JPH0765857A - Beta alumina electrolyte - Google Patents

Beta alumina electrolyte

Info

Publication number
JPH0765857A
JPH0765857A JP5215661A JP21566193A JPH0765857A JP H0765857 A JPH0765857 A JP H0765857A JP 5215661 A JP5215661 A JP 5215661A JP 21566193 A JP21566193 A JP 21566193A JP H0765857 A JPH0765857 A JP H0765857A
Authority
JP
Japan
Prior art keywords
alumina
composition
sintering
conductivity
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5215661A
Other languages
Japanese (ja)
Other versions
JP3009566B2 (en
Inventor
Toshiro Nishi
敏郎 西
Hiroichi Yamamoto
博一 山本
Masakazu Miyaji
正和 宮地
Yasuhiko Tsuru
靖彦 水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5215661A priority Critical patent/JP3009566B2/en
Publication of JPH0765857A publication Critical patent/JPH0765857A/en
Application granted granted Critical
Publication of JP3009566B2 publication Critical patent/JP3009566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To suppress variation of sintered body characteristics due to difference in production method, alumina material, and sintering conditions easily and without causing any problem on handling of material, toxicity, and characteristics, industrially by specifying the composition of beta alumina. CONSTITUTION:The mole ratio of Al2O3/Na2O on aluminum oxide, sodium oxide, and lithium oxide that are the oxides to form beta alumina is set at 6 to 7. Also the weight ratio of it to the whole amount of Li2O as crystal stabilizing agent is set to 0.5 to 0.75wt.%. By specifying the composition of the beta alumina like this, an electrolyte with microstructure of which conductivity is not lowered and grains are not grown is obtained. Therefore the durability of a battery can be increased without reducing the output of the battery. Also, becuase the production conditions or sintering conditions affect less on the characteristics, the characteristics do not vary even if a slight difference is produced in the sintering temperature or sintering time, and thus a product stable in quality in industrial production can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はナトリウムイオンをキャ
リアとして作動するナトリウム−イオウ電池及びナトリ
ウム−溶融塩電池等の二次電池あるいはアルカリ金属熱
電変換電池等の固体電解質として用いるベータアルミナ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to beta-alumina used as a solid electrolyte for secondary batteries such as sodium-sulfur batteries and sodium-molten salt batteries or alkali metal thermoelectric conversion batteries which operate using sodium ions as carriers.

【0002】[0002]

【従来の技術】ベータアルミナ電解質は高いナトリウム
イオン導電性を有するために、ナトリウムイオンをキャ
リアとする各種電池の電解質として利用されている。そ
してこの電解質は電池の内部抵抗のかなりの部分を占め
るため、低抵抗でかつ高強度を示す緻密焼結体が望まし
く、また焼結を行う高温時、例えば1700℃で、揮発
しやすいナトリウムを含有するためになるべく低温で焼
結する方が望ましい。またベータアルミナにはβ−アル
ミナ(理論組成Na2 O・11Al2 3 )及びβ″−
アルミナ(理論組成Na2 O・5.3Al2 3 )とい
う2種類の結晶形が存在し、β″−アルミナの方が導電
性が高く電池として高性能を示すため、実用的にはβ″
−アルミナあるいはβ″−アルミナとβ−アルミナの混
合物のものが多用されている。更に、実用的にはβ″−
アルミナ単相のものが使用されている。
2. Description of the Related Art Beta-alumina electrolytes are used as electrolytes for various batteries using sodium ions as carriers because they have high sodium ion conductivity. Since this electrolyte occupies a large part of the internal resistance of the battery, a dense sintered body having low resistance and high strength is desirable. Also, at the time of high temperature for sintering, for example, at 1700 ° C., it contains sodium that easily volatilizes. Therefore, it is preferable to sinter at a temperature as low as possible. Beta-alumina includes β-alumina (theoretical composition Na 2 O · 11Al 2 O 3 ) and β ″-
There are two types of crystal form called alumina (theoretical composition Na 2 O.5.3Al 2 O 3 ), and β ″ -alumina has higher conductivity and higher performance as a battery, so β ″ is practically used.
-Alumina or a mixture of β "-alumina and β-alumina is often used. Furthermore, in practice β"-
Alumina single phase is used.

【0003】β″−アルミナの理論組成はNa2 O・
5.3Al2 3 で示されるが、実際の組成ではAl2
3 /Na2 Oのモル比が6〜9と幅広いものとなって
いる。また、β″−アルミナは高温で分解するため、そ
の結晶安定化剤としてLi2 Oを1.0wt%程度添加
している。最も一般的な組成は重量%で、Al2 3
Na2 O:Li2 O=90.4:8.85:0.75で
あり、Al2 3 /Na 2 Oのモル比は6.25に相当
する。
The theoretical composition of β ″ -alumina is Na2O
5.3 Al2O3, The actual composition is Al2
O3/ Na2The molar ratio of O is as wide as 6-9
There is. In addition, β ″ -alumina decomposes at high temperatures, so
Li as a crystal stabilizer2Add O about 1.0wt%
is doing. The most common composition is wt%, Al2O3:
Na2O: Li2O = 90.4: 8.85: 0.75
Yes, Al2O3/ Na 2The molar ratio of O is 6.25
To do.

【0004】従来のβ″−アルミナの製造法は特公昭5
7−15063号公報にみられるように、アルミナと炭
酸ナトリウムを混合後、焼成して得たβ−アルミナと
β″−アルミナの混合物の仮焼粉とアルミナと炭酸リチ
ウムを混合後、焼成して得たゼータアルミナ(理論組
成:Li2 O・Al2 3 )の結晶相を示す仮焼粉を再
度混合し、成型して焼結後にβ″−アルミナを得るとい
う方法である。この方法は混合前の仮焼粉にゼータアル
ミナを用いることからゼータプロセスとよばれており、
現在最も一般的なβ″−アルミナの製造方法として知ら
れている。さらに、上記公報の中にはナトリウムとリチ
ウムの水溶性塩(例えば硝酸塩、硫酸塩、塩化物等)の
溶液とアルミナ粉体のスラリを混合後、乾燥・仮焼し
て、その後、β″−アルミナ焼結体をえる方法が記載さ
れている。しかしながら、この方法については詳細な実
施例は全く示されておらず、良好な電解質が得られるか
どうかは明かではない。
The conventional method for producing β ″ -alumina is disclosed in Japanese Patent Publication No.
As disclosed in Japanese Patent Publication No. 7-15063, a calcined powder of a mixture of β-alumina and β ″ -alumina obtained by mixing alumina and sodium carbonate and then firing, and alumina and lithium carbonate are then fired. This is a method in which the calcined powder showing the crystal phase of the obtained zeta-alumina (theoretical composition: Li 2 O.Al 2 O 3 ) is mixed again, molded and sintered to obtain β ″ -alumina. This method is called zeta process because it uses zeta-alumina for the calcined powder before mixing,
At present, it is known as the most general method for producing β ″ -alumina. Further, in the above publication, a solution of a water-soluble salt of sodium and lithium (eg, nitrate, sulfate, chloride, etc.) and alumina powder. The method is described in which the slurry is mixed, dried and calcined to obtain a β ″ -alumina sintered body. However, no detailed example is given for this method and it is not clear whether a good electrolyte is obtained.

【0005】また、特公昭55−90470号公報には
非水溶媒に可溶なアルミニウム、ナトリウム及びリチウ
ムのアルコキシドを加水分解後に乾燥・仮焼操作を行
い、焼成してベータアルミナを得る方法が記載されてい
る。さらに、公知の方法であるが、アルミニウム、ナト
リウム及びリチウムの3種の粉末原料を同時に乾式ある
いは湿式で混合後、仮焼してベータアルミナを得る方法
がある。
Further, Japanese Patent Publication No. 55-90470 discloses a method for obtaining beta-alumina by hydrolyzing aluminum, sodium and lithium alkoxides which are soluble in a non-aqueous solvent, followed by a drying / calcining operation and firing. Has been done. Further, as a known method, there is a method in which three kinds of powder raw materials of aluminum, sodium and lithium are simultaneously mixed in a dry or wet manner and then calcined to obtain beta alumina.

【0006】また、本発明者等は先に非水溶媒に、アル
ミナ出発原料粉末とナトリウムの出発原料粉末と溶媒に
可溶な有機リチウムを加え、得られた混合物を直接乾燥
後に焼結する方法(特願平4−200116号)あるい
は混合物を一度仮焼後に焼結する方法(特願平4−20
7610号)を提案している。さらに、本発明者等はア
ルミナ出発原料粉末とナトリウムの出発原料粉末を混合
粉砕して仮焼粉を作製し、その仮焼粉に溶媒に可溶な有
機リチウムを加え、得られた混合物を乾燥後に焼結する
方法(特願平4−227814号)も提案している。
Further, the present inventors previously added alumina starting raw material powder, sodium starting raw material powder, and organic lithium soluble in the solvent to a non-aqueous solvent, and directly dried the resulting mixture, followed by sintering. (Japanese Patent Application No. 4-200116) or a method in which the mixture is once calcined and then sintered (Japanese Patent Application No. 4-20).
No. 7610) is proposed. Furthermore, the present inventors mixed and pulverized alumina starting raw material powder and sodium starting raw material powder to prepare a calcined powder, added organic lithium soluble in a solvent to the calcined powder, and dried the resulting mixture. A method of sintering later (Japanese Patent Application No. 4-227814) is also proposed.

【0007】[0007]

【発明が解決しようとする課題】β″−アルミナの最も
一般的な組成は前述したように重量%で、Al2 3
Na2 O:Li2 O=90.4:8.85:0.75で
あり、Al2 3 /Na 2 Oのモル比は6.25に相当
する。この組成は導電率及びミクロ組織の両物性から決
められていると言われている。すなわち、Na2 O−A
2 3 系状態図に示されるようにβ″−アルミナの焼
結機構は液相焼結であるため、導電性に有利なNa2
量を増やすと粒成長が生じる。同様にLi2 O量も増え
ると液相温度を低下させるため、粒成長が生じることに
なる。粒成長が生じると導電性は向上するが機械的強度
が低下し、電池の耐久性が低下することになる。そのた
め、上記組成は相反する特性である導電性と強度の両面
から決められたものと思われる。また、β″−アルミナ
に関して、上記組成以外で調製された例はない。そのた
め、特にリチウム量の制御に関して以下に示す製造法に
おいて種々の問題点が生じる。
Most of β ″ -alumina
The general composition is, as described above, in% by weight, Al2O3:
Na2O: Li2O = 90.4: 8.85: 0.75
Yes, Al2O3/ Na 2The molar ratio of O is 6.25
To do. This composition is determined by both physical properties of conductivity and microstructure.
It is said to be That is, Na2OA
l2O3As shown in the system phase diagram, firing of β ″ -alumina
Since the binding mechanism is liquid phase sintering, Na which is advantageous for conductivity2O
Grain growth occurs when the amount is increased. Similarly Li2O amount also increases
Then, the liquidus temperature is lowered, so that grain growth occurs.
Become. When grain growth occurs, conductivity improves but mechanical strength
Will decrease and the durability of the battery will decrease. That
Therefore, the above composition is a contradictory characteristic of both conductivity and strength.
It seems that it was decided from. Also, β ″ -alumina
Regarding, there is no example prepared with a composition other than the above. That
Therefore, the manufacturing method shown below is especially relevant to the control of the amount of lithium.
However, various problems occur.

【0008】先ず、特公昭57−15063号公報に示
されている最も一般的な従来法では製品における酸化リ
チウムの量が0.75重量%と非常に少ないために、ゼ
ータアルミナというリチウムがアルミナ中に分散した仮
焼粉を用いて最終的にβ″−アルミナ中に分散させよう
とするものである。該従来法のゼータプロセスでは2種
類の仮焼粉を調製後、粉砕・混合して焼結を行うため、
混合工程が3回及び仮焼工程が2回と工程が複雑となり
製品のコストアップをもたらす。この方法では、すべて
が固相反応によりリチウムの拡散を行うことからリチウ
ムの不均一な分布が生じ、そこを起点に異常粒成長が起
きやすいという問題がある。
First, in the most general conventional method disclosed in Japanese Examined Patent Publication No. 57-15063, since the amount of lithium oxide in the product is very small at 0.75% by weight, lithium called zeta-alumina is contained in the alumina. It is intended to finally disperse the calcined powder in β ″ -alumina by using the calcined powder dispersed in 1. In the zeta process of the conventional method, two kinds of calcined powder are prepared and then pulverized and mixed to be calcined. To make a conclusion
The mixing process is performed three times and the calcining process is performed twice, which complicates the process and increases the cost of the product. This method has a problem that uneven diffusion of lithium is likely to occur due to the non-uniform distribution of lithium caused by the diffusion of lithium in the solid phase reaction.

【0009】さらに、上記公報に記載してある水溶性の
塩を用いる方法では、上記ゼータプロセスよりもコスト
的に安価であるが、仮焼する際に特にナトリウムの水溶
性塩の量が多いため、有害なガス、例えば窒素酸化物
(NOx)あるいは硫黄酸化物(SOx)が発生するば
かりでなく、仮焼あるいは焼結の温度でも不揮発な塩
(塩化物等)を生成する可能性がある。また、該手段で
は具体的実施例が記載されていないため、本発明者等は
先に提案した特許出願にて追試を行った(特願平4−2
00116号)。その結果、水溶性の塩を用いる該手段
では、異常粒成長が激しく(100μm以上)、導電性
の面を除き、電池に供する電解質としての強度及び耐久
性に関して非常に劣るものであることを指摘した。
Further, the method using the water-soluble salt described in the above publication is cheaper in cost than the zeta process, but since the amount of the water-soluble salt of sodium is particularly large during calcination. However, not only harmful gases such as nitrogen oxides (NOx) or sulfur oxides (SOx) are generated, but also non-volatile salts (chlorides, etc.) may be generated even at the temperature of calcination or sintering. Further, since the specific examples are not described in the means, the inventors of the present invention conducted an additional test in the previously proposed patent application (Japanese Patent Application No. 4-2.
No. 00116). As a result, it is pointed out that the means using a water-soluble salt is extremely inferior in strength and durability as an electrolyte to be supplied to a battery except for the abnormal grain growth (100 μm or more) and the conductive aspect. did.

【0010】また、特公昭55−90470号公報に開
示された3成分の原料に可溶性のアルコキシドを用いる
方法では、先ず原料のコストがかなり高くなる。また3
成分を溶解させるため、溶液中の成分は10重量%程度
であり、通常の粉体を使用するスラリが60から90重
量%であることから判断すると溶媒を含めた原料の歩留
まりが悪い。さらに、この手段は加水分解速度がかなり
遅いために長い熟成時間を必要とするという問題があ
る。
In the method of using a soluble alkoxide as the three-component raw material disclosed in Japanese Patent Publication No. 55-90470, the cost of the raw material is considerably high. Again 3
In order to dissolve the components, the content of the components in the solution is about 10% by weight, and judging from the fact that the slurry which uses the ordinary powder is 60 to 90% by weight, the yield of the raw materials including the solvent is poor. Further, this method has a problem that a long aging time is required because the hydrolysis rate is considerably slow.

【0011】さらに、3成分に粉体の原料を用いる公知
の方法では、前述のゼータプロセスで述べたように、リ
チウムの固相反応による分散が悪く、ベータアルミナで
はない結晶相が残るか、あるいは異常粒成長という問題
が生じる。
Further, in the known method in which powder raw materials are used as the three components, as described in the Zeta process, the dispersion due to the solid phase reaction of lithium is poor, and a crystalline phase other than beta-alumina remains, or The problem of abnormal grain growth arises.

【0012】また、本発明者等の特願平4−20011
6号には、簡便な方法にて従来法と同等以上の導電性及
び強度を示すベータアルミナの電解質の製造方法につい
て提示してある。しかしながら、その発明報告ではアル
ミナ原料の一次粒子径及びそれに対する焼結条件の適正
化をしなければ従来法の特性を越えず、アルミナ原料の
選択の自由度及び製品の特性の再現性等に問題がある。
Further, Japanese Patent Application No. 4-20011 by the present inventors.
No. 6 presents a method for producing a beta-alumina electrolyte showing a conductivity and strength equal to or higher than those of conventional methods by a simple method. However, in the invention report, the characteristics of the conventional method cannot be exceeded unless the primary particle diameter of the alumina raw material and the sintering conditions for it are optimized, and there is a problem in the degree of freedom in selecting the alumina raw material and the reproducibility of the product characteristics. There is.

【0013】さらに、本発明者等は先に非水溶媒にアル
ミナ出発原料粉末、ナトリウムの出発原料粉末と、一部
あるいは全量を上記非水溶媒に溶解する有機リチウム化
合物としたリチウムの出発とを混合してスラリを調製
し、該スラリを仮焼・粉砕・成型後、焼結するという簡
便な方法において、特性に及ぼすアルミナ原料の影響を
低減させ、従来法と同等以上の特性を示すベータアルミ
ナの電解質を再現性よく製造する方法を提案した(特願
平4−207610号)。しかしながら、仮焼粉のβ″
−アルミナの割合(以下、β″化率と略す)が、40〜
70%であり、従来法であるゼータ法のアルミナと炭酸
ナトリウムを混合後焼成して得たβ−アルミナとβ″−
アルミナの混合物の仮焼粉のβ″化率が約90%である
のに比較して低い値を示す。本発明者等の上記発明報告
では仮焼粉を成型後、焼結することにより、そのβ″化
率はほぼ100%になることを示したが、仮焼粉の状態
でもそのβ″化率は高い方がよいことは明かである。
Further, the present inventors have previously prepared alumina starting raw material powder, sodium starting raw material powder in a non-aqueous solvent, and lithium starting as an organolithium compound in which a part or the whole amount is dissolved in the non-aqueous solvent. Beta-alumina showing the same or better characteristics as the conventional method by reducing the effect of alumina raw material on the characteristics by a simple method of preparing a slurry by mixing, calcining, crushing, molding and then sintering the slurry. Proposed a method for producing the above electrolyte with good reproducibility (Japanese Patent Application No. 4-207610). However, the calcined powder β ″
-The ratio of alumina (hereinafter, abbreviated as "β" ratio) is 40-
70%, β-alumina and β ″ -obtained by mixing and calcining a conventional zeta-method alumina and sodium carbonate.
The β ″ ratio of the calcined powder of the mixture of alumina is about 90%, which is a low value. According to the above-mentioned invention report of the present inventors, the calcined powder is molded and then sintered. It was shown that the β ″ conversion rate was almost 100%, but it is clear that the higher the β ″ conversion rate is, the better even in the state of calcined powder.

【0014】同じく、本発明者等は先にアルミニウム出
発原料とナトリウム出発原料を混合・仮焼してベータア
ルミナの仮焼粉を調製後、該仮焼粉と溶媒に可溶性のリ
チウムの出発原料を混合後、成形・焼結する方法を提案
した(特願平4−227814号)。しかしながら、リ
チウム原料の選択の自由度が小さく、コスト面の不利が
生じることは否めない。
Similarly, the inventors of the present invention first mixed and calcined the aluminum starting material and the sodium starting material to prepare a calcined powder of beta-alumina, and then prepared the calcined powder and the starting material of lithium soluble in the solvent. A method of molding and sintering after mixing has been proposed (Japanese Patent Application No. 4-227814). However, it is undeniable that the degree of freedom in selecting the lithium raw material is small and a cost disadvantage occurs.

【0015】最後に、本発明以外の全ての製法では粒成
長は部分的には必ず認められる。また、本発明者等の製
法においても、重量%でAl2 3 :Na2 O:Li2
O=90.4:8.85:0.75という組成において
は、部分的粒成長は全ロットに対しては防止できず、一
部のロットではやはり部分的粒成長がみられた。このこ
とから、焼成炉の温度分布等を考慮すれば、上記組成で
は完全に粒成長を防止することは非常に困難と判断され
る。しかしながら、本発明者等の知見によれば、焼結体
のミクロ組織はその組成(Na2 O量及びLi2 O量)
により変化することがわかっており、その適正化により
組織制御が可能と思われる。
Finally, grain growth is invariably partly observed in all processes other than the present invention. In addition, in the manufacturing method of the present inventors, Al 2 O 3 : Na 2 O: Li 2 in % by weight is also used.
In the composition of O = 90.4: 8.85: 0.75, partial grain growth could not be prevented for all lots, and partial grain growth was still observed in some lots. From this, it is judged that it is very difficult to completely prevent grain growth with the above composition, considering the temperature distribution of the firing furnace. However, according to the findings of the present inventors, the microstructure of the sintered body has its composition (the amount of Na 2 O and the amount of Li 2 O).
It is known that the change can be caused by the above, and it is thought that the tissue control can be performed by optimizing it.

【0016】本発明は上記従来のβ″−アルミナの製造
に際する種々の問題の存在に鑑み、β″−アルミナの組
成を明確に規定することで、簡単で、かつ工業的に原料
の取扱い、毒性あるいは特性に問題がなく、製造法のみ
ならずアルミナ原料や焼結条件の差による焼結体の特性
の変化を極力抑制しようとするものである。
In view of the various problems involved in the production of the above-mentioned conventional β ″ -alumina, the present invention defines the composition of β ″ -alumina clearly, and handles the raw materials easily and industrially. However, there is no problem in toxicity or characteristics, and it is intended to suppress changes in characteristics of the sintered body as much as possible due to differences in not only the manufacturing method but also the alumina raw material and the sintering conditions.

【0017】[0017]

【課題を解決するための手段】本発明はベータアルミナ
の構成酸化物である酸化アルミニウム、酸化ナトリウム
及び酸化リチウムに関して、Al2 3 /Na2 Oのモ
ル比を6〜7、好ましくは6.4〜6.6及びLi2
量の全体に対する重量比を0.5〜0.75wt%、好
ましくは0.60〜0.70wt%にしてなることを特
徴とするベータアルミナ電解質に関するものである。
The present invention relates to aluminum oxide, sodium oxide and lithium oxide, which are constituent oxides of beta-alumina, in a molar ratio of Al 2 O 3 / Na 2 O of 6 to 7, preferably 6. 4 to 6.6 and Li 2 O
The present invention relates to a beta-alumina electrolyte characterized in that the weight ratio of the total amount is 0.5 to 0.75 wt%, preferably 0.60 to 0.70 wt%.

【0018】すなわち、本発明はβ″−アルミナの組成
を規定することで、簡単で、かつ工業的に原料の取扱
い、毒性あるいは特性に問題がなく、製造法のみならず
アルミナ原料や焼結条件の差による焼結体の特性の変化
を極力抑制し、特性の安定したベータアルミナ電解質を
得るようにしたものである。
That is, according to the present invention, by defining the composition of β ″ -alumina, there is no problem in handling, toxicity or characteristics of the raw material easily and industrially, and not only the production method but also the alumina raw material and the sintering conditions. It is intended to obtain the beta-alumina electrolyte having stable characteristics by suppressing the change in the characteristics of the sintered body due to the difference between the two.

【0019】[0019]

【作用】本発明のベータアルミナはその組成を従来の組
成とは異なる領域に設定することにより、従来に比べて
導電率が低下せず粒成長のないミクロ組織の電解質とな
る。そのため、電池の出力性能を低下させることなく耐
久性を向上させることができる。また、製造条件あるい
は焼結条件の特性への影響が小さいため、焼結温度ある
いは焼結時間のある程度が生じても特性の変化はなく、
工業的に品質の安定した製品を供給することができる。
By setting the composition of the beta-alumina of the present invention in a region different from that of the conventional composition, the conductivity of the beta-alumina does not decrease as compared with the conventional composition and the electrolyte has a microstructure without grain growth. Therefore, the durability can be improved without lowering the output performance of the battery. Further, since the influence of the manufacturing conditions or the sintering conditions on the characteristics is small, the characteristics do not change even if the sintering temperature or the sintering time occurs to some extent.
It is possible to supply industrially stable products.

【0020】[0020]

【実施例】次に本発明を具体的な実施例により、さらに
詳細に説明する。工業的に電池としてベータアルミナ電
解質を用いる場合には、通常片端を封じたチューブ状の
焼結体を使用する。上記チューブ状の焼結体を工業的に
量産するには造粒粉を用いて成型体を作成し、それを焼
結することによって得られる。そこでこの実施例では混
合原料スラリを仮焼した後、湿式粉砕したスラリを用い
てスプレードライ法により造粒粉を作成し、それを焼結
することによりベータアルミナ電解質を得る方法につい
てのべる。
EXAMPLES Next, the present invention will be described in more detail with reference to specific examples. When a beta-alumina electrolyte is industrially used as a battery, a tube-shaped sintered body with one end sealed is usually used. In order to industrially mass-produce the above-mentioned tube-shaped sintered body, it is obtained by forming a molded body using granulated powder and sintering it. Therefore, in this embodiment, a method of obtaining a beta-alumina electrolyte by calcining a mixed raw material slurry, using granulated powder by a spray dry method using a wet-milled slurry, and sintering the granulated powder will be described.

【0021】(実施例1)β″−アルミナの調製は、本
発明者等の先に提案した特願平4−227814号に開
示した要領に従った。すなわち、ポットにジルコニアボ
ールを入れた後、所定量の酸化アルミニウム、炭酸ナト
リウム、n−ブタノール溶媒及び分散剤(ポリエチレン
イミン系)を投入した後、24時間の混合を行った。次
に得られた酸化アルミニウムと炭酸ナトリウムの混合ス
ラリをロータリエヴァポレータで濃縮後、120℃の乾
燥器にて一昼夜乾燥させた。その乾燥物を粉砕し、50
0μmのフルイを通した後、仮焼に供した。仮焼は5℃
/minで昇温後、1250℃で2時間保持し、5℃/
minで降温するものとした。得られた仮焼粉のβ″化
率(β″相の全体の相に占める割合)は約90%であ
る。
Example 1 Preparation of β ″ -alumina was carried out according to the procedure disclosed in Japanese Patent Application No. 4-227814 previously proposed by the present inventors, that is, after putting zirconia balls in a pot. Then, a predetermined amount of aluminum oxide, sodium carbonate, an n-butanol solvent and a dispersant (polyethyleneimine type) were added, and the mixture was mixed for 24 hours. After concentrating with an evaporator, it was dried overnight in a drier at 120 ° C. The dried product was crushed to 50
After passing through a 0 μm sieve, it was subjected to calcination. Calcination is 5 ℃
After heating at 1 / min, hold at 1250 ° C for 2 hours and
The temperature was lowered at min. The calcination powder thus obtained had a β ″ conversion rate (a ratio of the β ″ phase to the entire phase) of about 90%.

【0022】得られた仮焼粉にリチウムブトキシドのn
−ブタノール溶液を加え、分散剤(ポリエチレンイミン
系)とn−ブタノール溶媒でスラリ濃度を調製して48
時間の混合粉砕を実施した。その時、Li2 O=0.7
5wt%に固定した状態で、残部の99.25wt%を
Al2 3 /Na2 Oのモル比に換算して5.2、6.
25(従来の値)、6.5及び7.0になるように調製
した。得られた混合スラリを100cp程度に粘度調製
を行った後、スプレドライに供した。その操作条件は室
温とし、ディスクの回転数は14000回転とした。得
られた造粒粉の粒径は平均粒径で80〜100μmの球
状のものであった。
The obtained calcined powder was mixed with n of lithium butoxide.
-Butanol solution was added, and the slurry concentration was adjusted with a dispersant (polyethyleneimine type) and n-butanol solvent.
Mixed milling for hours was performed. At that time, Li 2 O = 0.7
While being fixed at 5 wt%, the remaining 99.25 wt% was converted to a molar ratio of Al 2 O 3 / Na 2 O of 5.2 and 6.
25 (conventional value), 6.5 and 7.0 were prepared. The viscosity of the obtained mixed slurry was adjusted to about 100 cp, and then the mixture was subjected to spray drying. The operating conditions were room temperature and the number of rotations of the disk was 14,000. The particle size of the obtained granulated powder was spherical with an average particle size of 80 to 100 μm.

【0023】それらの造粒粉を20mmφの円形金型を
用いて、一軸圧100kg/cm2で成型し、さらにそ
れをラバーに入れて、CIP(冷間静水圧加圧)で1.
5t/cm2 の圧力にて5分間保持して成型体とした。
得られた成型体を5℃/minの昇温速度で昇温し、1
600℃で10分保持後、1450℃で5時間のアニー
ル処理を施して焼結体を作製した。結晶相、密度、平均
粒径及び導電率の物性を、それぞれX線回折、アルキメ
デス法(溶媒エタノール)、画像処理(研磨面の熱燐酸
エッチ後)及び交流2端子法にて測定して焼結体の評価
を行った。
These granulated powders were molded at a uniaxial pressure of 100 kg / cm 2 using a circular mold of 20 mmφ, further put into a rubber, and CIP (cold isostatic pressurization) was performed.
A molded body was obtained by holding at a pressure of 5 t / cm 2 for 5 minutes.
The obtained molded body is heated at a temperature rising rate of 5 ° C./min to
After holding at 600 ° C. for 10 minutes, annealing treatment was performed at 1450 ° C. for 5 hours to produce a sintered body. The physical properties of crystal phase, density, average particle size and conductivity are measured and sintered by X-ray diffraction, Archimedes method (solvent ethanol), image processing (after hot phosphoric acid etching of polished surface) and AC two-terminal method, respectively. The body was evaluated.

【0024】得られた焼結体の密度及びβ″化率を図1
に示す。β″化率の値から判断して、Al2 3 /Na
2 Oのモル比の最適値は6.5の近傍にあることが判
る。
The density and β ″ conversion of the obtained sintered body are shown in FIG.
Shown in. Judging from the value of β "conversion rate, Al 2 O 3 / Na
It can be seen that the optimum value of the molar ratio of 2 O is in the vicinity of 6.5.

【0025】次に、Al2 3 /Na2 O比を6.2〜
6.7まで変化させ(0.1刻み)、上述と同様の方法
で焼結体を作製した。得られた焼結体相対密度及びβ″
化率を図2に示す。また、画像処理で求めた平均粒径及
び300℃における導電率を図3に示す。図2より、相
対密度はこのAl2 3 /Na2 Oモル比の範囲内では
すべて95%以上と高いが、β″化率はAl2 3 /N
2 O比が6.4〜6.6で特に高い値を示した。また
図3より、Al2 3 /Na2 Oモル比が小さくなる
程、導電率は高く、平均粒径は大きくなる傾向を示し
た。事前に検討した平均粒径とミクロ組織の関係におい
て、平均粒径が1.0μm以下では粒成長は全くみられ
ないが、1.2μm程度から部分的粒成長がみられ、
1.5μm以上では激しい粒成長を示す事が判ってい
る。粒成長を示す試料では、導電率は高くなっても強度
が低下し、耐久性に劣る事は明らかである。そのため、
平均粒径から判断し、Al2 3 /Na2 Oモル比は
6.3以上が望ましいことが判る。すなわち、図2及び
図3のそれぞれβ″化率と平均粒径から判断して、Al
2 3 /Na2 Oモル比の最適値は6.4〜6.6であ
ることが判る。
Next, the Al 2 O 3 / Na 2 O ratio is set to 6.2.
Sintered bodies were produced by changing to 6.7 (in steps of 0.1) and by the same method as described above. Relative density and β ″ of the obtained sintered body
The conversion rate is shown in FIG. Further, FIG. 3 shows the average particle diameter obtained by image processing and the electric conductivity at 300 ° C. From FIG. 2, the relative densities are all high at 95% or more in this Al 2 O 3 / Na 2 O molar ratio range, but the β ″ conversion ratio is Al 2 O 3 / N.
The a 2 O ratio was 6.4 to 6.6, which was a particularly high value. Moreover, from FIG. 3, it was shown that the conductivity was higher and the average particle size was larger as the Al 2 O 3 / Na 2 O molar ratio was smaller. In the relationship between the average grain size and the microstructure examined in advance, no grain growth was observed when the average grain size was 1.0 μm or less, but partial grain growth was observed from about 1.2 μm.
It has been known that when the thickness is 1.5 μm or more, a vigorous grain growth is exhibited. It is clear that in the sample showing grain growth, the strength is lowered even if the conductivity is increased and the durability is deteriorated. for that reason,
Judging from the average particle size, it is found that the Al 2 O 3 / Na 2 O molar ratio is preferably 6.3 or more. That is, judging from the β ″ conversion rate and the average particle size in FIGS. 2 and 3, respectively, Al
It can be seen that the optimum value of the 2 O 3 / Na 2 O molar ratio is 6.4 to 6.6.

【0026】(実施例2)Al2 3 /Na2 O比を
6.5に固定した状態で、Li2 O量を0.25〜1.
0wt%で変化(0.25wt%刻み)させ、実施例1
と同じ操作にて焼結体を作製した。その時の密度とβ″
化率を図4に示す。また平均粒径と300℃における導
電率の値を図5に示す。これから、Li2 O量が少ない
と密度が小さく導電率も小さいこと、及びLi2 O量が
増加すると導電率は向上するが、平均粒径が増加するこ
とがわかる。これより、Li2 O量の最適値は0.5〜
0.75wt%の間にあることが判る。
Example 2 With the Al 2 O 3 / Na 2 O ratio fixed at 6.5, the amount of Li 2 O between 0.25 and 1.
Example 1 was changed at 0 wt% (in increments of 0.25 wt%).
A sintered body was produced by the same operation as above. Density and β ″ at that time
The conversion rate is shown in FIG. The average particle diameter and the value of conductivity at 300 ° C. are shown in FIG. From this, it is understood that when the amount of Li 2 O is small, the density is low and the electrical conductivity is low, and when the amount of Li 2 O is increased, the electrical conductivity is improved but the average particle size is increased. From this, the optimum value of the amount of Li 2 O is 0.5 to
It can be seen that it is between 0.75 wt%.

【0027】次にLi2 O量を0.50〜0.75wt
%で変化(0.05wt%刻み)させ、実施例1と同様
の操作で焼結体を作製した。その時の密度とβ″化率を
図6に示す。また平均粒径と300℃における導電率の
値を図7に示す。これから、Li2 O量が少ないとβ″
単相にならず、導電率も低いこと及び及びLi2 O量が
多いと導電率は高くなるが、平均粒径が増加することが
判る。すなわち、Li 2 O量の最適値は0.60〜0.
70wt%にあることが判る。
Next, Li2O amount of 0.50 to 0.75 wt
% (In increments of 0.05 wt%), same as in Example 1
A sintered body was produced by the operation of. The density and β ″ conversion rate at that time
As shown in FIG. In addition, the average particle size and the conductivity at 300 ° C
Values are shown in FIG. From now on, Li2Β "when the amount of O is small
It does not become a single phase, has a low conductivity, and Li2O amount
If the amount is large, the conductivity will be high, but the average particle size may increase.
I understand. That is, Li 2The optimum amount of O is 0.60 to 0.
It can be seen that it is 70 wt%.

【0028】(実施例3)本発明の最適組成範囲の中
で、Al2 3 /Na2 Oのモル比及びLi2 O量をそ
れぞれ6.5及び0.65wt%という組成の焼結体を
実施例1と同じ方法で調製した。さらに特公昭57−1
5063号公報に開示の最も一般的な従来法により、上
記と同一組成及びAl2 3 /Na2 Oのモル比及びL
2 O量をそれぞれ6.25及び0.75wt%という
従来組成の焼結体を作製した。これ等3種の焼結体作製
において、焼結温度を1560〜1640℃まで変化
(20℃刻み)させた時の密度及びβ″化率をそれぞれ
図8及び図9に示す。また、平均粒径と300℃におけ
る導電率をそれぞれ図10と図11に示す。この結果、
図8から図11のすべてにおいて、本発明の製法で、か
つ本発明の組成のβ″−アルミナは焼結温度による特性
の変化が小さいことが判る。さらに、従来製法(ゼータ
プロセス)においても、本発明の組成の方が従来組成よ
りも、高い焼結温度側でその特性変動が小さいことが判
る。特に従来製法で、かつ従来組成の場合、焼結温度に
伴う平均粒径の増加、すなわち、粒成長が著しく電池の
耐久性に問題があることは明らかである。本発明のβ″
−アルミナの組成と本発明者等が先に提案した方法(特
願平4−227814号)に開示した製造法を組み合わ
せることで従来の製造法よりも特性の変化を抑えること
ができた。
(Example 3) A sintered body having a composition in which the molar ratio of Al 2 O 3 / Na 2 O and the amount of Li 2 O are 6.5 and 0.65 wt%, respectively, within the optimum composition range of the present invention. Was prepared in the same manner as in Example 1. Furthermore, Japanese Examined Japanese Patent Publication 57-1
According to the most general conventional method disclosed in Japanese Patent Publication No. 5063, the same composition as above and the molar ratio of Al 2 O 3 / Na 2 O and L are obtained.
Sintered bodies having conventional compositions of i 2 O amounts of 6.25 and 0.75 wt% were produced. 8 and 9 show the density and β ″ conversion rate when the sintering temperature was changed (steps of 20 ° C.) from 1560 to 1640 ° C. in the production of these three kinds of sintered bodies, respectively. The diameter and the electric conductivity at 300 ° C. are shown in FIGS.
8 to 11, it can be seen that the β ″ -alumina having the composition of the present invention has a small change in characteristics due to the sintering temperature in the production method of the present invention. Further, even in the conventional production method (zeta process), It can be seen that the composition of the present invention has smaller characteristic fluctuations on the side of higher sintering temperature than the conventional composition.In particular, in the case of the conventional production method and the conventional composition, the increase of the average particle diameter with the sintering temperature, that is, It is clear that the grain growth is remarkable and the durability of the battery is problematic.
By combining the composition of alumina and the manufacturing method disclosed in the method previously proposed by the present inventors (Japanese Patent Application No. 4-227814), it was possible to suppress the change in characteristics more than the conventional manufacturing method.

【0029】[0029]

【発明の効果】以上説明したように、本発明のベータア
ルミナの組成によれば、従来の組成により調製したもの
と比較して、導電性を低下させずに微細な組織をもつベ
ータアルミナを従来法よりも簡便な方法により調製する
ことができ、電池用電解質としての耐久性が向上する。
また、焼結条件の変化に対しても、その電解質特性の変
化は小さく工業的な製法による電池用電解質としての信
頼性が向上する。
As described above, according to the composition of beta-alumina of the present invention, as compared with the one prepared by the conventional composition, the beta-alumina having a fine structure without deteriorating the conductivity is conventionally used. It can be prepared by a simpler method than the method and the durability as a battery electrolyte is improved.
Further, even if the sintering conditions are changed, the change in the electrolyte characteristic is small, and the reliability as the battery electrolyte by the industrial manufacturing method is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における焼結体の粗変化させ
たAl2 3 /Na2 Oのモル比と密度及びβ″化率の
関係を示す図表。
FIG. 1 is a diagram showing a relationship between a roughly changed Al 2 O 3 / Na 2 O molar ratio of a sintered body and a density and a β ″ conversion rate in Example 1 of the present invention.

【図2】本発明の実施例1における焼結体の微変化させ
たAl2 3 /Na2 Oのモル比と密度及びβ″化率の
関係を示す図表。
FIG. 2 is a graph showing the relationship between the slightly changed Al 2 O 3 / Na 2 O molar ratio of the sintered body and the density and β ″ conversion rate in Example 1 of the present invention.

【図3】本発明の実施例1における焼結体の微変化させ
たAl2 3 /Na2 Oのモル比と平均粒径及び導電率
の関係を示す図表。
FIG. 3 is a graph showing the relationship between the slightly changed Al 2 O 3 / Na 2 O molar ratio of the sintered body in Example 1 of the present invention, and the average particle diameter and conductivity.

【図4】本発明の実施例2における焼結体の粗変化させ
たLi2 O量と密度及びβ″化率の関係を示す図表。
FIG. 4 is a chart showing the relationship between the roughly changed amount of Li 2 O, the density, and the β ″ conversion rate of the sintered body in Example 2 of the present invention.

【図5】本発明の実施例2における焼結体の粗変化させ
たLi2 O量と平均粒径及び導電率の関係を示す図表。
FIG. 5 is a chart showing the relationship between the coarsely changed amount of Li 2 O, the average particle size, and the conductivity of the sintered body in Example 2 of the present invention.

【図6】本発明の実施例2における焼結体の微変化させ
たLi2 O量と密度及びβ″化率の関係を示す図表。
FIG. 6 is a chart showing the relationship between the minutely changed amount of Li 2 O, the density, and the β ″ conversion rate of the sintered body in Example 2 of the present invention.

【図7】本発明の実施例2における焼結体の微変化させ
たLi2 O量と平均粒径及び導電率の関係を示す図表。
FIG. 7 is a chart showing the relationship among the minutely changed amount of Li 2 O, the average particle diameter, and the conductivity of the sintered body in Example 2 of the present invention.

【図8】本発明の実施例3における焼結体の焼結温度と
密度の関係を示す図表。
FIG. 8 is a chart showing a relationship between a sintering temperature and a density of a sintered body in Example 3 of the present invention.

【図9】本発明の実施例3における焼結体の焼結温度と
β″化率の関係を示す図表。
FIG. 9 is a chart showing a relationship between a sintering temperature and a β ″ conversion rate of a sintered body in Example 3 of the present invention.

【図10】本発明の実施例3における焼結体の焼結温度
と平均粒径の関係を示す図表。
FIG. 10 is a chart showing a relationship between a sintering temperature and an average particle diameter of a sintered body in Example 3 of the present invention.

【図11】本発明の実施例3における焼結体の焼結温度
と導電率の関係を示す図表。
FIG. 11 is a chart showing the relationship between the sintering temperature and the electrical conductivity of the sintered body in Example 3 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水流 靖彦 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Mizutani 1-8-1 Koura, Kanazawa-ku, Yokohama, Kanagawa Prefecture Mitsubishi Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ベータアルミナの構成酸化物である酸化
アルミニウム、酸化ナトリウム及び酸化リチウムに関し
て、Al2 3 /Na2 Oのモル比を6〜7及びLi2
O量の全体に対する重量比を0.5〜0.75wt%に
してなることを特徴とするベータアルミナ電解質。
1. Regarding aluminum oxide, sodium oxide and lithium oxide which are constituent oxides of beta-alumina, the molar ratio of Al 2 O 3 / Na 2 O is 6 to 7 and Li 2 is 2.
A beta-alumina electrolyte characterized in that the weight ratio of the amount of O to the whole is 0.5 to 0.75 wt%.
JP5215661A 1993-08-31 1993-08-31 Beta alumina electrolyte Expired - Lifetime JP3009566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5215661A JP3009566B2 (en) 1993-08-31 1993-08-31 Beta alumina electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5215661A JP3009566B2 (en) 1993-08-31 1993-08-31 Beta alumina electrolyte

Publications (2)

Publication Number Publication Date
JPH0765857A true JPH0765857A (en) 1995-03-10
JP3009566B2 JP3009566B2 (en) 2000-02-14

Family

ID=16676088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5215661A Expired - Lifetime JP3009566B2 (en) 1993-08-31 1993-08-31 Beta alumina electrolyte

Country Status (1)

Country Link
JP (1) JP3009566B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328560B1 (en) 1999-02-03 2001-12-11 Kabushiki Kaisha Kobe Seiko Sho Pressure processing apparatus for semiconductors
JPWO2013129211A1 (en) * 2012-02-29 2015-07-30 旭硝子株式会社 Beta alumina sintered body and manufacturing method thereof
JP2015213912A (en) * 2010-03-04 2015-12-03 三菱瓦斯化学株式会社 Method for producing propylene production catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328560B1 (en) 1999-02-03 2001-12-11 Kabushiki Kaisha Kobe Seiko Sho Pressure processing apparatus for semiconductors
JP2015213912A (en) * 2010-03-04 2015-12-03 三菱瓦斯化学株式会社 Method for producing propylene production catalyst
JPWO2013129211A1 (en) * 2012-02-29 2015-07-30 旭硝子株式会社 Beta alumina sintered body and manufacturing method thereof
US9735446B2 (en) 2012-02-29 2017-08-15 Asahi Glass Company, Limited Beta-alumina-based sintered compact and its production method

Also Published As

Publication number Publication date
JP3009566B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
CN112851344B (en) Microwave dielectric ceramic with medium dielectric constant and preparation method thereof
US4113928A (en) Method of preparing dense, high strength, and electrically conductive ceramics containing β"-alumina
JPH05262516A (en) Production of k-or rb-beta"-or beta-alumina powder preparation, the preparation, production of k-or rb-beta"-or beta-alumina ceramic molding, the molding, and ion conductor made of the molding
CA2059478C (en) Beta alumina sintered body and method of manufacturing the same
JPH0765857A (en) Beta alumina electrolyte
JP3586556B2 (en) Method for producing beta alumina electrolyte
JPH0258232B2 (en)
JP2961021B2 (en) Method for producing beta alumina electrolyte
JP3051610B2 (en) Method for producing beta alumina electrolyte
KR101410940B1 (en) Beta-alumina sintered body and method for manufacturing the same
JPS6121185B2 (en)
JPH11154414A (en) Beta-alumina electrolyte and manufacture thereof
JP3581620B2 (en) Beta alumina electrolyte and method for producing the same
JPH0656513A (en) Production of beta-alumina electrolyte
JPH05186260A (en) Production of beta-alumina electrolyte
JPH05208863A (en) Production of high-density sintered material for solid electrolyte
JPH1149562A (en) Production of beta-alumina ceramic
JP3202492B2 (en) Beta alumina electrolyte
JPH05844A (en) Heat resistant conductive sintered body
JP2000226251A (en) Production of beta-alumina ceramic
JP3059503B2 (en) Beta-alumina sintered body and method for producing the same
JP2000143331A (en) Production of beta aluminous sintered compact
JP3377261B2 (en) Method for producing β-alumina powder
JPH10101408A (en) Beta alumina ceramics and its production
JPH0235701B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 14