JPH0763903A - Optical thin film of plastic optical parts and its film formation - Google Patents

Optical thin film of plastic optical parts and its film formation

Info

Publication number
JPH0763903A
JPH0763903A JP5237446A JP23744693A JPH0763903A JP H0763903 A JPH0763903 A JP H0763903A JP 5237446 A JP5237446 A JP 5237446A JP 23744693 A JP23744693 A JP 23744693A JP H0763903 A JPH0763903 A JP H0763903A
Authority
JP
Japan
Prior art keywords
film
optical
thin film
mgf
optical thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5237446A
Other languages
Japanese (ja)
Other versions
JP3352172B2 (en
Inventor
Hidehiko Fujimura
秀彦 藤村
Makoto Kameyama
誠 亀山
Akihiko Yokoyama
晃彦 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23744693A priority Critical patent/JP3352172B2/en
Publication of JPH0763903A publication Critical patent/JPH0763903A/en
Application granted granted Critical
Publication of JP3352172B2 publication Critical patent/JP3352172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize an optical thin film of plastic optical parts having excellent optical characteristics and sufficient mechanical strength and durability. CONSTITUTION:An under coat film of SiOx (1<=x<=12) is formed on a substrate W consisting of PMMA by heating SiO to evaporate in an evaporating source by resistance heating. The pressure in a vacuum chamber 1 is then reduced to 8X10<-6>Torr and the vapor of MgF2 is generated from a cluster ion beam evaporating source 3 to form the MgF2 film having, for example, an optical film thickness of 130nm. The substrate W is not heated during the formation of the under coat and the MgF2 film. The MgF2 film formed by a cluster ion beam vapor deposition method has an excellent antireflection characteristic and has a high packing rate and, therefore, the mechanical strength, such as adhesion property, wear resistance and solvent resistance, and durability are sufficient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチック製のレン
ズやミラー等の表面反射を防止するための反射防止膜等
のプラスチック製光学部品の光学薄膜およびその成膜方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical thin film of a plastic optical component such as an antireflection film for preventing surface reflection of a plastic lens or mirror, and a film forming method thereof.

【0002】[0002]

【従来の技術】プラスチック製のレンズやミラー等の光
学部品は、無機ガラスに比べて軽量化や低コスト化を大
幅に促進できるために近年広く利用されており、このた
めのプラスチック素材も様々なものが開発されている。
無機ガラス製の光学部品と同様にプラスチック製光学部
品も、各種単層膜や各種多層膜からなる反射防止膜等の
光学薄膜を設ける必要がある。無機ガラス製光学部品の
反射防止膜等は真空蒸着法で基体を200℃ないし35
0℃に加熱して成膜されることが多いが、プラスチック
製光学部品は高温に加熱すると熱変形を起こして光学特
性が劣化するおそれがあるため、このような成膜方法を
そのまま適用することはできない。また、真空蒸着法で
基体を加熱することなく反射防止膜や高反射膜等の光学
薄膜を成膜した場合は、膜の密着性や耐摩耗性や耐溶剤
性等の機械的強度や耐久性が不足する。そこで、プラス
チック製光学部品の基体を高温に加熱することなく機械
的強度や耐久性にすぐれた光学薄膜を成膜するために、
様々な工夫がなされており、成膜中の基体の温度を50
℃ないし80℃の間で制御する方法や、RFイオンプレ
ーティング法を採用することが提案され、SiO2 、Z
rO2 ,Al23 等の酸化物を主成分とする反射防止
膜等の場合には、ある程度の効果が確認されている。
2. Description of the Related Art Optical parts such as plastic lenses and mirrors have been widely used in recent years because they can significantly reduce weight and cost compared with inorganic glass, and various plastic materials are used for this purpose. Things are being developed.
Similar to the optical component made of inorganic glass, the plastic optical component needs to be provided with an optical thin film such as an antireflection film composed of various single layer films or various multilayer films. For the anti-reflection film of the optical parts made of inorganic glass, the substrate is 200 ° C.
Films are often formed by heating to 0 ° C. However, if the plastic optical parts are heated to a high temperature, they may be deformed by heat and their optical characteristics may be deteriorated. I can't. Also, when an optical thin film such as an antireflection film or a highly reflective film is formed without heating the substrate by the vacuum vapor deposition method, the mechanical strength and durability such as the adhesion of the film, abrasion resistance, solvent resistance, etc. Run out. Therefore, in order to form an optical thin film excellent in mechanical strength and durability without heating the base of the plastic optical component to a high temperature,
Various measures have been taken to reduce the temperature of the substrate during film formation to 50
It not ° C. and method for controlled between 80 ° C., it is proposed to adopt the RF ion plating method, SiO 2, Z
In the case of an antireflection film containing an oxide such as rO 2 or Al 2 O 3 as a main component, some effects have been confirmed.

【0003】一方、最近では、反射防止膜や高反射膜等
の光学薄膜に低屈折率材料としてMgF2 を用いること
によって反射防止特性等の光学特性を向上させたものが
開発されているが、MgF2 膜は一般に充填率が極めて
低く、前述のように基体を比較的低温に制御したり、イ
オンプレーティング法を採用することで十分な機械的強
度や耐久性を得ることはできない。そこで、MgF2
の充填率を向上させるために、成膜室の真空度を1×1
-6Torr以上の高真空にする方法も開発されている
が(特開平2−298252号公報参照)、基体の表面
の残留水分や不純物の量を低下させることで、密着性が
多少向上するものの、耐摩耗性等については不充分であ
り、1×10-6Torr以上の高真空下でもMgF2
の充填率を大きく改良することはできないことが判明し
た。
On the other hand, recently, optical thin films such as antireflection films and high reflection films have been developed which have improved optical properties such as antireflection properties by using MgF 2 as a low refractive index material. The MgF 2 film generally has a very low filling rate, and it is not possible to obtain sufficient mechanical strength and durability by controlling the substrate to a relatively low temperature or employing the ion plating method as described above. Therefore, in order to improve the filling rate of the MgF 2 film, the degree of vacuum in the film forming chamber is set to 1 × 1.
Although a method of applying a high vacuum of 0 -6 Torr or more has been developed (see Japanese Patent Laid-Open No. 2-298252), the adhesiveness is slightly improved by reducing the amount of residual water and impurities on the surface of the substrate. However, it was found that the wear resistance was insufficient, and it was found that the filling rate of the MgF 2 film could not be greatly improved even under a high vacuum of 1 × 10 −6 Torr or more.

【0004】また、プラスチック製光学部品の基体の軟
質性を補うために、基体と反射防止膜や高反射膜等の光
学薄膜の間に珪素酸化物SiOxのアンダーコートを設
けてプラスチック製光学部品の表面の硬度を強化する方
法も開発されている(特開昭53−306号公報参
照)。この方法は光学薄膜の膜厚が小さいときに特に大
きな効果が期待できる。光学薄膜の充填率が高く従って
充分な硬度を有する場合でも、SiOxのアンダーコー
トが無いと密着性等が不足する傾向にある。
Further, in order to supplement the softness of the base body of the plastic optical part, an undercoat of silicon oxide SiOx is provided between the base body and the optical thin film such as an antireflection film or a high reflection film to make the plastic optical part A method of strengthening the surface hardness has also been developed (see Japanese Patent Laid-Open No. 53-306). This method can be expected to be particularly effective when the thickness of the optical thin film is small. Even when the filling rate of the optical thin film is high and therefore the hardness is sufficient, the adhesion and the like tend to be insufficient without the SiOx undercoat.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、前述のように、低屈折率材料としてM
gF2 を用いる反射防止膜等の場合は、基体を高温に加
熱することなしに成膜するとMgF2 の充填率が不足
し、このために、充分な密着性や耐摩耗性や耐溶剤性等
の機械的強度や耐久性を有する光学薄膜を得ることがで
きない。
However, according to the above-mentioned conventional technique, as described above, M as a low refractive index material is used.
In the case of an antireflection film or the like using gF 2 , if the film is formed without heating the substrate to a high temperature, the filling rate of MgF 2 will be insufficient, so that sufficient adhesion, abrasion resistance, solvent resistance, etc. It is impossible to obtain an optical thin film having mechanical strength and durability.

【0006】本発明は、上記従来の技術の有する問題点
に鑑みてなされたものであり、少くとも1層のMgF2
膜を有する光学薄膜であって、無加熱で成膜されても充
分な機械的強度や耐久性を備えているプラスチック製光
学部品の光学薄膜およびその成膜方法を提供することを
目的とするものである。
The present invention has been made in view of the above problems of the prior art, and has at least one layer of MgF 2
An optical thin film having a film, and an object thereof is to provide an optical thin film of a plastic optical component having sufficient mechanical strength and durability even if it is formed without heating and a film forming method thereof. Is.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに本発明のプラスチック製光学部品の光学薄膜は、プ
ラスチック製の基体の表面に設けられたSiOx(1≦
x≦2)のアンダーコートと、その上に積層された光学
薄膜からなり、前記光学薄膜が少くとも1層のMgF2
膜を有し、該MgF2 膜がクラスターイオンビーム蒸着
法によって成膜されたものであることを特徴とする。
In order to achieve the above object, the optical thin film of the plastic optical component of the present invention is made of SiOx (1≤1) provided on the surface of a plastic substrate.
x ≦ 2) undercoat and an optical thin film laminated thereon, wherein the optical thin film is at least one layer of MgF 2
It has a film, and the MgF 2 film is formed by a cluster ion beam vapor deposition method.

【0008】また、光学薄膜が反射防止膜であるとよ
い。
The optical thin film is preferably an antireflection film.

【0009】[0009]

【作用】光学薄膜が少くとも1層のMgF2 膜を有する
ために光学薄膜の光学特性は大幅に向上し、加えて、基
体が無加熱であっても、MgF2 膜がクラスターイオン
ビーム蒸着法で成膜されているためにその充填率が充分
高く、従って、機械的強度や耐久性が不足するおそれは
ない。さらに、SiOxのアンダーコートを有するため
にプラスチック製の基体の軟質性が補われ、機械的強度
や耐久性にすぐれたプラスチック製光学部品の光学薄膜
の反射防止膜を得ることができる。
Since the optical thin film has at least one MgF 2 film, the optical properties of the optical thin film are significantly improved. In addition, even if the substrate is not heated, the MgF 2 film is formed by the cluster ion beam deposition method. Since it is formed into a film, its filling rate is sufficiently high, and therefore, there is no fear that mechanical strength and durability are insufficient. Further, since the undercoat of SiOx is provided, the softness of the plastic substrate is compensated for, and an antireflection film, which is an optical thin film of a plastic optical component, having excellent mechanical strength and durability can be obtained.

【0010】[0010]

【実施例】本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0011】図1は本発明の成膜方法に用いる成膜装置
の一例を示すもので、これは、排気口1aを有する真空
室1と、その上部に配設されたドーム型の基板ホルダ2
と、それぞれ真空室1の底部に配設されたクラスターイ
オンビーム蒸発源3と、抵抗加熱蒸発源4と、電子銃加
熱蒸発源5からなり、基板ホルダ2は周方向に等間隔で
複数の基板Wを保持し、図示しない回転機構によって回
転される。また、基板ホルダ2の外周縁に近接する位置
に蒸発レートをモニタする水晶モニタ6が配設され、さ
らに基板ホルダ2の回転中心には成膜される薄膜の膜厚
をモニタする光学モニタ7が設けられている。
FIG. 1 shows an example of a film forming apparatus used in the film forming method of the present invention, which is a vacuum chamber 1 having an exhaust port 1a, and a dome-shaped substrate holder 2 arranged above the vacuum chamber 1.
And a cluster ion beam evaporation source 3, a resistance heating evaporation source 4, and an electron gun heating evaporation source 5, which are respectively arranged at the bottom of the vacuum chamber 1, and the substrate holder 2 has a plurality of substrates at equal intervals in the circumferential direction. It holds W and is rotated by a rotating mechanism (not shown). Further, a crystal monitor 6 for monitoring the evaporation rate is arranged at a position close to the outer peripheral edge of the substrate holder 2, and an optical monitor 7 for monitoring the film thickness of a thin film to be formed is further provided at the rotation center of the substrate holder 2. It is provided.

【0012】(第1実施例)ポリメタクリル酸メチル
(PMMA)で作られたプラスチック製の基体である基
板を基板ホルダ2に保持させ、真空室1を2×10-6
orr以下に減圧したうえで、図示しない雰囲気調整ラ
インから酸素を導入し、抵抗加熱蒸発源4で一酸化珪素
SiOを加熱蒸発させて光学膜厚300nmの珪素酸化
物SiOx(1≦x≦2)のアンダーコートを成膜し
た。次いで、クラスターイオンビーム蒸発源3でフッ化
マグネシウムMgF2 の蒸気を発生させ、クラスターイ
オンビーム蒸着法によって光学膜厚130nmの光学薄
膜であるMgF2 膜を成膜した。上記の成膜工程中、基
板は無加熱(室温)であった。クラスターイオンビーム
蒸着法によるMgF2 膜の成膜条件を、クラスターイオ
ンビーム蒸発源3のるつぼ加熱温度2000℃以下、加
速電圧を2kV以下、イオン化電圧を400V以下、イ
オン化電流を400mA以下、真空室1の真空度を8×
10-6Torr以下に制御し、この範囲内で表1に示す
ように変化させてサンプル1〜5を作成した。
(First Embodiment) A substrate, which is a plastic substrate made of polymethylmethacrylate (PMMA), is held by a substrate holder 2 and the vacuum chamber 1 is set to 2 × 10 -6 T.
After reducing the pressure to orr or less, oxygen is introduced from an atmosphere adjusting line (not shown), and silicon monoxide SiO is heated and evaporated by the resistance heating evaporation source 4 to obtain a silicon oxide SiOx (1 ≦ x ≦ 2) having an optical film thickness of 300 nm. Of undercoat was deposited. Then, vapor of magnesium fluoride MgF 2 was generated by the cluster ion beam evaporation source 3, and a MgF 2 film which was an optical thin film having an optical film thickness of 130 nm was formed by the cluster ion beam vapor deposition method. The substrate was not heated (room temperature) during the above film forming process. The conditions for forming the MgF 2 film by the cluster ion beam evaporation method are as follows: the temperature of the crucible heating of the cluster ion beam evaporation source 3 is 2000 ° C. or less, the acceleration voltage is 2 kV or less, the ionization voltage is 400 V or less, the ionization current is 400 mA or less, and the vacuum chamber 1 is used. Vacuum degree of 8 ×
Samples 1 to 5 were prepared by controlling the pressure to 10 -6 Torr or less and changing the content within this range as shown in Table 1.

【0013】[0013]

【表1】 サンプル1〜5について反射率の分光特性を測定し、波
長500nmと400nmにおける屈折率と吸収率を算
出し、成膜直後と耐久試験後の密着性、耐摩耗性、耐溶
剤性を調べた結果を表2に示す。
[Table 1] As a result of measuring the spectral characteristics of reflectance for Samples 1 to 5, calculating the refractive index and the absorptance at wavelengths of 500 nm and 400 nm, and examining the adhesion, abrasion resistance, and solvent resistance immediately after film formation and after the durability test. Is shown in Table 2.

【0014】[0014]

【表2】 機械的特性評価:○はすべてのサンプルで良品 △は一部サンプルに不良発生 ×はほとんどのサンプルで不良発生 括弧内は温度70℃、湿度85%で、500時間の耐久
試験後の機械的特性評価の結果である。
[Table 2] Mechanical property evaluation: ○: Good in all samples △: Inferior in some samples ×: Inferior in most of samples Mechanical properties after 500 hours endurance test at 70 ° C and 85% humidity in parentheses It is the result of the evaluation.

【0015】この表から、本実施例の反射率はすべての
点で極めてすぐれていることが判る。
From this table, it can be seen that the reflectance of this embodiment is extremely excellent in all points.

【0016】機械的特性評価の方法は以下の通りであっ
た。密着力はセロハンテープを密着させて剥し、膜の剥
離状体を確認した。耐摩耗性はシルボン紙による500
gfの荷重をかけ50往復擦り傷の有無を確認した。耐
溶剤性はシルボン紙にアルコール+エーテル溶剤を含ま
せ500gfの荷重をかけ50往復擦り傷の有無を確認
した。
The method of evaluating mechanical properties was as follows. As for the adhesive force, a cellophane tape was adhered and peeled off, and a peeled body of the film was confirmed. Abrasion resistance is 500 with Silbon paper
A load of gf was applied and it was confirmed whether there were 50 reciprocating scratches. Regarding the solvent resistance, the presence of a 50 reciprocating scratch was confirmed by impregnating sillbon paper with an alcohol + ether solvent and applying a load of 500 gf.

【0017】また、サンプル2の反射率の分光特性を図
2に示す。他のサンプルもほぼ同様であった。図2か
ら、本実施例の反射防止膜は可視域に置ける反射率が
2.5%以下であり、充分な反射防止特性を備えている
ことが判る。
Further, FIG. 2 shows the spectral characteristics of the reflectance of Sample 2. The other samples were almost the same. It can be seen from FIG. 2 that the antireflection film of this example has a reflectance of 2.5% or less in the visible range and has sufficient antireflection properties.

【0018】(比較例)比較のために、第1実施例と同
様の工程でMgF2 膜の成膜条件の一部を表3に示すよ
うに前述の範囲を越える値に制御してサンプル6〜9を
作成し、また、従来の真空蒸着法によってMgF2 膜を
成膜し、サンプル10を作成した。
(Comparative Example) For comparison, Sample 6 was prepared by controlling a part of the film forming conditions of the MgF 2 film to a value exceeding the above range as shown in Table 3 in the same process as in the first embodiment. 9 to 9 and a MgF 2 film was formed by a conventional vacuum evaporation method to prepare Sample 10.

【0019】[0019]

【表3】 すなわち、サンプル6はイオン化電圧を500V、イオ
ン化電流を450mAとし、サンプル7とサンプル8は
加速電圧をそれぞれ3kV、5kVとし、サンプル9は
加速電圧を5kV、イオン化電流を350mA、真空室
の真空度を9×10-6Torrに制御し、残りの成膜条
件はいずれも第1実施例の各サンプル1〜5とほぼ同様
に制御したものである。
[Table 3] That is, sample 6 has an ionization voltage of 500 V and an ionization current of 450 mA, samples 7 and 8 have acceleration voltages of 3 kV and 5 kV, respectively, and sample 9 has an acceleration voltage of 5 kV, an ionization current of 350 mA, and a vacuum degree of a vacuum chamber. The control was performed at 9 × 10 −6 Torr, and the remaining film forming conditions were controlled in substantially the same manner as in the samples 1 to 5 of the first embodiment.

【0020】比較例の各サンプル6〜10について第1
実施例と同様に屈折率と吸収率を算出し、成膜直後と耐
久試験後の密着性、耐摩耗性、耐溶剤性を調べた結果を
表4に示す。
First for each sample 6 to 10 of the comparative example
Table 4 shows the results obtained by calculating the refractive index and the absorptance in the same manner as in the examples and examining the adhesion, abrasion resistance and solvent resistance immediately after film formation and after the durability test.

【0021】[0021]

【表4】 表4から判るように、加速電圧5kV以下、イオン化電
圧500V以下、イオン化電流500mA以下、真空室
の真空度1×10-5Torr以下であれば、従来例に比
べて吸収や密着性、耐摩耗性、耐溶剤性等がかなり改善
できるが、すべての点で高品質の反射防止膜を得るため
には、クラスターイオンビーム蒸着法の成膜条件を前述
の範囲に限定するのが望ましい。
[Table 4] As can be seen from Table 4, if the acceleration voltage is 5 kV or less, the ionization voltage is 500 V or less, the ionization current is 500 mA or less, and the vacuum degree of the vacuum chamber is 1 × 10 −5 Torr or less, absorption, adhesion, and abrasion resistance are higher than those in the conventional example. However, in order to obtain a high quality antireflection film in all respects, it is desirable to limit the film forming conditions of the cluster ion beam vapor deposition method to the above range.

【0022】本実施例によれば、プラスチック製光学部
品の表面にSiO2 のアンダーコートとMgF2 膜から
なる反射防止膜を製作するに際して、基体が無加熱であ
っても、MgF2 膜の成膜をクラスターイオンビーム蒸
着法によって行うことでその充填率を強化し、反射防止
膜の密着性、耐摩耗性、耐溶剤性等の機械的強度および
耐久性を大幅に向上させることができる。
According to this embodiment, when an antireflection film consisting of an SiO 2 undercoat and a MgF 2 film is formed on the surface of a plastic optical component, the MgF 2 film is formed even if the substrate is not heated. By carrying out the film by the cluster ion beam deposition method, the filling rate thereof can be strengthened, and the mechanical strength and durability of the antireflection film such as adhesion, abrasion resistance and solvent resistance can be greatly improved.

【0023】(第2実施例)図1の成膜装置を用いて第
1実施例と同様にPMMAの基体である基板にSiOx
のアンダーコートを成膜し、次いで、酸化チタニウムT
iO2 膜とMgF2膜を交互に積層し、光学薄膜である
4層反射防止膜を製作し、これをサンプル11とした。
各MgF2 膜の成膜はクラスターイオンビーム蒸着法に
よって行われ、その成膜条件は表1に示すサンプル2の
成膜条件と同じであり、各TiO2 膜は抵抗加熱蒸発源
4あるいは電子銃加熱蒸発源5を用いて成膜した。アン
ダーコートと、各MgF2 膜と、各TiO2 膜の成膜中
基板は無加熱(室温)であった。また、これと同様の4
層反射防止膜でアンダーコートに一番近いMgF2 膜の
替わりにSiO2 膜を積層したものを製作し、これをサ
ンプル12とした。また、同様の成膜工程で、MgF2
膜を全く含まずその替わりにSiO2 膜を用いた4層反
射防止膜を製作し、これをサンプル13とした。各Si
2 膜の成膜条件はアンダーコートと同様であった。サ
ンプル11〜13のそれぞれのアンダーコートおよび4
層反射防止膜の各層の光学膜厚は表5に示すとおりであ
る。
(Second Embodiment) Using the film forming apparatus of FIG. 1, SiOx is formed on the substrate which is the base of PMMA in the same manner as in the first embodiment.
Of undercoat of Titanium oxide T
A four-layer antireflection film, which is an optical thin film, was manufactured by alternately laminating the iO 2 film and the MgF 2 film, and this was designated as Sample 11.
Each MgF 2 film is formed by a cluster ion beam vapor deposition method, and the film forming conditions are the same as those of Sample 2 shown in Table 1. Each TiO 2 film is formed by the resistance heating evaporation source 4 or the electron gun. A film was formed using the heating evaporation source 5. The substrate was not heated (room temperature) during the formation of the undercoat, each MgF 2 film, and each TiO 2 film. Also, the same 4
A multilayer antireflection film, in which a SiO 2 film was laminated instead of the MgF 2 film closest to the undercoat, was produced, and this was used as Sample 12. In addition, in the same film forming process, MgF 2
A four-layer antireflection film which does not include any film and uses a SiO 2 film in place of the film was manufactured, and this was used as Sample 13. Each Si
The conditions for forming the O 2 film were the same as those for the undercoat. Undercoat and 4 for each of Samples 11-13
The optical film thickness of each layer of the layer antireflection film is as shown in Table 5.

【0024】[0024]

【表5】 図3ないし図5はそれぞれサンプル11ないしサンプル
13の反射率の分光特性を示すグラフであり、これから
判るように、サンプル11およびサンプル12は可視域
での平均反射率が0.2%以下であり、また、密着性、
耐摩耗性、耐溶剤性について前述と同様の方法で調べた
結果はすべて良好であった。サンプル13は密着性、耐
摩耗性、耐溶剤性についてはサンプル11、12と同様
であったが、図5から判るように、サンプル11、12
に比べて反射率が高く、反射防止特性が不充分である。
これは、4層反射防止膜のなかにMgF2 膜を含まない
ことが原因であると考えられる。
[Table 5] 3 to 5 are graphs showing the spectral characteristics of the reflectances of Samples 11 to 13, respectively. As can be seen from these, the average reflectance in the visible region of Samples 11 and 12 is 0.2% or less. , Again, adhesion,
The results of examining the abrasion resistance and the solvent resistance by the same method as described above were all good. Sample 13 was similar to Samples 11 and 12 in terms of adhesion, abrasion resistance and solvent resistance, but as can be seen from FIG.
The reflectance is higher than that of, and the antireflection property is insufficient.
It is considered that this is because the four-layer antireflection film does not include the MgF 2 film.

【0025】本実施例によれば、プラスチック製光学部
品の表面にSiO2 のアンダーコートとMgF2 膜を含
む多層膜からなる反射防止膜を製作するに際して、プラ
スチック製の基体が無加熱であっても、MgF2 膜の成
膜をクラスターイオンビーム蒸着法によって行うことで
その充填率を強化し、反射防止膜の密着性、耐摩耗性、
耐溶剤性等の機械的強度および耐久性を大幅に向上させ
ることができる。
According to this embodiment, when an antireflection film composed of a multilayer film including an SiO 2 undercoat and a MgF 2 film is formed on the surface of a plastic optical component, the plastic substrate is not heated. Also, the filling rate is enhanced by forming the MgF 2 film by the cluster ion beam vapor deposition method, and the adhesion, abrasion resistance,
Mechanical strength such as solvent resistance and durability can be significantly improved.

【0026】なお、SiO2 のアンダーコートの光学膜
厚については、50nm以下であると一般的に機械的強
度が低下し、また、反射防止膜が多層膜であるときは、
アンダーコートの光学膜厚が800nmを越えるとクラ
ックを発生しやすいことが実験により判明している。
When the optical film thickness of the SiO 2 undercoat is 50 nm or less, the mechanical strength generally decreases, and when the antireflection film is a multilayer film,
Experiments have shown that cracks tend to occur when the optical film thickness of the undercoat exceeds 800 nm.

【0027】[0027]

【発明の効果】本発明は上述のように構成されているの
で、以下に記載するような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0028】すぐれた光学特性を備えており、しかも充
分な機械的強度や耐久性を有するプラスチック製光学部
品の光学薄膜を実現できる。
It is possible to realize an optical thin film of a plastic optical component having excellent optical characteristics and having sufficient mechanical strength and durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例および第2実施例による成膜方法に
用いる成膜装置を説明する説明図である。
FIG. 1 is an explanatory diagram illustrating a film forming apparatus used in a film forming method according to a first embodiment and a second embodiment.

【図2】第1実施例のサンプル2の反射率の分光特性を
示すグラフである。
FIG. 2 is a graph showing a spectral characteristic of reflectance of Sample 2 of the first example.

【図3】第2実施例のサンプル11の反射率の分光特性
を示すグラフである。
FIG. 3 is a graph showing the spectral characteristics of reflectance of Sample 11 of the second example.

【図4】第2実施例のサンプル12の反射率の分光特性
を示すグラフである。
FIG. 4 is a graph showing a spectral characteristic of reflectance of a sample 12 of the second example.

【図5】第2実施例のサンプル13の反射率の分光特性
を示すグラフである。
FIG. 5 is a graph showing spectral characteristics of reflectance of Sample 13 of the second example.

【符号の説明】[Explanation of symbols]

1 真空室 2 基板ホルダ 3 クラスターイオンビーム蒸着源 4 抵抗加熱蒸発源 5 電子銃加熱蒸発源 1 vacuum chamber 2 substrate holder 3 cluster ion beam evaporation source 4 resistance heating evaporation source 5 electron gun heating evaporation source

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 プラスチック製の基体の表面に設けられ
たSiOx(1≦x≦2)のアンダーコートと、その上
に積層された光学薄膜からなり、前記光学薄膜が少くと
も1層のMgF2 膜を有し、該MgF2 膜がクラスター
イオンビーム蒸着法によって成膜されたものであること
を特徴とするプラスチック製光学部品の光学薄膜。
1. A and undercoat of SiOx provided on the surface of the plastic substrate (1 ≦ x ≦ 2), consists of an optical thin film deposited thereon, MgF 2 of the optical thin film is at least one layer An optical thin film for a plastic optical component, which has a film, and the MgF 2 film is formed by a cluster ion beam vapor deposition method.
【請求項2】 光学薄膜が反射防止膜であることを特徴
とする請求項1記載の光学薄膜。
2. The optical thin film according to claim 1, wherein the optical thin film is an antireflection film.
【請求項3】 アンダーコートの光学膜厚が50nmな
いし800nmの範囲内であることを特徴とする請求項
1ないし2記載のプラスチック製光学部品の光学薄膜。
3. The optical thin film of a plastic optical component according to claim 1, wherein the optical film thickness of the undercoat is within a range of 50 nm to 800 nm.
【請求項4】 プラスチック製の基体の表面にSiOx
(1≦x≦2)のアンダーコートを成膜する工程と、成
膜されたアンダーコートの上に少くとも1層のMgF2
膜を有する光学薄膜を積層する工程からなり、各工程中
前記基体が無加熱であるとともに、前記MgF2 膜がク
ラスターイオンビーム蒸着法によって成膜されることを
特徴とするプラスチック製光学部品の光学薄膜の成膜方
法。
4. SiOx on the surface of a plastic substrate
(1 ≦ x ≦ 2) forming an undercoat, and at least one layer of MgF 2 on the formed undercoat.
An optical process for a plastic optical component, comprising laminating optical thin films having a film, wherein the substrate is not heated during each process, and the MgF 2 film is formed by a cluster ion beam deposition method. Thin film forming method.
【請求項5】 MgF2 膜の成膜が、クラスターイオン
ビーム蒸発源のるつぼ加熱温度2000℃以下、加速電
圧2kV以下、イオン化電圧400V以下、イオン化電
流400mA以下、真空度8×10-6Torr以下の成
膜条件で行われることを特徴とする請求項4記載のプラ
スチック製光学部品の光学薄膜の成膜方法。
5. The MgF 2 film is formed by using a crucible heating temperature of a cluster ion beam evaporation source of 2000 ° C. or less, an acceleration voltage of 2 kV or less, an ionization voltage of 400 V or less, an ionization current of 400 mA or less, and a vacuum degree of 8 × 10 −6 Torr or less. 5. The method for forming an optical thin film of a plastic optical component according to claim 4, wherein the film forming condition is performed.
JP23744693A 1993-08-30 1993-08-30 Optical thin film of plastic optical component and method of forming the same Expired - Fee Related JP3352172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23744693A JP3352172B2 (en) 1993-08-30 1993-08-30 Optical thin film of plastic optical component and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23744693A JP3352172B2 (en) 1993-08-30 1993-08-30 Optical thin film of plastic optical component and method of forming the same

Publications (2)

Publication Number Publication Date
JPH0763903A true JPH0763903A (en) 1995-03-10
JP3352172B2 JP3352172B2 (en) 2002-12-03

Family

ID=17015473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23744693A Expired - Fee Related JP3352172B2 (en) 1993-08-30 1993-08-30 Optical thin film of plastic optical component and method of forming the same

Country Status (1)

Country Link
JP (1) JP3352172B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535286A (en) * 2007-08-02 2010-11-18 セコ コーポレイション リミテッド Multilayer thin film manufacturing method using dry vacuum deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535286A (en) * 2007-08-02 2010-11-18 セコ コーポレイション リミテッド Multilayer thin film manufacturing method using dry vacuum deposition

Also Published As

Publication number Publication date
JP3352172B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
AU704597B2 (en) Electrically conductive anti-reflection coating
JP5101763B2 (en) Sputter target of zinc-tin alloy
JP4836376B2 (en) Protective layer for sputter coated articles
US20020155265A1 (en) Antireflection film
KR100553010B1 (en) Composition for vapor deposition, method for forming antireflection film using it, and optical element
JPH0643304A (en) Antireflection film and optical parts with antireflection film
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JP4351678B2 (en) Silver mirror and manufacturing method thereof
JP3200637B2 (en) Heat shielding glass
JPH0763903A (en) Optical thin film of plastic optical parts and its film formation
JPS60130704A (en) Antireflection film for plastic substrate
JPH06273601A (en) Antireflection film of optical parts made of synthetic resin
JPH03242319A (en) Transparent film having intermediate refractive index
JP2576637B2 (en) Heat ray reflective glass
EP3751319A1 (en) Optical thin film, optical member, and method for manufacturing optical thin film
JP2906524B2 (en) Infrared reflective article
JP2000171622A (en) Internal reflection type optical element and its production
JP2936103B2 (en) Aluminum oxide thin film
JP3028576B2 (en) Heat shielding glass
JPH11149005A (en) Inside surface reflection mirror and its production
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JPH07270601A (en) Optical thin film
JPH0926501A (en) Synthetic resin optical parts having antireflection film
JPH1130705A (en) Spectacle plastic lens with reflection preventive film
JP2001108802A (en) Antireflection film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees