diameters, and the particle diameter of the inorganic semiconductor particles becomes larger in the vicinity of the main conductive portion. Support insulator.
電部の近傍になるほど多くなることを特徴とする請求項
1記載の支持碍子。3. The supporting insulator according to claim 1, wherein the filling amount of the inorganic semiconductor particles is increased as it is closer to the main conductive portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5209090A JPH0766013A (en) | 1993-08-24 | 1993-08-24 | Support insulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5209090A JPH0766013A (en) | 1993-08-24 | 1993-08-24 | Support insulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0766013A true JPH0766013A (en) | 1995-03-10 |
Family
ID=16567120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5209090A Pending JPH0766013A (en) | 1993-08-24 | 1993-08-24 | Support insulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0766013A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007048896A (en) * | 2005-08-09 | 2007-02-22 | Rikogaku Shinkokai | Arrester system, lightning protection auxiliary film to be used for arrester system, lightning protection auxiliary coating material of which lightning protection auxiliary film is formed, and method of forming lightning protection auxiliary film |
-
1993
- 1993-08-24 JP JP5209090A patent/JPH0766013A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007048896A (en) * | 2005-08-09 | 2007-02-22 | Rikogaku Shinkokai | Arrester system, lightning protection auxiliary film to be used for arrester system, lightning protection auxiliary coating material of which lightning protection auxiliary film is formed, and method of forming lightning protection auxiliary film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5220480A (en) | Low voltage, high energy surge arrester for secondary applications | |
US4262317A (en) | Line protector for a communications circuit | |
US3863111A (en) | Polycrystalline varistor surge protective device for high frequency applications | |
GB2073965A (en) | Surge diverter/arrester | |
JPH0766013A (en) | Support insulator | |
US5140491A (en) | TVSS apparatus with ARC-extinguishing | |
US4827370A (en) | Enclosure for electric device, in particular for surge arrester, including a molded, electrically insulating envelope | |
US5831808A (en) | Lightning arrester device | |
SE447041B (en) | LIGHTNING PROTECTION | |
US4161763A (en) | Compact voltage surge arrester device | |
US3154718A (en) | Secondary lightning arrester with arc spinning means | |
US4228478A (en) | Overvoltage arrester | |
JPS5923050B2 (en) | Lightning resistant bushing | |
JPH01209685A (en) | Lightning arrestor | |
JPH0157476B2 (en) | ||
JPH06188106A (en) | Arrester with varistor function and protector using the arrester | |
US3757152A (en) | Resistor assembly | |
JPH0135443Y2 (en) | ||
JPH0135444Y2 (en) | ||
JPS62287602A (en) | Arrestor | |
JPH0547447Y2 (en) | ||
JPH0332012Y2 (en) | ||
JPS5919427Y2 (en) | Combined surge absorber | |
JPS60116107A (en) | Arrester | |
JPS59194319A (en) | Gas insulating switching device |