JPH0765699A - Electron emission device, manufacture thereof, and image forming equipment - Google Patents

Electron emission device, manufacture thereof, and image forming equipment

Info

Publication number
JPH0765699A
JPH0765699A JP23596093A JP23596093A JPH0765699A JP H0765699 A JPH0765699 A JP H0765699A JP 23596093 A JP23596093 A JP 23596093A JP 23596093 A JP23596093 A JP 23596093A JP H0765699 A JPH0765699 A JP H0765699A
Authority
JP
Japan
Prior art keywords
electron
transition element
compound
emitting device
typical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23596093A
Other languages
Japanese (ja)
Inventor
Yasuko Tomita
康子 富田
Yoshiyuki Osada
芳幸 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23596093A priority Critical patent/JPH0765699A/en
Publication of JPH0765699A publication Critical patent/JPH0765699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PURPOSE:To decrease dispersion of characteristics independent of environment by covering the surface of a transition element or a transition element compound interposed between a pair of electrodes with a typical element or a typical element compound in the III group of the periodic table. CONSTITUTION:An electron emission device interposes a transition element and/or a transition element compound between a pair of electrodes, and emissions electrons by applying voltage across the electrodes. In the electron emission device, the surfaces/surface of the transition element and/or the transition element compound are/is covered with a typical element or a typical element compound in the III group of the periodic table. The surface is covered with an element, which is chemically stable and capable of covering the surface, of the typical elements or the typical element compounds. The variation of electron emission effect caused by an environmental factor can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、遷移元素および/また
は遷移元素化合物を用いた電子放出素子、その製造方法
および表示装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting device using a transition element and / or a compound of a transition element, a method for manufacturing the same, and a display device.

【0002】[0002]

【従来の技術】従来、電子放出素子としては、熱電子源
と冷陰極電子源の2種類が知られている。冷陰極電子源
には電界放出型(FE)、金属/絶縁層/金属型(以
下、MIMと略す)や表面伝導型電子放出素子(SC
E)等がある。
2. Description of the Related Art Conventionally, two types of electron-emitting devices are known, a thermoelectron source and a cold cathode electron source. The cold cathode electron source includes a field emission type (FE), a metal / insulating layer / metal type (hereinafter abbreviated as MIM), and a surface conduction electron emitting device (SC).
E) etc.

【0003】電界放出型(FE)の例としては、W.
P.Dyke&W.W.Dolan,“Field e
mission”,Advance in Elect
ronPhysics、8、89(1956)および
C.A.Spindt、“Physical prop
erties of thin film−field
emission cathodes with mo
lybdenum cones”、J.Appl.Ph
ys.、47、5248(1976)等が知られてい
る。
As an example of the field emission type (FE), W.
P. Dyke & W. W. Dolan, "Field e
"Mission", Advance in Elect
ronPhysics, 8, 89 (1956) and C.I. A. Spindt, "Physical prop
erties of thin film-field
Emission cathodes with mo
lybdenum cones ”, J. Appl. Ph.
ys. , 47, 5248 (1976) and the like are known.

【0004】MIM型の例としては、C.A.Mea
d、“The tunnel−emission am
plifier、J.Appl.Phys.、32、6
46(1961)等が知られている。
An example of the MIM type is C.I. A. Mea
d, "The tunnel-emission am
plier, J. et al. Appl. Phys. , 32, 6
46 (1961) and the like are known.

【0005】SCE型の例としては、M.I.Elin
son、Radio Eng. Electron P
ys.、10(1965)等がある。
As an example of the SCE type, M. I. Elin
son, Radio Eng. Electron P
ys. 10 (1965) and so on.

【0006】SCEは基板上に形成された小面積の薄膜
に、膜面に平行に電流を流すことにより、電子放出が生
ずる現象を利用するものである。
SCE utilizes a phenomenon in which electron emission occurs when a current is applied to a thin film having a small area formed on a substrate in parallel with the film surface.

【0007】この表面伝導型電子放出素子(SCE)と
しては、前記エリンソン等によるSnO2 薄膜を用いた
もの、Au薄膜によるもの[G.Dittmer:“T
hin Solid Films”、9、317(19
72)]、In23 /SnO2 薄膜によるもの[M.
Hartwell and C.G.Fonstad:
“IEEE Trans.ED Conf.”、519
(1975)]、カーボン薄膜によるもの[荒木久
他:真空、第26巻、第1号、22頁(1983)]等
が報告されている。
As the surface conduction electron-emitting device (SCE), one using the SnO 2 thin film by the above-mentioned Erinson, one using the Au thin film [G. Dittmer: "T
"Hin Solid Films", 9, 317 (19)
72)], by In 2 O 3 / SnO 2 thin film [M.
Hartwell and C.I. G. Fonstad:
"IEEE Trans.ED Conf.", 519
(1975)], by a carbon thin film [Hiraki Araki
Others: Vacuum, Vol. 26, No. 1, p. 22 (1983)] and the like are reported.

【0008】これらの表面伝導型電子放出素子の典型的
な素子構成として前述のM.ハートウェルの素子構成を
図10に示す。同図において1は絶縁性基板である。電
子放出部形成用薄膜2は、スパッタで形成されたH型形
状の金属酸化物薄膜等からなり、後述のフォーミングと
呼ばれる通電処理により電子放出部3が形成される。4
は電子放出部を含む薄膜である。
As a typical device configuration of these surface conduction electron-emitting devices, the above-mentioned M. The Hartwell device configuration is shown in FIG. In the figure, 1 is an insulating substrate. The electron emitting portion forming thin film 2 is composed of an H-shaped metal oxide thin film formed by sputtering, and the electron emitting portion 3 is formed by an energization process called forming described later. Four
Is a thin film including an electron emitting portion.

【0009】従来、これらの表面伝導型電子放出素子に
おいては、電子放出を行う前に電子放出部形成薄膜2を
予めフォーミングと呼ばれる通電処理によって電子放出
部3を形成するのが一般的であった。即ち、フォーミン
グとは、前記電子放出部形成用薄膜2の両端に電圧を印
加通電し、電子放出部形成用薄膜を局所的に破壊、変形
もしくは変質せしめ、電気的に高抵抗な状態にした電子
放出部3を形成することである。尚、電子放出部3は電
子放出部形成用薄膜2の一部に亀裂が発生し、その亀裂
付近から電子放出が行なわれる場合もある。以下、フォ
ーミングにより発生した電子放出部を含む電子放出部形
成用薄膜を電子放出部を含む薄膜4と呼ぶ。
Conventionally, in these surface conduction electron-emitting devices, it has been general that the electron-emitting portion forming thin film 2 is formed with an electron-emitting portion 3 in advance by an energization process called forming before the electron emission. . That is, the forming means that a voltage is applied to both ends of the electron emitting portion forming thin film 2 to locally energize the electron emitting portion forming thin film to locally destroy, deform or alter the electron emitting portion forming thin film to make it into an electrically high resistance state. That is, the emission part 3 is formed. In some cases, the electron emitting portion 3 may have a crack in a part of the electron emitting portion forming thin film 2, and the electron may be emitted from the vicinity of the crack. Hereinafter, the thin film for forming an electron emitting portion including the electron emitting portion generated by forming is referred to as a thin film 4 including an electron emitting portion.

【0010】前記フォーミング処理をした表面伝導型電
子放出素子は上述の電子放出部を含む薄膜4に電圧を印
加し、素子表面に電流を流すことにより、上述の電子放
出部3より電子を放出せしめるものである。
In the surface-conduction type electron-emitting device which has been subjected to the forming process, a voltage is applied to the thin film 4 including the above-mentioned electron-emitting portion and a current is caused to flow on the surface of the device so that the above-mentioned electron-emitting portion 3 emits electrons. It is a thing.

【0011】これらの従来の電子放出素子のうち、MI
MやSCE等の電子放出部には一般に遷移元素が用いら
れることが多かった。大電流を得るためには仕事関数の
大きな物質、すなわち一般に原子番号の大きな元素を用
いるのが好ましい。しかし、典型元素のI族やII族は
吸湿などの水分の影響を受けやすく、典型元素のVII
族やVIII族は電極間に保持することが困難である。
その他、製造プロセスや原料としての入手しやすさなど
の制約から、結果として遷移元素が用いられることが多
かった。
Among these conventional electron-emitting devices, MI
Transition elements are often used in the electron emitting portions such as M and SCE. In order to obtain a large current, it is preferable to use a substance having a large work function, that is, an element having a large atomic number in general. However, the group I and group II of the typical element are easily affected by moisture such as moisture absorption, and the group VII of the typical element is
It is difficult to hold the group or group VIII between the electrodes.
In addition, due to restrictions such as the manufacturing process and availability as raw materials, transition elements were often used as a result.

【0012】また、従来より、電子放出材料への水、一
酸化炭素やベンゼンなどの吸着を防止するために電子放
出材料の表面をカーボンやフッ素でコートすることが知
られていた。例えば、特開平1−309242号公報で
は炭素質コートの方法が、また特開平2−247938
号公報ではフッ素コートの方法が開示されているが、こ
れらはいずれも電子放出材料の表面を物理的に被覆して
吸着を防ぐという単純なものであった。
It has been conventionally known that the surface of the electron emitting material is coated with carbon or fluorine in order to prevent adsorption of water, carbon monoxide, benzene and the like to the electron emitting material. For example, JP-A-1-309242 discloses a carbonaceous coating method, and JP-A-2-247938.
The publication discloses fluorine coating methods, but all of them are simple methods of physically coating the surface of the electron emitting material to prevent adsorption.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記の
様な遷移元素を用いた従来の電子放出素子には、電子放
出効率にバラツキや変動が生じ、不安定で再現性に乏し
いという共通した問題点があった。このような問題点が
あるため、従来の表面導電型電子放出素子は、素子構造
が簡単であるという利点があるにもかかわらず、産業上
積極的に応用されるには到っておらず、環境に左右され
にくい素子が望まれていた。
However, the conventional electron-emitting devices using the above transition elements have a common problem that the electron-emission efficiency varies and fluctuates, and is unstable and poor in reproducibility. was there. Due to such problems, the conventional surface-conduction electron-emitting device has not been positively applied industrially, despite the advantage that the device structure is simple. A device that is not easily influenced by the environment has been desired.

【0014】本発明は、上記の点に鑑みて従来の問題を
解決するためになされたものであり、表面導電型電子放
出素子において、電子放出部の表面改質を施すことによ
り、環境に左右されずに、特性のバラツキが少なく、寿
命の長い安定した電子放出素子を提供することを目的と
するものである。
The present invention has been made in order to solve the conventional problems in view of the above points, and in the surface-conduction type electron-emitting device, the surface modification of the electron-emitting portion is performed so that the environment-dependent It is an object of the present invention to provide a stable electron-emitting device which has a long life and a small variation in characteristics.

【0015】[0015]

【課題を解決するための手段】即ち、本発明は、一対の
電極間に遷移元素および/または遷移元素化合物を挟持
してなり、該電極間に電圧を印加して電子放出を行う電
子放出素子において、前記遷移元素および/または遷移
元素化合物の表面を周期表のIII族に属する典型元素
または典型元素化合物で被覆してなることを特徴とする
電子放出素子である。
That is, the present invention is an electron-emitting device in which a transition element and / or a transition element compound is sandwiched between a pair of electrodes, and a voltage is applied between the electrodes to emit electrons. 2. An electron-emitting device characterized in that the surface of the transition element and / or the transition element compound is coated with a typical element or a typical element compound belonging to Group III of the periodic table.

【0016】また、本発明は、一対の電極間に遷移元素
および/または遷移元素化合物を挟持してなり、該電極
間に電圧を印加して電子放出を行う電子放出素子におい
て、前記遷移元素および/または遷移元素化合物の表面
を周期表のIV族第4周期、第5周期、第6周期に属す
る典型元素または典型元素化合物で被覆してなることを
特徴とする電子放出素子である。
Further, the present invention provides an electron-emitting device in which a transition element and / or a transition element compound is sandwiched between a pair of electrodes, and a voltage is applied between the electrodes to emit electrons. And / or a surface of the transition element compound is coated with a typical element or a typical element compound belonging to the fourth, fifth and sixth periods of Group IV of the periodic table.

【0017】さらに、本発明は、一対の電極間に遷移元
素および/または遷移元素化合物を挟持してなり、該電
極間に電圧を印加して電子放出を行う電子放出素子にお
いて、前記遷移元素および/または遷移元素化合物の表
面を周期表のV族第4周期、第5周期、第6周期に属す
る典型元素または典型元素化合物で被覆してなることを
特徴とする電子放出素子である。
Furthermore, the present invention provides an electron-emitting device comprising a transition element and / or a transition element compound sandwiched between a pair of electrodes, and applying a voltage between the electrodes to emit electrons. And / or the surface of the transition element compound is coated with a typical element or a typical element compound belonging to Group V fourth, fifth and sixth periods of the periodic table.

【0018】また、本発明は、一対の電極間に遷移元素
および/または遷移元素化合物を挟持してなり、該電極
間に電圧を印加して電子放出を行う電子放出素子におい
て、前記遷移元素および/または遷移元素化合物の表面
を周期表のVI族第4周期、第5周期、第6周期に属す
る典型元素または典型元素化合物で被覆してなることを
特徴とする電子放出素子である。
Further, the present invention provides an electron-emitting device in which a transition element and / or a transition element compound is sandwiched between a pair of electrodes, and a voltage is applied between the electrodes to emit electrons. And / or a surface of the transition element compound is coated with a typical element or a typical element compound belonging to Group VI fourth, fifth and sixth periods of the periodic table.

【0019】また、本発明は、上記の電子放出素子と蛍
光体を具備することを特徴とする画像形成装置である。
Further, the present invention is an image forming apparatus comprising the above-mentioned electron-emitting device and a phosphor.

【0020】また、本発明は、配線電極に電気的に接続
し配列した上記の複数個の電子放出素子と蛍光体を具備
することを特徴とする画像形成装置である。
Further, the present invention is an image forming apparatus comprising a plurality of the above-mentioned electron-emitting devices electrically connected to the wiring electrodes and arranged, and a phosphor.

【0021】また、本発明は、一対の電極間に遷移元素
および/または遷移元素化合物を設けた後、該遷移元素
および/または遷移元素化合物に真空中で気体状の上記
の典型元素または典型元素化合物を作用させることを特
徴とする電子放出素子の製造方法である。
In the present invention, after the transition element and / or the transition element compound is provided between the pair of electrodes, the transition element and / or the transition element compound is in a gaseous state in the above-mentioned typical element or typical element. A method for producing an electron-emitting device, which comprises causing a compound to act.

【0022】また、本発明は、上記の電子放出素子から
の放出電子もしくは放出電子による蛍光または燐光を用
いて記録媒体に記録することを特徴とする記録方法であ
る。
The present invention is also a recording method characterized by recording on a recording medium by using emitted electrons from the electron-emitting device or fluorescence or phosphorescence by the emitted electrons.

【0023】本発明の電子放出素子は、前記遷移元素お
よび/または遷移元素化合物を挟持してなる一対の電極
間に遷移元素および/または遷移元素化合物の第一イオ
ン化ポテンシャルもしくは仕事関数(eV)以上の電圧
(V)を印加して電子放出を行う素子が好ましい。
The electron-emitting device of the present invention has a first ionization potential or work function (eV) or more of the transition element and / or the transition element compound between a pair of electrodes sandwiching the transition element and / or the transition element compound. An element that emits electrons by applying the voltage (V) is preferable.

【0024】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0025】本発明は、一対の電極間に遷移元素および
/または遷移元素化合物を挟持してなり、該電極間に電
圧を印加して電子放出を行う電子放出素子において、遷
移元素および/または遷移元素化合物の表面を典型元素
または典型元素化合物のうち化学的に安定で且つ表面被
覆可能な元素で被覆したことを特徴とする。
The present invention is an electron-emitting device in which a transition element and / or a transition element compound is sandwiched between a pair of electrodes, and a voltage is applied between the electrodes to emit electrons. It is characterized in that the surface of the elemental compound is coated with a typical element or a typical elemental compound which is chemically stable and can be surface-coated.

【0026】本発明によれば、環境因子によると思われ
る電子放出効率の変動を従来に比べて小さくすることが
可能となる。
According to the present invention, it is possible to reduce fluctuations in electron emission efficiency, which are considered to be caused by environmental factors, as compared with the conventional case.

【0027】この電子放出効率の変動を引き起こす環境
因子として、水分や真空ポンプに由来すると思われる一
酸化炭素やベンゼンなどの存在が挙げられる。すなわ
ち、H2 O(および電気化学的に分解されて生成したと
思われるOH- )やCOあるいはC66 等の遷移元素
に配位可能な物質が配位子となり、真空度、湿度、温度
などの条件で決まる平衡状態で遷移元素の主に表面に錯
反応しているものと考えられる。あるいは、これら物質
が遷移元素表面に吸着・脱着しているこはも考えられ
る。
Environmental factors that cause the fluctuation of the electron emission efficiency include the presence of water and carbon monoxide and benzene which are considered to be derived from a vacuum pump. That is, a substance capable of coordinating with a transition element such as H 2 O (and OH which seems to be produced by electrochemical decomposition), CO, or C 6 H 6 becomes a ligand, and the degree of vacuum, humidity, It is considered that the complex reaction mainly occurs on the surface of the transition element in an equilibrium state determined by the conditions such as temperature. Alternatively, it is possible that these substances are adsorbed and desorbed on the surface of the transition element.

【0028】上記の遷移元素または遷移元素化合物等
(錯体もしくは吸着状態を含む)を単原子として見た場
合、イオン化ポテンシャル以上の電圧を印加した場合、
外殻電子のうち最も小さなイオン化ポテンシャルを持つ
電子から順次放出される。
When the above transition element or transition element compound (including complex or adsorbed state) is viewed as a single atom, when a voltage higher than the ionization potential is applied,
The electrons having the smallest ionization potential among the outer shell electrons are sequentially emitted.

【0029】上記の遷移元素または遷移元素化合物等
(錯体もしくは吸着状態を含む)をバルク(分子の集合
体)として見た場合、仕事関数以上の電圧を印加した場
合、フェルミレベルから電子が放出される。イオン化ポ
テンシャルと仕事関数の違いは、電子が個々の金属原子
から放出されると見るか、バンドを持ったバルク金属か
ら放出されると見るかである。従来技術で述べたように
電子放出素子には色々な素子構成があり、いずれが支配
的であるかは個々の電子放出メカニズムに依存する。例
えば従来技術で例示した微粒子を用いるSCE素子の場
合は、個々の金属から電子が放出される寄与が大きい。
When the above transition element or transition element compound (including complex or adsorbed state) is viewed as a bulk (assembly of molecules), when a voltage higher than the work function is applied, electrons are emitted from the Fermi level. It The difference between the ionization potential and the work function is whether the electrons are seen to be emitted from individual metal atoms or the banded bulk metal. As described in the prior art, electron-emitting devices have various device configurations, and which one is dominant depends on the individual electron-emitting mechanism. For example, in the case of the SCE element using the fine particles exemplified in the prior art, the contribution of electrons emitted from each metal is large.

【0030】錯形成であるとした場合、配位子場の理論
によれば配位子の静電気によるd軌道の分裂が起こり、
遷移元素の電子状態が変化する。その結果、d電子のイ
オン化ポテンシャル(第1、第2、....)が変化す
るので、一定の電圧を印加しているならば放出されうる
電子の数が変化する(図11参照)。
In the case of complex formation, according to the theory of the ligand field, the splitting of the d orbital due to the static electricity of the ligand occurs,
The electronic state of the transition element changes. As a result, the ionization potential (first, second, ...) Of the d-electrons changes, so that the number of electrons that can be emitted changes if a constant voltage is applied (see FIG. 11).

【0031】また、吸着であるとした場合にも、吸着分
子がイオン化しやすい物質であれば遷移元素と電子のや
りとりをして仕事関数が変化する。特に、電圧を印加す
るような場合には吸着分子と遷移元素との電子のやりと
りは起こりやすく、場合によっては錯形成が起こる可能
性もある。吸着状態と同様、錯体状態の場合でも仕事関
数は変化する。遷移元素表面への吸着が面内で不均一で
あるならば、あるいは吸着が面内で均一でも時間変動し
たり温度などによって変動する場合には、放出されうる
統計的な電子の数は変化する。
Even in the case of adsorption, if the adsorbed molecule is a substance that is easily ionized, the transition function interacts with electrons to change the work function. In particular, when a voltage is applied, exchange of electrons between the adsorbed molecule and the transition element is likely to occur, and in some cases, complex formation may occur. Like the adsorption state, the work function also changes in the complex state. If the adsorption to the surface of the transition element is non-uniform in the plane, or if the adsorption is uniform in the plane but varies with time or temperature, the statistical number of electrons that can be emitted changes. .

【0032】本発明は、上記の錯形成と吸着のいずれに
対しても、上記遷移元素の表面を遷移元素よりも化学的
に安定な典型元素または典型元素化合物で被覆すること
で、水、一酸化炭素、ベンゼン等の環境因子となる物質
が存在しても錯形成が実質的に起こらず、安定な電子放
出素子を得た。
According to the present invention, the surface of the transition element is coated with a typical element or a compound of the typical element that is more chemically stable than the transition element to prevent water, Even in the presence of substances such as carbon oxide and benzene which are environmental factors, complex formation did not substantially occur, and a stable electron-emitting device was obtained.

【0033】また、化学的に安定な典型元素または典型
元素化合物で被覆することで遷移元素の表面の電子が露
出しにくくなり、吸着も起こりにくい電子放出素子を得
た。本発明において、遷移元素とは化学元素周期表の元
素を典型元素と遷移元素に分類したときの遷移元素であ
る。遷移元素化合物とは、主に水素化物,酸化物,炭化
物,窒化物,バロゲン化物等および遷移元素の塩等であ
り、上記化合物以外の典型元素金属との合金の場合には
遷移元素をモル比で10%以上含むものが好ましい。
Further, by coating with a chemically stable typical element or a typical element compound, electrons on the surface of the transition element are hard to be exposed, and an electron-emitting device in which adsorption is less likely to occur was obtained. In the present invention, the transition element is a transition element when the elements of the chemical element periodic table are classified into a typical element and a transition element. The transition element compound is mainly a hydride, an oxide, a carbide, a nitride, a barogenide, etc. and a salt of a transition element, etc. In the case of an alloy with a typical element metal other than the above compounds, the transition element is used in a molar ratio. It is preferable that the content is 10% or more.

【0034】遷移元素化合物の特別な場合として、典型
元素の表面を遷移元素あるいは上述した一般的な遷移元
素化合物で被覆した場合にはその表面積の20%以上を
占めるものが好ましい。
As a special case of the transition element compound, when the surface of the typical element is coated with the transition element or the above-mentioned general transition element compound, it is preferable that it occupies 20% or more of the surface area.

【0035】但し、上記した遷移元素の好ましい範囲
は、電子放出素子としたときの全放出電子に占める遷移
元素の寄与分、あるいは全放出電子のうち環境因子によ
り変動する遷移元素の寄与分に依存するので必ずしも上
記範囲内に限定するものではない。
However, the preferable range of the above-mentioned transition element depends on the contribution of the transition element to all the emitted electrons when the electron-emitting device is used, or the contribution of the transition element that varies depending on environmental factors among all the emitted electrons. Therefore, it is not necessarily limited to the above range.

【0036】本発明の第1の特徴はこれら遷移元素ある
いは遷移元素化合物を電子放出素子として用いる場合
に、その表面を後述するような典型元素または典型元素
化合物で被覆することである。
The first feature of the present invention is that when these transition elements or transition element compounds are used as an electron-emitting device, the surface thereof is coated with a typical element or a typical element compound as described later.

【0037】本発明において被覆とは、主に静電的ある
いは物理的吸着により積層している状態をいうが、化学
的な反応により遷移元素あるいは遷移元素化合物と合金
や化合物を形成している状態でもよい。
In the present invention, the term "coating" means a state of being laminated mainly by electrostatic or physical adsorption, but a state of forming an alloy or compound with a transition element or a transition element compound by a chemical reaction. But it's okay.

【0038】初期状態で静電的あるいは物理的吸着をし
ている場合でも、これに電圧を印加して電子を放出させ
た状態では、遷移元素がイオン化しやすく合金形成をす
るかもしくは化合物形成する場合もある。なお、合金と
化合物の再生は典型元素が金属か、非金属かの違いによ
る。
Even when electrostatically or physically adsorbed in the initial state, when a voltage is applied to this to emit electrons, the transition element is easily ionized to form an alloy or a compound. In some cases. Regeneration of alloys and compounds depends on whether the typical element is metal or non-metal.

【0039】また、本発明の電子放出素子は、上述の遷
移元素および/または遷移元素化合物の表面を典型元素
または典型元素化合物のうち化学的に安定で且つ表面被
覆可能な元素で被覆したものである。
Further, the electron-emitting device of the present invention is obtained by coating the surface of the above-mentioned transition element and / or transition element compound with a chemically stable and surface-coverable element of a typical element or a typical element compound. is there.

【0040】典型元素のうち、I族のアルカリ金属、I
I族のアルカリ土類金属は吸湿により水酸化物を形成
し、且つイオン化ポテンシャル(仕事関数)が低く遷移
元素よりもイオン化しやすくハロゲン等と反応しやすい
ので環境因子に対して安定である。
Of the typical elements, alkali metals of Group I, I
Group I alkaline earth metals form hydroxides by moisture absorption, have a low ionization potential (work function), are more easily ionized than transition elements, and are more likely to react with halogens, etc., and thus are stable against environmental factors.

【0041】一方、VII族のハロゲンは反応性に富
み、やはり環境因子に対して不安定であり、VIII族
の不活性ガスと同様にガス化しやすく電極間に保持して
電圧を印加することが困難である。
On the other hand, the halogen of Group VII is highly reactive and unstable also to environmental factors, and like the inert gas of Group VIII, it is easily gasified, and it is possible to apply a voltage while holding it between the electrodes. Have difficulty.

【0042】また、IV族の炭素および硅素は酸素と反
応して酸化物を形成しやすく、また様々な不純物を吸着
しやすい。
Further, group IV carbon and silicon are likely to react with oxygen to form an oxide, and to adsorb various impurities.

【0043】第2周期の窒素および酸素は常温常圧で気
体で、窒素や酸素を含む化合物は遷移元素あるいは遷移
元素化合物と錯体を形成しやすい。
Nitrogen and oxygen in the second cycle are gases at room temperature and atmospheric pressure, and compounds containing nitrogen and oxygen easily form a complex with a transition element or a transition element compound.

【0044】第3周期のリンおよびイオウも遷移元素あ
るいは遷移元素化合物と錯体を形成しやすい。
The phosphorus and sulfur in the third period are also likely to form a complex with a transition element or a transition element compound.

【0045】前述した本発明の被覆の定義において、化
合物の範囲に含まれるものは遷移元素と典型元素とが共
有結合した化学的に安定なものであり、遷移元素に典型
元素が配位した錯体は環境因子により変動する可能性が
あるので本発明では好ましくない。配位子の種類によっ
ては上記窒素、酸素、リン、イオウを含むものでも環境
因子に対して比較的安定な被覆を形成するものもある
が、一般には不安定なので本発明ではこれらの元素は含
まない。
In the above definition of the coating of the present invention, what is included in the scope of the compound is a chemically stable one in which a transition element and a typical element are covalently bonded, and a complex in which the typical element is coordinated with the transition element. Is not preferable in the present invention because it may vary depending on environmental factors. Depending on the type of ligand, some of the above-mentioned nitrogen, oxygen, phosphorus, and sulfur may form a coating that is relatively stable against environmental factors, but since they are generally unstable, these elements are not included in the present invention. Absent.

【0046】よって、本発明において用いられる典型元
素としては、周期表のIII族すべておよびIV族、V
族、VI族の第4周期、第5周期、第6周期に属する元
素である。具体的には、B,Al,Ga,In,Tl,
Ge,Sn,Pb,As,Sb,Bi,Se,Te,P
o等が挙げられる。
Therefore, as the typical elements used in the present invention, all the groups III and IV of the periodic table, and V
It is an element belonging to the 4th period, the 5th period, and the 6th period of the VI group. Specifically, B, Al, Ga, In, Tl,
Ge, Sn, Pb, As, Sb, Bi, Se, Te, P
and the like.

【0047】また、典型元素化合物としては、上記の典
型元素の化合物であればよく、例えばB26、Al2
6、GaF3、InF3、TlCl3、GeS、SnCl
2、Pd(NO32等が挙げられる。
The typical element compound may be a compound of the above typical elements, for example, B 2 H 6 or Al 2 C
l 6 , GaF 3 , InF 3 , TlCl 3 , GeS, SnCl
2 , Pd (NO 3 ) 2 and the like.

【0048】これらの典型元素または典型元素化合物で
被覆した遷移元素あるいは遷移元素化合物は、その化学
的な安定性のため、環境因子が遷移元素に直接接触して
反応したり、その表面に吸着しても電子放出に伴って錯
形成しないため、電子放出素子とした時の電子放出効率
が従来より小さくなり安定化する以下、本発明に関わる
電子放出素子の基本的な構成と製造方法および特性につ
いて概説する。図1は本発明にかかわる基本的な電子放
出素子の構成を示す説明図である。同図において1は絶
縁性基板、5と6は素子電極、4は電子放出部を含む薄
膜、3は電子放出部である。
Due to their chemical stability, the transition elements or transition element compounds coated with these typical elements or typical element compounds are directly contacted by the environmental elements to react with them or are adsorbed on the surface thereof. However, since it does not form a complex with the emission of electrons, the electron emission efficiency of the electron emission device becomes smaller and more stable than before. The following is a description of the basic configuration, manufacturing method and characteristics of the electron emission device according to the present invention. Outline. FIG. 1 is an explanatory diagram showing the structure of a basic electron-emitting device according to the present invention. In the figure, 1 is an insulating substrate, 5 and 6 are device electrodes, 4 is a thin film including an electron emitting portion, and 3 is an electron emitting portion.

【0049】本発明における電子放出部を含む薄膜4の
うち、電子放出部3としては、粒径が数Å、特に好まし
くは5Å〜500Åの導電性微粒子多数個からなり、電
子放出部3以外の電子放出部を含む薄膜4は微粒子膜か
らなる。なお、この微粒子膜(薄膜4)とは、複数の微
粒子が集合した膜であり、その微細構造として、微粒子
が個々に分散配置した状態のみならず、微粒子が互いに
隣接、あるいは重なり合った状態(島状も含む)の膜を
さす。尚、薄膜4の厚さは、好ましくは数Å〜数千Åで
あり、特に好ましくは10Å〜200Åである。
In the thin film 4 including the electron emitting portion in the present invention, the electron emitting portion 3 is composed of a large number of conductive fine particles having a particle diameter of several Å, particularly preferably 5 Å to 500 Å. The thin film 4 including the electron emitting portion is a fine particle film. The fine particle film (thin film 4) is a film in which a plurality of fine particles are aggregated, and its fine structure is not only a state in which the fine particles are individually dispersed and arranged but also a state in which the fine particles are adjacent to each other or overlap each other (island). (Including the shape). The thickness of the thin film 4 is preferably several Å to several thousand Å, particularly preferably 10 Å to 200 Å.

【0050】また、これとは別に電子放出部を含む薄膜
4は、導電性微粒子が分散されたカーボン薄膜等の場合
がある。
Separately, the thin film 4 including the electron emitting portion may be a carbon thin film in which conductive fine particles are dispersed.

【0051】電子放出部を含む薄膜4の具体例を挙げる
と、Mn,Sc,La,Cr,Co,Fe,Ce,T
i,Zr,Th,Cu,Ag,Au,Tl,Hg,C
d,Hg,Pd,Pt,Ru,In,Zn,Ta,W等
の金属、VO2 ,VO,MoO,PdO,PbO等の酸
化物、HfB2 ,ZrB2 ,LaB6 ,CeB6 ,YB
4,GdB4 等の硼化物、TiC,ZrC,HfC,T
aC,WC等の炭化物、TiN,ZrN,HfN等の窒
化物、AgMg,NiCu等である。
Specific examples of the thin film 4 including an electron emitting portion include Mn, Sc, La, Cr, Co, Fe, Ce and T.
i, Zr, Th, Cu, Ag, Au, Tl, Hg, C
Metals such as d, Hg, Pd, Pt, Ru, In, Zn, Ta, W, oxides such as VO 2 , VO, MoO, PdO, PbO, HfB 2 , ZrB 2 , LaB 6 , CeB 6 , YB.
4 , boride such as GdB 4 , TiC, ZrC, HfC, T
Carbides such as aC and WC, nitrides such as TiN, ZrN, and HfN, AgMg, NiCu, and the like.

【0052】そして電子放出部を含む薄膜4は真空蒸着
法,スパッタ法,化学的気相堆積法,分散塗布法,ディ
ッピング法,スピンナー法等によって形成される。
The thin film 4 including the electron emitting portion is formed by a vacuum vapor deposition method, a sputtering method, a chemical vapor deposition method, a dispersion coating method, a dipping method, a spinner method, or the like.

【0053】電子放出部3を有する電子放出素子の製造
方法としては様々な方法が考えられるが、その一例を図
2に示す。2は電子放出部形成用薄膜で例えば微粒子膜
が挙げられる。
Various methods are conceivable as a method of manufacturing an electron-emitting device having the electron-emitting portion 3, one example of which is shown in FIG. Reference numeral 2 is a thin film for forming an electron emitting portion, and for example, a fine particle film can be mentioned.

【0054】以下、順をおって製造方法の説明を図2に
基づいて説明する。
The manufacturing method will be described below in order with reference to FIG.

【0055】1)絶縁性基板1を洗剤、純水および有機
溶剤により十分に洗浄後、真空蒸着技術、フォトリング
ラフィー技術により該絶縁性基板1の面上に素子電極
5、6を形成する(図2(a))。素子電極の材料とし
ては導電性を有するものであればどのようなものであっ
ても構わないが、例えばNi,Cr,Au,Mo,W,
Pt,Ti,Al,Cu,Pd等の金属或いは合金が挙
げられ,素子電極間隔のL1は数百Å〜数十μm、好ま
しくは1μm〜10μm、素子電極長さW1は好ましく
は数百Å〜数μm、素子電極5、6の膜厚dは好ましく
は数百Å〜数千Åである。
1) After the insulating substrate 1 is thoroughly washed with a detergent, pure water and an organic solvent, the device electrodes 5 and 6 are formed on the surface of the insulating substrate 1 by the vacuum deposition technique and the photolinography technique ( FIG. 2A). Any material may be used as the material of the element electrode as long as it has conductivity. For example, Ni, Cr, Au, Mo, W,
Examples of the metal or alloy include Pt, Ti, Al, Cu, Pd, and the like. The element electrode spacing L1 is several hundred Å to several tens of μm, preferably 1 μm to 10 μm, and the element electrode length W1 is preferably several hundred Å. The film thickness d of the element electrodes 5 and 6 is preferably several hundred m to several thousand m.

【0056】2)絶縁性基板1上に設けられた素子電極
5と素子電極6との間に、素子電極5と6を形成した絶
縁性基板上に有機金属溶液を塗布して放置することによ
り、有機金属薄膜を形成する。なお、有機金属溶液と
は,前記Mn,Sc,La,Cr,Co,Fe,Ce,
Ti,Zr,Th,Cu,Ag,Au,Tl,Hg,C
d,Hg,Pd,Pt,Ru,In,Zn,Ta,W等
の金属を主元素とする有機化合物の溶液である。この
後、有機金属薄膜を加熱焼成処理し、リフトオフ、エッ
チング等によりパターニングし、電子放出部形成用薄膜
2を形成する(図2(b))。
2) Between the device electrodes 5 and 6 provided on the insulating substrate 1, an organic metal solution is applied to the insulating substrate on which the device electrodes 5 and 6 are formed and left to stand. , Forming an organometallic thin film. Incidentally, the organic metal solution means the above Mn, Sc, La, Cr, Co, Fe, Ce,
Ti, Zr, Th, Cu, Ag, Au, Tl, Hg, C
It is a solution of an organic compound containing a metal such as d, Hg, Pd, Pt, Ru, In, Zn, Ta and W as a main element. After that, the organic metal thin film is heat-fired and patterned by lift-off, etching, etc. to form the electron-emitting portion forming thin film 2 (FIG. 2B).

【0057】3)つづいて、フォーミングと呼ばれる通
電処理を素子電極5、6間に電圧を不図示の電源により
印加し施すと、電子放出部形成用薄膜2の部位に構造の
変化した電子放出部3が形成される(図2(c))。こ
の通電処理により電子放出部形成用薄膜2を局所的に破
壊、変形もしくは変質せしめ、構造の変化した部位を電
子放出部3と呼ぶ。先に説明したように、電子放出部3
は導電性微粒子多数個より形成されていることを本出願
人らは観察している。
3) Subsequently, when an energization process called forming is applied by applying a voltage between the device electrodes 5 and 6 by a power source (not shown), the electron-emitting portion having a changed structure is formed at the site of the electron-emitting portion forming thin film 2. 3 is formed (FIG. 2 (c)). The electron-emitting portion forming thin film 2 is locally destroyed, deformed or altered by this energization process, and a portion whose structure is changed is called an electron-emitting portion 3. As described above, the electron emitting portion 3
The applicants have observed that is formed from a large number of conductive fine particles.

【0058】上述のような製造方法によって作成された
本発明にかかわる電子放出素子の特性については、図3
の測定評価装置を用いて測定される。
The characteristics of the electron-emitting device according to the present invention produced by the above manufacturing method are shown in FIG.
The measurement and evaluation device is used for measurement.

【0059】図3は、図1で示した構成を有する素子の
電子放出特性を測定するための測定評価装置の概略構成
図である。図3において、1は絶縁性基体、5及び6は
素子電極、4は電子放出部を含む薄膜、3は電子放出部
を示す。また、31は素子に素子電圧Vfを印加するた
めの電源、30は素子電極5,6間の電子放出部を含む
薄膜4を流れる素子電流Ifを測定するための電流計、
34は素子の電子放出部より放出される放出電流Ieを
捕捉するためにのアノード電極、33はアノード電極3
4に電圧を印加するための高圧電源、32は素子の電子
放出部3より放出される放出電流Ieを測定するための
電流計である。
FIG. 3 is a schematic configuration diagram of a measurement / evaluation apparatus for measuring electron emission characteristics of the device having the configuration shown in FIG. In FIG. 3, 1 is an insulating substrate, 5 and 6 are device electrodes, 4 is a thin film including an electron emitting portion, and 3 is an electron emitting portion. Further, 31 is a power supply for applying a device voltage Vf to the device, 30 is an ammeter for measuring a device current If flowing through the thin film 4 including an electron emitting portion between the device electrodes 5, 6.
34 is an anode electrode for capturing the emission current Ie emitted from the electron emission portion of the device, 33 is the anode electrode 3
A high voltage power source for applying a voltage to 4 and an ammeter 32 for measuring the emission current Ie emitted from the electron emitting portion 3 of the device.

【0060】電子放出素子の上記素子電流If、放出電
流Ieの測定にあたっては、素子電極5、6に電流31
と電流計30とを接続し、該電子放出素子の上方に電流
33と電流計32とを接続したアノード電極34を配置
している。また、本電子放出素子及びアノード電極34
は真空装置内に設置され、その真空装置には不図示の排
気ポンプ及び真空計等の真空装置に必要な機器が具備さ
れており、所望の真空下で本素子の測定評価を行えるよ
うになっている。
In measuring the above-mentioned device current If and emission current Ie of the electron-emitting device, a current 31 is applied to the device electrodes 5 and 6.
And an ammeter 30 are connected to each other, and an anode electrode 34 to which a current 33 and an ammeter 32 are connected is arranged above the electron-emitting device. Further, the electron-emitting device and the anode electrode 34
Is installed in a vacuum device, and the vacuum device is equipped with equipment necessary for the vacuum device such as an exhaust pump and a vacuum gauge (not shown), and the measurement and evaluation of this element can be performed under a desired vacuum. ing.

【0061】なお、アノード電極の電圧は1kV〜10
kV、アノード電極と電子放出素子との距離Hは3mm
〜8mmの範囲で測定した。
The voltage of the anode electrode is 1 kV to 10 kV.
kV, the distance H between the anode electrode and the electron-emitting device is 3 mm
It was measured in the range of ~ 8 mm.

【0062】なお、前記本発明の電子放出素子の構成及
びその製造方法のうち一部を変更しても構成できる。
The electron-emitting device of the present invention can be constructed by partially changing the structure and the manufacturing method thereof.

【0063】以下に本発明の実施態様についてこの新規
な電子放出素子の例として平面型SCE素子の断面図を
図4に示し、同図を用いて本発明の特徴、構造、製造法
を概説する。
A cross-sectional view of a plane type SCE element as an example of the novel electron-emitting device according to the embodiment of the present invention is shown in FIG. 4, and the features, structure, and manufacturing method of the present invention will be outlined with reference to FIG. .

【0064】同図において1は絶縁性基板、5及び6は
素子電極、4は遷移元素から成る電子放出材料で形成さ
れる薄膜、3は電子放出部を示す。11は典型元素また
は典型元素化合物である。図4は遷移元素の表面を典型
元素または典型元素化合物11で被覆したものを表す。
In the figure, 1 is an insulating substrate, 5 and 6 are device electrodes, 4 is a thin film made of an electron emitting material composed of a transition element, and 3 is an electron emitting portion. Reference numeral 11 is a typical element or a typical element compound. FIG. 4 shows a surface of a transition element coated with a typical element or a typical element compound 11.

【0065】図4の電子放出素子の製造方法としては前
述したような方法で電子放出素子を作成し、電子放出部
3を形成した直後に典型元素または典型元素化合物を減
圧加熱して気化させて蒸気として作用させるのが好まし
い。気体状の典型元素または典型元素化合物は電子放出
素子の遷移元素と選択的に錯形成を行う。電極5,6や
絶縁性基板1にも典型元素または典型元素化合物が堆積
し、それが電子放出に悪影響を及ぼす場合には、電子放
出素子全体を加熱することで典型元素または典型元素化
合物の堆積を少なくすることができ、一方遷移元素との
錯形成反応は温度が上がることで促進される。
As the method of manufacturing the electron-emitting device of FIG. 4, the electron-emitting device is prepared by the above-described method, and immediately after forming the electron-emitting portion 3, the typical element or the typical element compound is heated under reduced pressure to be vaporized. It is preferred to act as steam. The gaseous typical element or typical element compound selectively forms a complex with the transition element of the electron-emitting device. When the typical element or the typical element compound is deposited on the electrodes 5 and 6 and the insulating substrate 1 and adversely affects the electron emission, the typical element or the typical element compound is deposited by heating the entire electron-emitting device. While the complex formation reaction with the transition element is promoted by increasing the temperature.

【0066】図4は遷移元素表面に吸着している初期状
態を表すが、電極5および6の間に電圧を印加して電子
放出を行う時に、遷移元素、典型元素または典型元素化
合物のような錯形成に変化する可能性もある。この場合
の錯形成は電圧印加中だけの過渡的な現象であることも
あるし、錯形成安定定数によっては錯体状態で安定で電
圧印加をやめても図4で表される吸着状態に戻らないこ
ともある。
FIG. 4 shows an initial state in which the transition element is adsorbed on the surface, but when a voltage is applied between the electrodes 5 and 6 to emit electrons, a transition element, a typical element or a typical element compound may be generated. There is also the possibility of changing into complex formation. Complex formation in this case may be a transient phenomenon only during voltage application, and depending on the complex formation stability constant, it may be stable in the complex state and may not return to the adsorption state shown in FIG. 4 even when the voltage application is stopped. There is also.

【0067】塗布材料に錯体を用いて電子放出素子を製
造するのは従来から行われている場合があるが、その場
合には焼成によって典型元素または典型元素化合物を分
解し遷移元素酸化物としていた。一般に錯体は電気抵抗
が低く、数ボルトという高電圧を印加できないので電子
放出を起こしにくい。よって焼成により電気抵抗の高い
酸化物としていた。
Although it has been conventionally performed to manufacture an electron-emitting device by using a complex as a coating material, in that case, a typical element or a typical element compound was decomposed by firing to obtain a transition element oxide. . In general, a complex has a low electric resistance and a high voltage of several volts cannot be applied to the complex, so that it is difficult to emit electrons. Therefore, the oxide was made to have high electric resistance by firing.

【0068】また、別法として前述した典型元素または
典型元素化合物蒸気による反応を薄膜の内部にまで行う
方法として素子全体を加熱するか、あるいは電極間に電
流を流してジュール熱を発生させる等の方法で遷移元素
と典型元素または典型元素化合物との錯形成反応を促進
すにることが好ましい。あるいは、電極間に電圧を印加
して遷移元素を電気化学的にイオン化して典型元素また
は典型元素化合物と反応しやすい状態にすることも好ま
しい。
As another method, as a method of carrying out the reaction with the above-described typical element or typical element compound vapor even inside the thin film, the entire element is heated, or a current is passed between the electrodes to generate Joule heat. It is preferred to promote the complex formation reaction between the transition element and the typical element or the typical element compound by the method. Alternatively, it is also preferable to apply a voltage between the electrodes to electrochemically ionize the transition element so that the transition element easily reacts with the typical element or the typical element compound.

【0069】また図4に示したような薄膜だけでなく、
微粒子形状の場合にも本発明は有効である。これを図5
に示す。微粒子形状の場合、図5(a)のように微粒子
表面にほぼ均一な厚さで典型元素または典型元素化合物
もしくは典型元素または典型元素化合物と反応した錯体
が一般には形成される。
In addition to the thin film shown in FIG.
The present invention is also effective in the case of fine particles. Figure 5
Shown in. In the case of a fine particle shape, a typical element or a typical element compound or a complex reacting with a typical element or a typical element compound is generally formed on the surface of the particle with a substantially uniform thickness as shown in FIG.

【0070】しかし、典型元素または典型元素化合物蒸
気が循環しているような場合や蒸着のように方向性があ
る場合には、図5(b)のように絶縁性基板1に接触す
る部分近傍は被覆が薄い。このような状態でも表面に環
境因子が錯形成あるいは吸着することを抑制できるの
で、全放出電子のうち環境因子による変動を少なくでき
る。
However, in the case where the vapor of the typical element or the compound of the typical element is circulated or in the case where there is directionality such as vapor deposition, the vicinity of the portion contacting the insulating substrate 1 as shown in FIG. 5B. Has a thin coating. Even in such a state, it is possible to suppress the complex formation or adsorption of environmental factors on the surface, so that it is possible to reduce the fluctuation of all emitted electrons due to environmental factors.

【0071】本発明は上記図5(a)のようにほぼ均一
な場合でも図5(b)のように不均一な場合でもよい。
The present invention may be either substantially uniform as shown in FIG. 5 (a) or nonuniform as shown in FIG. 5 (b).

【0072】本発明の電子放出素子の製造方法は、代表
的には、一対の電極間に遷移元素および/または遷移元
素化合物を設けた後、該遷移元素および/または遷移元
素化合物に真空中で気体状の典型元素または典型元素化
合物を作用させることにより行なう。
In the method for manufacturing an electron-emitting device of the present invention, typically, a transition element and / or a transition element compound is provided between a pair of electrodes, and then the transition element and / or the transition element compound is vacuumed. It is carried out by reacting a gaseous typical element or a typical element compound.

【0073】さらに、具体的には、真空チャンバーとそ
れに連結する別室とを隔離および連結を制御する可動式
隔離壁と別室に設けた典型元素または典型元素化合物を
冷却もしくは/および加熱する手段を具備した電子放出
素子処理装置において、真空チャンバー内に電子放出素
子を設置して真空状態とし、別室には典型元素または典
型元素化合物を設置して典型元素または典型元素化合物
の蒸気圧によっては冷却手段を併用しながら真空チャン
バーと同程度の真空状態とし、真空チャンバー内で電子
放出素子表面に吸着している分子を除去および/あるい
は通電処理をおこなった後、可動式隔離壁を移動して真
空チャンバーと別室を連結して典型元素または典型元素
化合物の蒸気圧によっては加熱手段を併用して典型元素
または典型元素化合物を蒸気とし、電子放出素子を典型
元素または典型元素化合物蒸気に曝することにより電子
放出素子を処理する。
More specifically, a movable isolation wall for controlling the isolation and connection of the vacuum chamber and another chamber connected to the vacuum chamber and a means for cooling and / or heating a typical element or a typical element compound provided in the separate chamber are provided. In the electron-emitting device processing apparatus described above, an electron-emitting device is installed in a vacuum chamber to create a vacuum state, and a typical element or a typical element compound is installed in a separate chamber and a cooling means is provided depending on the vapor pressure of the typical element or the typical element compound. While being used together, a vacuum state similar to that of the vacuum chamber is obtained, and after removing the molecules adsorbed on the surface of the electron-emitting device and / or conducting electricity in the vacuum chamber, the movable isolation wall is moved to form the vacuum chamber. Depending on the vapor pressure of a typical element or a typical element compound by connecting separate chambers, heating means may be used together to convert it to a typical element or a typical element. Things were the vapor to process the electron-emitting device by Sarasuru the electron-emitting devices typical element or typical element compound vapors.

【0074】本発明の電子放出素子は、放出電子を蛍光
体に衝突させて発光させることで画像表示する表示装
置、また電子放出素子からの放出電子もしくは放出電子
による蛍光または燐光を用いて感光材料、記録媒体に記
録するにより記録装置等の画像形成装置に用いることが
できる。
The electron-emitting device of the present invention is a display device that displays an image by causing emitted electrons to collide with a phosphor to emit light, and a light-sensitive material using emitted electrons from the electron-emitting device or fluorescence or phosphorescence by the emitted electrons. By recording on a recording medium, it can be used in an image forming apparatus such as a recording apparatus.

【0075】[0075]

【実施例】以下、図面に基づいて実施例により本発明を
さらに詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in more detail with reference to the accompanying drawings.

【0076】実施例1 図1に示されるような構成の表面伝導形電子放出素子を
以下のようにして作成した。素子形状はW=10mm、
L=2μmとした。図6〜9はその製造方法を示した説
明図である。
Example 1 A surface conduction electron-emitting device having a structure as shown in FIG. 1 was prepared as follows. The element shape is W = 10 mm,
L = 2 μm. 6 to 9 are explanatory views showing the manufacturing method.

【0077】1)絶縁性基板1として石英基板を用い、
これを洗剤、純水および有機溶剤により十分に洗浄(図
6(a))後、真空蒸着技術、フォトリソグラフィー技
術により該絶縁性基板1面上に電極2、3を形成した。
1) A quartz substrate is used as the insulating substrate 1,
After thoroughly washing this with a detergent, pure water and an organic solvent (FIG. 6A), electrodes 2 and 3 were formed on the surface of the insulating substrate 1 by a vacuum deposition technique and a photolithography technique.

【0078】電極の材料としては導電性を有するもので
あればどのようなものであってもよいが、本実施例では
ニッケル金属を用いた。電極間隔L1は2μm、電極長
さW1は300μm、電極膜厚はdは1000Åとし
た。
Any material may be used as the material of the electrode as long as it has conductivity, but nickel metal was used in this embodiment. The electrode interval L1 was 2 μm, the electrode length W1 was 300 μm, and the electrode film thickness d was 1000 Å.

【0079】(詳細な作成方法)レジスト材RD−20
00Nを2500rpm、40秒でスピンナー塗布し8
0℃、25分加熱してプリベークした(図6(b))。
(Detailed Preparation Method) Resist Material RD-20
00N spin coater at 2500 rpm for 40 seconds 8
It was prebaked by heating at 0 ° C. for 25 minutes (FIG. 6 (b)).

【0080】電極形状のマスクを用いて密着露光し、R
D−2000N用現像液で現像した(図6(c))。そ
の後、120℃、20分加熱してポストベークした。
Contact exposure is performed using an electrode-shaped mask and R
It was developed with a developing solution for D-2000N (FIG. 6 (c)). Then, it was post-baked by heating at 120 ° C. for 20 minutes.

【0081】抵抗加熱蒸着機を用いてニッケルを毎秒3
Åで膜厚が1000Åになるまで蒸着した(図6
(d))。
Using a resistance heating vapor deposition machine, nickel was applied at a rate of 3 per second.
It was vapor-deposited with Å until the film thickness became 1000 Å (Fig. 6
(D)).

【0082】アセトンでリフトオフし、アセトン、イン
プロピルアルコール、つづいて酢酸ブチルで洗浄後、乾
燥した(図6(e))。
Lifted off with acetone, washed with acetone, inpropyl alcohol, and then with butyl acetate, and dried (FIG. 6 (e)).

【0083】2)次に図7に示すように微粒子を分散さ
せたくないところはテープ又はレジスト膜あるいはクロ
ム層を設け、その後スピナー法で有機パラジウム(奥野
製薬(株)製、CCP−4230)を塗布した後、テー
プ又はレジスト膜を剥離することにより所定の位置に微
粒子膜を形成した後、300℃で1時間焼成し、酸化パ
ラジウム(PdO)微粒子(粒径:10Å〜150Å)
を主体とする微粒子膜4を形成した。ついで還元雰囲気
(水素ガスと窒素ガスの混合ガス)中で約200℃に加
熱し、該微粒子膜4をパラジウム(Pd)微粒子(粒
径:8Å〜120Å、平均粒径20Å)微粒子膜とし
た。
2) Next, as shown in FIG. 7, a tape or a resist film or a chrome layer is provided at a place where it is not desired to disperse the fine particles, and then organic palladium (CCP-4230 manufactured by Okuno Chemical Industries Co., Ltd.) is applied by a spinner method. After coating, a tape or resist film is peeled off to form a fine particle film at a predetermined position and then baked at 300 ° C. for 1 hour to obtain palladium oxide (PdO) fine particles (particle diameter: 10Å to 150Å)
A fine particle film 4 mainly composed of was formed. Then, the fine particle film 4 was heated to about 200 ° C. in a reducing atmosphere (mixed gas of hydrogen gas and nitrogen gas) to form a fine particle film of palladium (Pd) fine particles (particle diameter: 8Å to 120Å, average particle diameter 20Å).

【0084】尚、パラジウムと酸化パラジウムの微粒子
の粒径はこれに限るものではない。又、微粒子膜4の幅
はどのような値のものでも構わないが本実施例では1m
mとした。又、微粒子膜4の厚さは数十Åから200Å
が実用的であるがこれに限るものではない。
The particle size of the fine particles of palladium and palladium oxide is not limited to this. The width of the fine particle film 4 may be any value, but in this embodiment, it is 1 m.
m. Also, the thickness of the fine particle film 4 is from several tens of Å to 200 Å
Is practical, but not limited to this.

【0085】次に、クロムを基板全面に500Åの厚さ
に蒸着した(図7(f))。
Next, chromium was deposited on the entire surface of the substrate to a thickness of 500 Å (FIG. 7 (f)).

【0086】レジスト材AZ1370を2500rp
m、30秒スピンナー塗布し、90℃、30分加熱しプ
リベークした(図7(g))。
The resist material AZ1370 is set to 2500 rp
m, 30 seconds spinner coating, 90 degreeC, 30 minutes heating and prebaking (FIG.7 (g)).

【0087】電子源材料を塗布するパターンを有するマ
スクを用いて露光し(図7(h))、現像液MIF31
2で現像した(図8(i))。その後、120℃、30
分加熱しポストベークした。
Exposure is performed using a mask having a pattern for applying an electron source material (FIG. 7 (h)), and a developing solution MIF31 is used.
2 was developed (FIG. 8 (i)). After that, 120 ℃, 30
It was heated for a minute and post-baked.

【0088】(NH4 )Ce(NO36 /HCIO4
/H2 O=17g/5cc/100ccの組成の溶液に
30秒浸漬し、クロムをエッチングした。(図8
(j))。アセトン中、10分間超音波攪拌してレジス
トを剥離した。(図8(k))。ccp4230(奥野
製薬(株))を800rpm、30秒スピンナー塗布
し、300℃、1時間焼成し、酸化パラジウム(Pd
O)微粒子(粒径:10Å〜150Å)を主体とする電
子放出部形成用薄膜4を形成した。(図8(l))。
(NH 4 ) Ce (NO 3 ) 6 / HCIO 4
/ H 2 O = 17 g / 5 cc / 100 cc was immersed in a solution for 30 seconds to etch chromium. (Fig. 8
(J)). The resist was peeled off by ultrasonically stirring in acetone for 10 minutes. (FIG. 8 (k)). ccp4230 (Okuno Pharmaceutical Co., Ltd.) was applied at 800 rpm for 30 seconds by a spinner and baked at 300 ° C. for 1 hour to obtain palladium oxide (Pd).
O) A thin film 4 for forming an electron-emitting portion, which is mainly composed of fine particles (particle diameter: 10Å to 150Å), was formed. (FIG. 8 (l)).

【0089】続いてクロムをリフトオフした(図9
(m))。
Subsequently, chromium was lifted off (see FIG. 9).
(M)).

【0090】3)次に、図9に示すように、該素子の電
極2及び3の間に電圧を印加し通電処理を行ったとこ
ろ、電子放出部形成用薄膜4の部位に電子放出部5が形
成できた。通電処理によりパラジウム(Pd)微粒子
(粒径:8Å〜120Å、平均粒径20Å)微粒子膜が
形成され、これが電子放出部3と思われる(図9
(n))。
3) Next, as shown in FIG. 9, when a voltage was applied between the electrodes 2 and 3 of the device to carry out an energization process, the electron-emitting portion 5 was formed at the site of the electron-emitting portion forming thin film 4. Could be formed. A fine particle film (particle size: 8Å to 120Å, average particle size 20Å) of fine particles of palladium (Pd) is formed by the energization treatment, and this is considered to be the electron emitting portion 3 (FIG. 9).
(N)).

【0091】次に、同じ試料上に塩化ガリウムを真空中
でEB蒸着した。FEPの蒸着速度は約3.0Å/se
cで、150Åの厚さを電子放出部付近にマスク蒸着し
た。
Then, gallium chloride was EB vapor-deposited on the same sample in a vacuum. The deposition rate of FEP is about 3.0Å / se
In step c, 150 Å of thickness was mask-deposited near the electron emission portion.

【0092】この試料を温度30℃、湿度70%RHの
大気中の環境にさらした後、1×10-6Torrの真空
に引いて、素子に対して引き出し電極を基板鉛直方向に
5mm離した位置に設定し、図9中の電極22、23間
に15Vの印加電圧で放出電流を測定した。
This sample was exposed to the atmosphere of the atmosphere having a temperature of 30 ° C. and a humidity of 70% RH and then evacuated to a vacuum of 1 × 10 −6 Torr, and the lead electrode was separated from the device by 5 mm in the vertical direction of the substrate. The emission current was measured at the position set and the applied voltage of 15 V between the electrodes 22 and 23 in FIG.

【0093】その結果、平均放出電流0.7μA、放出
電流の安定性±9%の安定な電子放出を得た。また、素
子間の均一性もよく、特性のバラツキは6〜15%であ
り、電子放出時の放出効率(放出電流/電極間電流)も
1×10-4と高い効率が得られた。さらに電子放出の繰
り返し寿命も100時間以上の動作が可能であった。
As a result, stable electron emission with an average emission current of 0.7 μA and emission current stability of ± 9% was obtained. In addition, the uniformity between the devices was good, the characteristic variation was 6 to 15%, and the emission efficiency at the time of electron emission (emission current / inter-electrode current) was as high as 1 × 10 −4 . Further, it was possible to operate the electron emission repeating life for 100 hours or more.

【0094】SIMS、ESCA、EPMA等の分析手
段により典型元素で表面が被覆されていることを確認し
た。
It was confirmed by the analysis means such as SIMS, ESCA and EPMA that the surface was covered with the typical element.

【0095】比較例1 実施例1に於いて塩化ガリウムを蒸着しない他は、実施
例1と同様に試料を作製して同様の評価を行なった。
Comparative Example 1 A sample was prepared and evaluated in the same manner as in Example 1 except that gallium chloride was not vapor-deposited in Example 1.

【0096】その結果、平均放出電流0.8μA、放出
電流の安定性±34%となり安定な電子放出を得ること
ができなかった。また、素子間の特性のバラツキは19
〜65%と非常に大きなものであり、電子放出時の放出
効率(放出電流/電極間電流)も2×10-6であった。
さらに、電子放出の繰り返し寿命は79時間であった。
As a result, the average emission current was 0.8 μA and the stability of the emission current was ± 34%, and stable electron emission could not be obtained. Moreover, the variation in the characteristics between the elements is 19
The emission efficiency (emission current / inter-electrode current) during electron emission was 2 × 10 −6 .
Further, the repeated life of electron emission was 79 hours.

【0097】実施例2 実施例1に於いて、塩化ガリウムを蒸着するのに換えて
水素化ゲルマニウムをトルエン/MEK=1:1に溶か
し、スピンコート法により塗布し、70℃,15分の乾
燥を行なった。
Example 2 In Example 1, germanium hydride was dissolved in toluene / MEK = 1: 1 in place of vapor-depositing gallium chloride, and the solution was applied by spin coating and dried at 70 ° C. for 15 minutes. Was done.

【0098】この試料を実施例1と同様に評価した結
果、平均放出電流0.9μA、放出電流の安定性±12
%の安定な電子放出を得た。また、素子間の均一性もよ
く、特性のバラツキは8〜17%であり、電子放出時の
放出効率(放出電流/電極間電流)も8×10-5と高い
効率が得られた。さらに電子放出の繰り返し寿命も10
0時間以上の動作が可能であった。
This sample was evaluated in the same manner as in Example 1. As a result, the average emission current was 0.9 μA and the emission current stability was ± 12.
% Stable electron emission was obtained. Further, the uniformity between the devices was good, the variation in the characteristics was 8 to 17%, and the emission efficiency at the time of electron emission (emission current / interelectrode current) was as high as 8 × 10 −5 . Furthermore, the repeated life of electron emission is 10
The operation for 0 hours or more was possible.

【0099】実施例3 図1に示されるような構成において、素子形状をW=5
mm、L=2μmとしての表面伝導形電子放出素子を以
下のようにして作成した。
Example 3 In the structure as shown in FIG. 1, the element shape was W = 5.
A surface conduction electron-emitting device with mm and L = 2 μm was prepared as follows.

【0100】超微粒子の製膜法として広く知られている
ガスデポジション法(「粉体と工業」Vo1.19、N
o5、1987)により、粒径0.1μm以下の銀微粒
子で薄膜4を形成した。
A gas deposition method widely known as a method for forming ultrafine particles ("Powder and Industry", Vo 1.19, N
No. 5, 1987), the thin film 4 was formed of silver fine particles having a particle diameter of 0.1 μm or less.

【0101】ガスデポジション法は、粒径が0.1μm
以下のきわめて小さな粒子による製膜が可能であり、材
料としては、銀以外に金、銅、ニッケルなど様々な金属
材料により製膜できる。薄膜4の幅(電極間間隙と平行
方向)は2mmに形成した。
In the gas deposition method, the particle size is 0.1 μm.
It is possible to form a film with the following extremely small particles, and as the material, various metal materials such as gold, copper and nickel can be used in addition to silver. The width of the thin film 4 (in the direction parallel to the gap between the electrodes) was 2 mm.

【0102】次に、真空度1×10-6torrにおい
て、電圧の昇圧レート1V/100秒で電極5,6に電
圧を印加し、電極5,6間の薄膜4に通電加熱処理を施
して電子放出部3を形成した。
Next, at a vacuum degree of 1 × 10 −6 torr, a voltage is applied to the electrodes 5 and 6 at a voltage boosting rate of 1 V / 100 seconds, and the thin film 4 between the electrodes 5 and 6 is subjected to an electric heating treatment. The electron emitting portion 3 was formed.

【0103】続いて、同じ試料上にインジウムをスパッ
タにより膜厚100Åに成膜した。得られた試料を実施
例1と同様に評価した結果、平均放出電流1.1μA、
放出電流の安定性±14%の安定な電子放出を得た。ま
た、素子間の均一性もよく、特性のバラツキは8〜19
%であり、電子放出時の放出効率(放出電流/電極間電
流)も9×10-5と高い効率が得られた。さらに電子放
出の繰り返し寿命も100時間以上の動作が可能であっ
た。
Subsequently, indium was deposited on the same sample by sputtering to have a film thickness of 100 Å. The obtained sample was evaluated in the same manner as in Example 1, and as a result, the average emission current was 1.1 μA,
Stable electron emission with emission current stability of ± 14% was obtained. Also, the uniformity between the elements is good, and the variation in characteristics is 8 to 19
%, And the emission efficiency at the time of electron emission (emission current / inter-electrode current) was as high as 9 × 10 −5 . Further, it was possible to operate the electron emission repeating life for 100 hours or more.

【0104】実施例4 実施例3に於いて、インジウムをスパッタするのに換え
てセレン化−p−トリルをMEK/シクロヘキサン=
2:1に溶かし、スピンコート法により塗布し、80
℃,15分の乾燥を行なった。
Example 4 In Example 3, instead of sputtering indium, selenized-p-tolyl was replaced with MEK / cyclohexane.
Dissolve 2: 1 and apply by spin coating,
It was dried at ℃ for 15 minutes.

【0105】こき試料を実施例1と同様に評価した結
果、平均放出電流0.9μA、放出電流の安定性±16
%の安定な電子放出を得た。また、素子間の均一性もよ
く、特性のバラツキは5〜14%であり、電子放出時の
放出効率(放出電流/電極間電流)も1×10-4と高い
効率が得られた。さらに電子放出の繰り返し寿命も10
0時間以上の動作が可能である。
The koko sample was evaluated in the same manner as in Example 1. As a result, the average emission current was 0.9 μA and the emission current stability was ± 16.
% Stable electron emission was obtained. In addition, the uniformity between the devices was good, the characteristic variation was 5 to 14%, and the emission efficiency at the time of electron emission (emission current / interelectrode current) was as high as 1 × 10 −4 . Furthermore, the repeated life of electron emission is 10
Operation for 0 hours or more is possible.

【0106】実施例5 図1に示されるような構成の表面伝導形電子放出素子を
以下のようにして作成した。素子形状はW1=200μ
m、L1=2μmとした。
Example 5 A surface conduction electron-emitting device having the structure shown in FIG. 1 was prepared as follows. Element shape is W1 = 200μ
m and L1 = 2 μm.

【0107】微粒子分散液として次の材料をガラスビー
ズと共にペイントシェーカーで24時間攪拌したものを
用いた。
As the fine particle dispersion liquid, the following material was stirred together with glass beads for 24 hours with a paint shaker.

【0108】 微粒子 SnO2 (粒径1000Å以下) 1.0g 有機分散媒 メチルエチルケトン:シクロヘキサン=3:1 800cc まず、十分脱脂、洗浄した白板ガラス基板1上に、真空
製膜プロセスとフォトリソプロセスによりニッケルの電
極5,6を設けた。
Fine particles SnO 2 (particle size 1000 Å or less) 1.0 g Organic dispersion medium Methyl ethyl ketone: cyclohexane = 3: 1 800 cc First, on a white plate glass substrate 1 that has been sufficiently degreased and washed, a nickel film was formed by a vacuum film forming process and a photolithography process. The electrodes 5 and 6 were provided.

【0109】次に、前記微粒子分散液を上記基板1上に
スピンコート法で塗布し、250℃で10分間焼成する
ことを繰り返し、微粒子を含む、電気抵抗が150Ω以
下の薄膜4を形成した。
Next, the fine particle dispersion liquid was applied onto the substrate 1 by a spin coating method and baked at 250 ° C. for 10 minutes repeatedly to form a thin film 4 containing fine particles and having an electric resistance of 150 Ω or less.

【0110】その後、真空度1×10-6torrにおい
て、電圧の昇圧レート1V/100秒で電極5,6に電
圧を印加し、電極5,6間の薄膜4に通電加熱処理を施
して電子放出部3を形成した。次に、同じ試料上に臭化
ビスマスを実施例1と同様にしてEB蒸着した。
After that, at a vacuum degree of 1 × 10 -6 torr, a voltage is applied to the electrodes 5 and 6 at a voltage boosting rate of 1 V / 100 seconds, and the thin film 4 between the electrodes 5 and 6 is subjected to an electric heating treatment to generate electrons. The emission part 3 was formed. Next, bismuth bromide was EB vapor-deposited on the same sample as in Example 1.

【0111】この試料を実施例1と同様に評価した結
果、平均放出電流1.3μA、放出電流の安定性±15
%の安定な電子放出を得た。また、素子間の均一性もよ
く、特性のバラツキは4〜14%であり、電子放出時の
放出効率(放出電流/電極間電流)も7×10-5と高い
効率が得られた。さらに電子放出の繰り返し寿命も10
0時間以上の動作が可能であった。
This sample was evaluated in the same manner as in Example 1. As a result, the average emission current was 1.3 μA and the emission current stability was ± 15.
% Stable electron emission was obtained. Further, the uniformity between the devices was good, the variation in the characteristics was 4 to 14%, and the emission efficiency at the time of electron emission (emission current / interelectrode current) was as high as 7 × 10 −5 . Furthermore, the repeated life of electron emission is 10
The operation for 0 hours or more was possible.

【0112】実施例6 (XYマトリツクス) 次に、本発明の電子放出素子を用いたXYマトリツクス
を図12に基づいて説明する。
Example 6 (XY Matrix) Next, an XY matrix using the electron-emitting device of the present invention will be described with reference to FIG.

【0113】実施例1のようにして電子放出素子を作製
した基板101をリアプレート102上に固定した後、
基板101の5mm上方に、フェースプレート110
(ガラス基板107の内面に蛍光膜108とメタルバッ
ク109が形成されて構成される)を支持枠103を介
し配置し、フェーストプレート110、支持枠103、
リアプレート102の接合部にフッリトガラスを塗布
し、大気中あるいは窒素雰囲気中で400℃ないし50
0℃で10分以上焼成することで封着した(図12参
照)。
After fixing the substrate 101 on which the electron-emitting device was manufactured as in Example 1 onto the rear plate 102,
The face plate 110 is placed 5 mm above the substrate 101.
(A fluorescent film 108 and a metal back 109 are formed on the inner surface of the glass substrate 107) are arranged via a support frame 103, and the face plate 110, the support frame 103,
Fluorite glass is applied to the joint portion of the rear plate 102, and the temperature is 400 ° C. to 50 ° C. in the air or nitrogen atmosphere.
It was sealed by baking at 0 ° C. for 10 minutes or more (see FIG. 12).

【0114】また、リアプレート102への基板101
の固定もフリットガラスで行なった。図12において、
104は電子放出素子、105,106はそれぞれX方
向及びY方向の配線電極である。本実施態様では上述の
如く、フェースプレート110、支持枠103、リアプ
レート102で外囲器111を構成したが、リアプレー
ト102は主に基板101の強度を補強する目的で設け
られるため、基板101自体で十分な強度を持つ場合は
別体のリアプレート102は不要であり、基板101に
直接支持枠103を封着し、フェースプレート110、
支持枠103、基板101にて外囲器111を構成して
も良い。
Further, the substrate 101 on the rear plate 102
Was also fixed with frit glass. In FIG.
104 is an electron-emitting device, and 105 and 106 are wiring electrodes in the X and Y directions, respectively. In this embodiment, as described above, the face plate 110, the support frame 103, and the rear plate 102 constitute the envelope 111. However, the rear plate 102 is provided mainly for the purpose of reinforcing the strength of the substrate 101. If it has sufficient strength by itself, the separate rear plate 102 is unnecessary, and the support frame 103 is directly sealed to the substrate 101, and the face plate 110,
The envelope 111 may be configured by the support frame 103 and the substrate 101.

【0115】蛍光膜108は、モノクロームの場合は蛍
光体のみから成るが、カラーの蛍光膜の場合は、蛍光体
の配列によりブラックストライプあるいはブラックマト
リクスなどと呼ばれる黒色導伝材と蛍光体とで構成され
る。ブラックストライプ、ブックマトリクスが設けられ
る目的は、カラー表示の場合必要となる三原色蛍光体
の、各蛍光体113間の塗り分け部を黒くすることで混
色等を目立たなくすることと、蛍光膜108における外
光反射によるコントラストの低下を抑制することであ
る。本実施例では蛍光体はストライプ形状を採用し、先
にブラックストライプを形成し、その間隙部に各色蛍光
体を塗布し、蛍光膜108を作製した。ブラクストライ
プの材料として通常良く用いられている黒鉛を主成分と
する材料を用いたが、導電性があり、光の透過及び反射
が少ない材料であればこれに限るものではない。
The fluorescent film 108 is composed of only the phosphor in the case of monochrome, but in the case of the color fluorescent film, it is composed of a black conductive material called a black stripe or a black matrix depending on the arrangement of the phosphor and the phosphor. To be done. The purpose of providing the black stripe and the book matrix is to make the color mixture and the like inconspicuous by making the portions of the three primary color phosphors, which are necessary for color display, between the respective phosphors 113 black, and to make the phosphor film 108 inconspicuous. This is to suppress a decrease in contrast due to reflection of external light. In this embodiment, the fluorescent material has a stripe shape, a black stripe is first formed, and the fluorescent material of each color is applied to the gap portion to form the fluorescent film 108. A material containing graphite as a main component, which is often used as a material for black stripes, was used, but the material is not limited to this as long as it is electrically conductive and has little light transmission and reflection.

【0116】ガラス基板107に蛍光体を塗布する方法
はモノクロームの場合は沈澱法や印刷法が用いられる
が、カラーである本実施例では、スラリー法を用いた。
カラーの場合にも印刷法を用いても同等の塗布膜が得ら
れる。また、蛍光膜108の内面側には通常メタルバッ
ク109が設けられる。メタルバックの目的は、蛍光体
の発光のうち内面側への光をフェースプレート110側
へ鏡面反射することにより輝度を向上すること、電子ビ
ーム加速電圧を印加するための電極として作用するこ
と、外囲器内で発生した負イオンの衝突によるダメージ
からの蛍光体の保護等である。メタルバックは、蛍光膜
作製後、蛍光膜の内面側表面の平滑化処理(通常フィル
ミングと呼ばれる)を行い、その後A1を真空蒸着する
ことで作製した。
As a method of applying the phosphor to the glass substrate 107, a precipitation method or a printing method is used in the case of monochrome, but a slurry method is used in the present embodiment of color.
Even in the case of color, the same coating film can be obtained by using the printing method. A metal back 109 is usually provided on the inner surface side of the fluorescent film 108. The purpose of the metal back is to improve the brightness by specularly reflecting the light toward the inner surface side of the light emission of the phosphor to the face plate 110 side, to act as an electrode for applying an electron beam accelerating voltage, and This is to protect the phosphor from damage due to collision of negative ions generated in the enclosure. The metal back was produced by performing a smoothing treatment (usually called filming) on the inner surface of the fluorescent film after producing the fluorescent film, and then vacuum depositing A1.

【0117】フェースプレート110には、更に蛍光膜
108の導伝性を高めるため、蛍光膜108の外面側に
透明電極(不図示)が設けられる場合もあるが、本実施
態様では、メタルバックのみで十分な導伝性が得られた
ので省略した。前述の封着を行なう際、カラーの場合は
各色蛍光体と電子放出素子とを対応させなくてはいけな
いため、十分な位置合わせを行なった。
The face plate 110 may be provided with a transparent electrode (not shown) on the outer surface side of the fluorescent film 108 in order to further enhance the conductivity of the fluorescent film 108. However, in this embodiment, only a metal back is provided. Since sufficient conductivity was obtained with, it was omitted. In the case of the above-mentioned sealing, in the case of a color, since the phosphors of the respective colors and the electron-emitting devices have to correspond to each other, sufficient alignment is performed.

【0118】以上のようにして完成した外囲器を最後に
1×10-6Torr程度の真空度で、不図示の排気管を
ガスバーナーで熱することで溶着し外囲器の封止を行っ
た。最後に封止後の真空度を維持するために、ゲッター
処理を行った。これは、封止を行う直前あるいは封止後
に、抵抗加熱あるいは高周波加熱等の加熱法により、画
像表示装置内の所定の位置(不図示)に配置されたゲッ
ターを加熱し、蒸着膜を形成する処理である。ゲッター
は通常Ba等が主成分であり、該蒸着膜の吸着作用によ
り、真空度を維持するものである。
Finally, the envelope thus completed is welded by heating an exhaust pipe (not shown) with a gas burner at a vacuum degree of about 1 × 10 -6 Torr to seal the envelope. went. Finally, a getter process was performed in order to maintain the degree of vacuum after sealing. Immediately before or after sealing, a getter arranged at a predetermined position (not shown) in the image display device is heated by a heating method such as resistance heating or high frequency heating to form a vapor deposition film. Processing. The getter usually has Ba or the like as a main component, and maintains the degree of vacuum by the adsorption action of the vapor deposition film.

【0119】以上のように完成した本発明の画像形成装
置において、各電子放出素子には、容器外端子D×lな
いしD×m,DylないしDynを通じ、電圧を印加す
ることにより、電子放出させ、高圧端子Hvを通じ、メ
タルバック109、あるいは透明電極(不図示)に数k
V以上の高圧を印加し、電子ビームを加速し、蛍光膜1
08に衝突させ、励起・発光させることで画像を表示し
た。
In the image forming apparatus of the present invention completed as described above, each electron-emitting device is caused to emit electrons by applying a voltage through the terminals Dxl to Dxm and Dyl to Dyn outside the container. , A few k on the metal back 109 or transparent electrode (not shown) through the high voltage terminal Hv.
A high voltage of V or more is applied to accelerate the electron beam, and the fluorescent film 1
The image was displayed by colliding with 08 and exciting and emitting light.

【0120】以上述べた構成は、画像形成装置を作製す
る上での概略構成であり、例えば各部材の材料等、詳細
な部分は上述内容に限られるものではなく、さらに、複
数の電子放出素子104の基板101上での配置形態
は、一対の配線電極間に複数の電子放出素子を結線した
素子列を、複数列配置した形態であっても良く、この場
合には、これら素子列と直交する方向に、蛍光体の発光
をさせる素子の選択を行う制御電極(通常、グリッドと
呼ぶ)が配置される。このように画像形成装置の用途に
適するよう適宜選択する。
The above-described structure is a schematic structure for manufacturing the image forming apparatus. For example, the detailed parts such as the material of each member are not limited to the contents described above, and further, a plurality of electron-emitting devices. The arrangement form of the substrate 104 on the substrate 101 may be a form in which a plurality of element rows in which a plurality of electron-emitting devices are connected between a pair of wiring electrodes are arranged, and in this case, the element rows are orthogonal to each other. A control electrode (normally referred to as a grid) for selecting an element that causes the phosphor to emit light is arranged in the direction. Thus, the selection is appropriately made to suit the application of the image forming apparatus.

【0121】[0121]

【発明の効果】以上説明した様に、本発明の電子放出素
子は、電子放出部が典型元素もしくは典型元素化合物の
うち化学的に安定かつ表面被覆可能な元素で覆われてい
るため、環境因子によると思われる電子放出効率の変動
や特性のバラツキを従来に比べ小さくすることが可能と
なった。
As described above, in the electron-emitting device of the present invention, the electron-emitting portion is covered with an element of the typical element or the compound of the typical element, which is chemically stable and can be coated on the surface. It is possible to reduce fluctuations in electron emission efficiency and variations in characteristics, which are considered to be due to the above.

【0122】また、寿命の長い安定した電子放出素子を
提供することが可能となった。さらに、図11で示した
ように配位子場によるとd軌道の分裂により電子放出効
率も向上した。
Further, it has become possible to provide a stable electron-emitting device having a long life. Further, as shown in FIG. 11, according to the ligand field, the electron emission efficiency was also improved due to the splitting of the d orbital.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかわる基本的な電子放出素子の構成
を示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration of a basic electron-emitting device according to the present invention.

【図2】電子放出素子の製造方法の一例をに示す工程図
である。
FIG. 2 is a process drawing showing an example of a method for manufacturing an electron-emitting device.

【図3】素子の電子放出特性を測定するための測定評価
装置の概略構成図である。
FIG. 3 is a schematic configuration diagram of a measurement / evaluation apparatus for measuring electron emission characteristics of an element.

【図4】本発明の電子放出素子の構成を示す概略図であ
る。
FIG. 4 is a schematic diagram showing a configuration of an electron-emitting device of the present invention.

【図5】本発明の電子放出素子の構成を示す概略図であ
る。
FIG. 5 is a schematic diagram showing a structure of an electron-emitting device of the present invention.

【図6】電子放出素子の製造方法の第一の部分の工程を
示す工程図である。
FIG. 6 is a process drawing showing the process of the first part of the method of manufacturing an electron-emitting device.

【図7】電子放出素子の製造方法の第二の部分の工程を
示す工程図である。
FIG. 7 is a process drawing showing a process of the second part of the method for manufacturing the electron-emitting device.

【図8】電子放出素子の製造方法の第三の部分の工程を
示す工程図である。
FIG. 8 is a process drawing showing the process of the third portion of the method of manufacturing the electron-emitting device.

【図9】電子放出素子の製造方法の第四の部分の工程を
示す工程図である。
FIG. 9 is a process drawing that shows the process of the fourth portion of the method of manufacturing the electron-emitting device.

【図10】SCE素子の一般的な構成を示す図である。FIG. 10 is a diagram showing a general configuration of an SCE element.

【図11】d軌道のエネルギー準位を示す図である。FIG. 11 is a diagram showing energy levels of d orbit.

【図12】単純マトリクス方式ディスプレイパネルの構
成を示す概略構成図である。
FIG. 12 is a schematic configuration diagram showing a configuration of a simple matrix display panel.

【符号の説明】 1 絶縁性基板 2 電子放出部形成用薄膜 3 電子放出部 4 電子放出部を含む薄膜 5,6 素子電極 7,9 マトリツクス電極 11 典型元素または典型元素化合物 22,23 電極 24 Cr 25 レジスト 30,32 電流計 31 電源 33 高圧電源 34 アノード電極[Explanation of symbols] 1 insulating substrate 2 thin film for forming electron emitting portion 3 electron emitting portion 4 thin film including electron emitting portion 5,6 element electrode 7,9 matrix electrode 11 typical element or typical element compound 22,23 electrode 24 Cr 25 Resist 30,32 Ammeter 31 Power Supply 33 High Voltage Power Supply 34 Anode Electrode

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極間に遷移元素および/または
遷移元素化合物を挟持してなり、該電極間に電圧を印加
して電子放出を行う電子放出素子において、前記遷移元
素および/または遷移元素化合物の表面を周期表のII
I族に属する典型元素または典型元素化合物で被覆して
なることを特徴とする電子放出素子。
1. An electron-emitting device in which a transition element and / or a transition element compound is sandwiched between a pair of electrodes and a voltage is applied between the electrodes to emit electrons, wherein the transition element and / or the transition element are II of the periodic table on the surface of the compound
An electron-emitting device characterized by being coated with a typical element belonging to Group I or a typical element compound.
【請求項2】 一対の電極間に遷移元素および/または
遷移元素化合物を挟持してなり、該電極間に電圧を印加
して電子放出を行う電子放出素子において、前記遷移元
素および/または遷移元素化合物の表面を周期表のIV
族第4周期、第5周期、第6周期に属する典型元素また
は典型元素化合物で被覆してなることを特徴とする電子
放出素子。
2. An electron-emitting device in which a transition element and / or a transition element compound is sandwiched between a pair of electrodes and a voltage is applied between the electrodes to emit electrons, wherein the transition element and / or the transition element are IV of the periodic table on the surface of the compound
An electron-emitting device characterized by being coated with a typical element or a typical element compound belonging to the 4th, 5th and 6th periods of the group.
【請求項3】 一対の電極間に遷移元素および/または
遷移元素化合物を挟持してなり、該電極間に電圧を印加
して電子放出を行う電子放出素子において、前記遷移元
素および/または遷移元素化合物の表面を周期表のV族
第4周期、第5周期、第6周期に属する典型元素または
典型元素化合物で被覆してなることを特徴とする電子放
出素子。
3. An electron-emitting device in which a transition element and / or a transition element compound is sandwiched between a pair of electrodes and a voltage is applied between the electrodes to emit electrons, wherein the transition element and / or the transition element An electron-emitting device characterized in that the surface of the compound is coated with a typical element or a compound of a typical element belonging to Group V fourth, fifth and sixth periods of the periodic table.
【請求項4】 一対の電極間に遷移元素および/または
遷移元素化合物を挟持してなり、該電極間に電圧を印加
して電子放出を行う電子放出素子において、前記遷移元
素および/または遷移元素化合物の表面を周期表のVI
族第4周期、第5周期、第6周期に属する典型元素また
は典型元素化合物で被覆してなることを特徴とする電子
放出素子。
4. An electron-emitting device in which a transition element and / or a transition element compound is sandwiched between a pair of electrodes and a voltage is applied between the electrodes to emit electrons, wherein the transition element and / or the transition element are VI of the periodic table on the surface of the compound
An electron-emitting device characterized by being coated with a typical element or a typical element compound belonging to the 4th, 5th and 6th periods of the group.
【請求項5】 前記遷移元素および/または遷移元素化
合物を挟持してなる一対の電極間に遷移元素および/ま
たは遷移元素化合物の第一イオン化ポテンシャルもしく
は仕事関数(eV)以上の電圧(V)を印加して電子放
出を行う請求項1乃至4項のいずれかの項記載の電子放
出素子。
5. A voltage (V) higher than the first ionization potential or work function (eV) of the transition element and / or the transition element compound is provided between a pair of electrodes sandwiching the transition element and / or the transition element compound. The electron-emitting device according to any one of claims 1 to 4, wherein the electron-emitting device emits electrons when applied.
【請求項6】 請求項1乃至5に記載の電子放出素子と
蛍光体を具備することを特徴とする画像形成装置。
6. An image forming apparatus comprising the electron-emitting device according to claim 1 and a phosphor.
【請求項7】 配線電極に電気的に接続し配列した請求
項1乃至5に記載の複数個の電子放出素子と蛍光体を具
備することを特徴とする画像形成装置。
7. An image forming apparatus comprising a plurality of electron-emitting devices according to any one of claims 1 to 5, which are electrically connected to wiring electrodes and arranged, and a phosphor.
【請求項8】 一対の電極間に遷移元素および/または
遷移元素化合物を設けた後、該遷移元素および/または
遷移元素化合物に真空中で気体状の請求項1乃至4項記
載の典型元素または典型元素化合物を作用させることを
特徴とする電子放出素子の製造方法。
8. A typical element according to claim 1 or 4, wherein a transition element and / or a transition element compound is provided between a pair of electrodes, and the transition element and / or the transition element compound is in a gaseous state in vacuum. A method for manufacturing an electron-emitting device, which comprises reacting a typical element compound.
【請求項9】 請求項1乃至5に記載の電子放出素子か
らの放出電子もしくは放出電子による蛍光または燐光を
用いて記録媒体に記録することを特徴とする記録方法。
9. A recording method for recording on a recording medium using emitted electrons from the electron-emitting device according to claim 1 or fluorescence or phosphorescence due to the emitted electrons.
JP23596093A 1993-08-30 1993-08-30 Electron emission device, manufacture thereof, and image forming equipment Pending JPH0765699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23596093A JPH0765699A (en) 1993-08-30 1993-08-30 Electron emission device, manufacture thereof, and image forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23596093A JPH0765699A (en) 1993-08-30 1993-08-30 Electron emission device, manufacture thereof, and image forming equipment

Publications (1)

Publication Number Publication Date
JPH0765699A true JPH0765699A (en) 1995-03-10

Family

ID=16993769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23596093A Pending JPH0765699A (en) 1993-08-30 1993-08-30 Electron emission device, manufacture thereof, and image forming equipment

Country Status (1)

Country Link
JP (1) JPH0765699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271529B2 (en) 2004-04-13 2007-09-18 Canon Kabushiki Kaisha Electron emitting devices having metal-based film formed over an electro-conductive film element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271529B2 (en) 2004-04-13 2007-09-18 Canon Kabushiki Kaisha Electron emitting devices having metal-based film formed over an electro-conductive film element

Similar Documents

Publication Publication Date Title
US6379211B2 (en) Method for manufacturing electron emission element, electron source, and image forming apparatus
US6416374B1 (en) Electron source manufacturing method, and image forming apparatus method
US6265822B1 (en) Electron beam apparatus, image forming apparatus using the same, components for electron beam apparatus, and methods of manufacturing these apparatuses and components
EP1009011A1 (en) Electron-emitting device, electron source, and image-forming apparatus
EP0901144B1 (en) Electron-emitting device, electron source and image-forming apparatus
US5861227A (en) Methods and manufacturing electron-emitting device, electron source, and image-forming apparatus
EP0908916B1 (en) Electron source manufacture method and electron source manufacture apparatus
JPH0765699A (en) Electron emission device, manufacture thereof, and image forming equipment
JP2925885B2 (en) Electron emitting device, method of manufacturing the same, and image forming apparatus
JPH0794102A (en) Image forming device manufacturing method and image forming device manufactured in this method
EP1032012B1 (en) Electron-emitting device, electron source, and manufacture method for image-forming apparatus
JP3294487B2 (en) Method of manufacturing electron-emitting device, and method of manufacturing electron source, display panel, and image forming apparatus using the same
JPH0765708A (en) Manufacture of electron emission element and image formng device
JP3169109B2 (en) Electron emitting device and method of manufacturing image forming apparatus
JP2000082384A (en) Electron emission element, electron source and image forming device and manufacture of electron emission element
JPH09320496A (en) Image forming apparatus
JP3524278B2 (en) Image forming device
JP2853000B2 (en) Electron emitting device and method of manufacturing image forming apparatus
JP2000243224A (en) Electron emissive element, electron source, image forming device and manufacture of the same
JPH09244545A (en) Method and device for fixing display panel in planar image forming device
JPH08273529A (en) Manufacture of electron emission element, electron source, display panel, and image forming device
JPH07104676A (en) Image forming device
JPH08273520A (en) Conductive film forming material, and manufacture of electron emitting element, electron source, display panel and image forming device using it
JPH0855572A (en) Fabrication of electron emission element and of image forming device
JPH0945236A (en) Manufacture of electron emitting element, and image forming device