JPH0763869A - Channel flow rate regulation type fuel assembly - Google Patents

Channel flow rate regulation type fuel assembly

Info

Publication number
JPH0763869A
JPH0763869A JP5232257A JP23225793A JPH0763869A JP H0763869 A JPH0763869 A JP H0763869A JP 5232257 A JP5232257 A JP 5232257A JP 23225793 A JP23225793 A JP 23225793A JP H0763869 A JPH0763869 A JP H0763869A
Authority
JP
Japan
Prior art keywords
flow rate
fuel
fuel assembly
elements
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5232257A
Other languages
Japanese (ja)
Inventor
Kazumi Ikeda
田 一 三 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP5232257A priority Critical patent/JPH0763869A/en
Publication of JPH0763869A publication Critical patent/JPH0763869A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To flatten coolant temperature distribution of a fuel assembly by providing at least one cylindrical flow rate regulation element in a wrapper tube, and a plurality of flow rate control rods in the inside of the inwall of the wrapper tube. CONSTITUTION:A fuel assembly incorporates fast reactor fuel elements 3, flow rate regulation elements 4 and flow rate control rods 1 whose end caps are welded and sealed into wrapper tubes 2. The rods 1 are made of stainless steel and disposed in a space formed of the neighboring fuel elements 3 of the inwall and the inside of the wrapper tubes 2 respectively. The flow rate regulation elements 4 are circular tubes made of stainless steel, have an inlet hole in the lower side and an outlet hole in the upper side, the inlet hole is disposed in the neighborhood of a reactor core and the outlet hole is arranged in the lower side than the upper end of the reactor core. Two or more flow rate regulation elements 4 can be disposed on the circumference in consideration of fuel assembly heat production distribution of each fuel assembly. Thereby the fuel elements can be cooled effectively, the maximum temperature of coated tubes can be lowered or the outlet temperature of the fuel assemblies of coolant can be increased, fuel life can be lengthened and damage is difficult to occur.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高速増殖炉の炉心燃料集
合体や、炉心の内部及び周囲に配設されるブランケット
燃料集合体に用いられるチャンネル流量調整型燃料集合
体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a channel fuel flow control type fuel assembly used for a core fuel assembly of a fast breeder reactor and a blanket fuel assembly arranged in and around the core.

【0002】[0002]

【従来の技術】従来の高速増殖炉の炉心燃料集合体及び
ブランケット燃料集合体(両者を合せて「燃料集合体」
と言う。)は、外周に螺旋状にスペーサワイヤが巻回さ
れた燃料要素がラッパ管内に格子状に配設された構造で
あった。
2. Description of the Related Art A core fuel assembly and a blanket fuel assembly of a conventional fast breeder reactor (both together are referred to as "fuel assembly").
Say ) Has a structure in which the fuel elements, in which the spacer wires are spirally wound around the outer periphery, are arranged in a lattice in the trumpet tube.

【0003】また、前記構造ではラッパ管内側と燃料要
素との間の断面積が大きく、集合体内部との流量分布が
異なるので、特公昭51−6318号公報に開示されて
いるように、燃料要素に巻回されるスペーサワイヤの形
状及び断面積を変更し、また、これと併用してラッパ管
内壁の形状を変更したり、内壁にリブを配設したりする
構造が発明された。
Further, in the above structure, since the cross-sectional area between the inside of the trumpet tube and the fuel element is large and the flow rate distribution inside the assembly is different, as disclosed in JP-B-51-6318, A structure has been invented in which the shape and the cross-sectional area of the spacer wire wound around the element are changed, and in addition to this, the shape of the inner wall of the trumpet tube is changed and ribs are arranged on the inner wall.

【0004】[0004]

【発明が解決しようとする課題】しかるに、前記スペー
サワイヤを用いた燃料集合体には次の欠点があった。 ワイヤ巻付けピッチを長くすると冷却材混合効果が充
分でない。 ワイヤ巻付けピッチを短くすると集合体圧力損失が大
きくなる。
However, the fuel assembly using the spacer wire has the following drawbacks. If the wire winding pitch is increased, the effect of mixing the coolant is not sufficient. When the wire winding pitch is shortened, the pressure loss of the assembly increases.

【0005】また、前記特公昭51−6318号公報に
開示された燃料集合体においては、周辺の流量の抑制機
構は集合体内部の流量分布を変えられない、という欠点
があった。
Further, the fuel assembly disclosed in Japanese Patent Publication No. 51-6318 has a drawback in that the peripheral flow rate suppressing mechanism cannot change the flow rate distribution inside the assembly.

【0006】本発明は上述した事情に鑑みてなされたも
ので、ラッパ管内に少なくとも1本の円筒形の流量調整
要素と、ラッパ管内壁内側に複数の流量抑制ロッドとを
配設することにより、燃料集合体内の冷却材温度分布を
平坦化することを目的とするものである。
The present invention has been made in view of the above circumstances, and by disposing at least one cylindrical flow rate adjusting element in the trumpet tube and a plurality of flow rate suppressing rods inside the inner wall of the trumpet tube, The purpose is to flatten the temperature distribution of the coolant in the fuel assembly.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するた
め、本発明は六角形横断面のラッパ管と、該ラッパ管内
に規則的な格子状に配設された複数の燃料要素及び少な
くとも1本の流量調整要素と、前記ラッパ管の内壁及び
その内側の隣接する燃料要素で形成される空間にそれぞ
れ配設された複数の流量抑制ロッドとを具備し、前記流
量調整要素は、円筒形で、炉心下端付近に冷却材の入口
孔が、炉心上端付近に冷却材の出口孔がそれぞれ配設さ
れ、前記ラッパ管は下部にエントランスノズルが、上端
に出口孔を有するハンドリングヘッドがそれぞれ形成さ
れていることを特徴とするものである。
To achieve the above object, the present invention provides a trumpet tube having a hexagonal cross section, a plurality of fuel elements arranged in a regular lattice in the trumpet tube, and at least one fuel element. And a plurality of flow suppressing rods respectively disposed in the space formed by the inner wall of the trumpet tube and the adjacent fuel elements inside thereof, wherein the flow adjusting element has a cylindrical shape, A coolant inlet hole is provided near the lower end of the core, and a coolant outlet hole is provided near the upper end of the core. The trumpet tube has an entrance nozzle at the lower part and a handling head having an outlet hole at the upper end. It is characterized by that.

【0008】[0008]

【作用】流量調整要素は、ステンレス製の円管で入口孔
と出口孔とを有し、入口孔から冷却材が入り、出口孔か
ら出る。入口孔は炉心下端付近に、出口孔は炉心上端よ
りも下側に配置する。炉心の中央近傍の通常の炉心燃料
集合体の場合、集合体内の中央の冷却材温度は、周辺に
較べ高く、被覆管最高温度が生じやすい。流量調整要素
は、新たな流路を集合体内に設けることにより、集合体
内冷却材流量を図4の鎖線で示すような分布から、図4
の実戦で示すように変える。他方、チャンネル当たりの
出力密度は破線のようになっているので、集合体内冷却
材温度分布を平坦化し、被覆最高温度を低減する。また
炉心の周辺の炉心燃料集合体あるいはブランケット燃料
集合体の場合には集合体内の中央から離れた位置に被覆
管最高温度が生じやすいので流量調整要素は、適当な位
置に配置し被覆管最高温度を低減する。図において、鎖
線は従来の流量調整要素なしの場合、実線は本発明の流
量調整要素有りの場合、破線はチャンネル当たりの出力
強度である。
The flow rate adjusting element is a circular pipe made of stainless steel and has an inlet hole and an outlet hole. Coolant enters through the inlet hole and exits through the outlet hole. The inlet hole is arranged near the lower end of the core, and the outlet hole is arranged below the upper end of the core. In the case of an ordinary core fuel assembly near the center of the core, the coolant temperature at the center of the assembly is higher than that at the periphery, and the maximum cladding temperature is likely to occur. By providing a new flow path in the assembly, the flow rate adjusting element can calculate the coolant flow rate in the assembly from the distribution shown by the chain line in FIG.
Change as shown in the actual battle. On the other hand, since the power density per channel is as shown by the broken line, the coolant temperature distribution in the assembly is flattened and the maximum coating temperature is reduced. In the case of a core fuel assembly or blanket fuel assembly around the core, the maximum cladding temperature is likely to occur at a position away from the center of the assembly. To reduce. In the figure, the chain line shows the case without the conventional flow rate adjusting element, the solid line shows the case with the flow rate adjusting element of the present invention, and the broken line shows the output intensity per channel.

【0009】流量抑制ロッドは、通常の燃料集合体のラ
ッパ管と燃料要素との間に置かれ、このチャンネル(燃
料要素と燃料要素との間の冷却材の流路、燃料要素とラ
ッパ管との間の冷却材の流路)の流量を抑制する。図5
に示すように、通常の燃料集合体の場合、燃料要素とラ
ッパ管との間のチャンネルは、チャンネルの流路断面積
が大きく、通常、燃料要素と燃料要素との間のチャンネ
ルにくらべ、約2倍の流量が流れる。他方、チャンネル
当たりの出力密度は、破線のようにほぼ同じである。こ
の為、集合体内の周辺の冷却材温度は、中央に較べ、低
くく、集合体出口の冷却材温度が低めとなる。流量抑制
ロッドは、この無駄な流量を抑制することにより、冷却
材流量分布を図5の鎖線で示すような分布から、図5の
実線で示すような分布に変え、被覆管最高温度を低く
く、あるいは、冷却材の集合体出口温度を高くする。図
において鎖線は従来のワイヤスペーサの場合、実線は本
発明の流量調整ロッドの場合、破線はチャンネル当りの
出力密度である。
The flow restraining rod is placed between the trumpet tube and the fuel element of a conventional fuel assembly, and the channels (coolant flow path between the fuel element and the fuel element, the fuel element and the trumpet tube). The flow rate of the coolant flow path between) is suppressed. Figure 5
As shown in Fig. 2, in the case of a normal fuel assembly, the channel between the fuel element and the trumpet tube has a large flow passage cross-sectional area of the channel. Double the flow rate. On the other hand, the power density per channel is almost the same as the broken line. Therefore, the temperature of the coolant around the assembly is lower than that in the center, and the temperature of the coolant at the outlet of the assembly is low. The flow rate suppressing rod changes the flow rate distribution of the coolant from the distribution shown by the chain line in FIG. 5 to the distribution shown by the solid line in FIG. 5 by suppressing this useless flow rate, and lowers the maximum temperature of the cladding tube. Alternatively, the coolant outlet temperature is increased. In the figure, the chain line represents the conventional wire spacer, the solid line represents the flow rate adjusting rod of the present invention, and the broken line represents the power density per channel.

【0010】この結果、流量調整要素と流量抑制ロッド
を併用すると、図6の実線に示すようにチャンネル当り
の出力密度と流量はほぼ比例するようになり被覆管温度
は更に低減される。図において、鎖線は、通常の燃料集
合体の場合、実線は、流量調整要素及び流量調整ロッド
を併用した場合、破線は、チャンネル当りの出力密度で
ある。
As a result, when the flow rate adjusting element and the flow rate suppressing rod are used together, the power density per channel and the flow rate become substantially proportional as shown by the solid line in FIG. 6, and the cladding tube temperature is further reduced. In the figure, the chain line indicates the normal fuel assembly, the solid line indicates the combined use of the flow rate adjusting element and the flow rate adjusting rod, and the broken line indicates the power density per channel.

【0011】[0011]

【実施例】以下、添付図に基づいて本発明の実施例を詳
細に説明する。図1は本発明の一実施例を示すチャンネ
ル流量調整型燃料集合体の横断面図、図2は本発明の一
実施例を示すチャンネル流量調整型燃料集合体の概念を
示す縦断面図、図3の(a)、(b)は流量調整要素の
配置例を示す横断面図である。図1,図2に示す、チャ
ンネル流量調整型燃料集合体の構造は、被覆管にウラン
(U)及びプルトニウム(Pu)を含む燃料ペレットと
劣化ウランを含むブランケットペレットと遮蔽体を装て
んした通常の高速炉用の燃料要素3、流量調整要素4及
び流量抑制ロッド1を、上下に端栓を溶接して密封した
ものをラッパ管2に組み込んだものである。下側には、
エントランスノズル、上側には、ハンドリングヘッドを
有する。流量抑制ロッド1は、ステンレス製の棒で、ラ
ッパ2管の内壁及びその内側の隣接する燃料要素で形成
される空間にそれぞれ配設させる。図2に於て矢印は冷
却材の流れを示す。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a channel flow rate control type fuel assembly showing one embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view showing the concept of a channel flow rate control type fuel assembly showing one embodiment of the present invention. 3 (a) and 3 (b) are cross-sectional views showing an arrangement example of the flow rate adjusting element. The structure of the channel flow rate control type fuel assembly shown in FIG. 1 and FIG. 2 is a conventional one in which a cladding is loaded with fuel pellets containing uranium (U) and plutonium (Pu), blanket pellets containing depleted uranium, and a shield. A fuel element 3, a flow rate adjusting element 4, and a flow rate suppressing rod 1 for a fast reactor, in which upper and lower end plugs are welded and hermetically sealed, are incorporated in a trumpet tube 2. On the lower side,
The entrance nozzle has a handling head on the upper side. The flow rate suppressing rods 1 are stainless steel rods and are arranged in the space formed by the inner wall of the trumpet tube 2 and the adjacent fuel element inside thereof. The arrows in FIG. 2 indicate the flow of the coolant.

【0012】流量調整要素4は、ステンレス製の円管で
下側に入口孔5と上側に出口孔6を有してする。入口孔
5は、炉心下端付近に、出口孔6は、炉心上端よりも下
側に配置する。流量調整要素4の位置及び個数は、各燃
料集合体の集合体内発熱分布を考慮して、周辺にまた、
2個以上配置することができる。たとえば、ブランケッ
ト燃料集合体にチャンネル流量調整型燃料集合体を用い
た場合炉心中心側で平均の約2〜3倍の発熱があるた
め、図3のように設計される。
The flow rate adjusting element 4 is a circular pipe made of stainless steel and has an inlet hole 5 on the lower side and an outlet hole 6 on the upper side. The inlet hole 5 is arranged near the lower end of the core, and the outlet hole 6 is arranged below the upper end of the core. The positions and the number of the flow rate adjusting elements 4 are determined in consideration of the heat generation distribution in each fuel assembly,
Two or more can be arranged. For example, when a channel flow rate control type fuel assembly is used for the blanket fuel assembly, heat is generated about 2 to 3 times the average on the core center side, so the design is as shown in FIG.

【0013】下部のエントランスノズルは、通常の燃料
集合体と同様に、冷却材を取り入れ、炉心支持板に装着
することによりチャンネル流量調整型燃料集合体を支持
する。ラッパ管は、通常の燃料集合体と同じく、他の炉
心構成要素と冷却材流路を分離するとともに、構造的強
度を保持するように設計される。上端のハンドリングヘ
ッドは、冷却材の出口であるとともに、燃料交換機のつ
かみ代の役割を有する。
The lower entrance nozzle supports the channel flow rate control type fuel assembly by taking in a coolant and mounting it on the core support plate, as in the case of a normal fuel assembly. The trumpet tube is designed to separate the other coolant flow passages from other core components and maintain structural strength, similar to a normal fuel assembly. The handling head at the upper end serves as an outlet for the coolant and also serves as a grip allowance of the refueling machine.

【0014】[0014]

【発明の効果】以上詳細に説明した本発明によれば、下
記のような効果を奏するものである。 チャンネル流量を流量調整要素及び流量抑制ロッドを
用いて効率的に燃料要素を冷却する。この結果、被覆管
最高温度を低くく、あるいは、冷却材の集合体出口温度
を高くすることができ、燃料寿命が長くなり、かつ、事
故時等の異常時に被覆管最高温度が低くくなるため、燃
料の破損を生じにくくする、あるいは、使用温度を上げ
ることにより、タービンの熱効率が上げる効果がある。
According to the present invention described in detail above, the following effects are exhibited. The channel flow rate is efficiently cooled by using the flow rate adjusting element and the flow rate suppressing rod. As a result, the maximum cladding temperature can be lowered, or the outlet temperature of the coolant assembly can be increased, which prolongs the fuel life and lowers the maximum cladding temperature in the event of an abnormality such as an accident. The effect of increasing the thermal efficiency of the turbine is to make the fuel less likely to be damaged or to raise the operating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すチャンネル流量調整型
燃料集合体の横断面図である。
FIG. 1 is a cross-sectional view of a channel flow rate control type fuel assembly showing an embodiment of the present invention.

【図2】本発明の一実施例を示すチャンネル流量調節型
燃料集合体の概念を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing the concept of a channel flow rate control type fuel assembly showing an embodiment of the present invention.

【図3】本発明の一実施例を示す流量調整要素の配置例
を示す横断面図である。
FIG. 3 is a cross-sectional view showing an arrangement example of a flow rate adjusting element showing an embodiment of the present invention.

【図4】本発明の一実施例を示し、流量調整要素の有無
による流量の変化とチャンネル当りの出力密度を示すグ
ラフである。
FIG. 4 is a graph showing a change in flow rate and a power density per channel according to the presence / absence of a flow rate adjusting element according to the embodiment of the present invention.

【図5】本発明の一実施例を示し、従来のワイヤスペー
サの場合、及び本発明の流量調整ロッドの場合による流
量の変化とチャンネル当りの出力密度を示すグラフであ
る。
FIG. 5 is a graph showing a change in flow rate and a power density per channel in the case of the conventional wire spacer and the case of the flow rate adjusting rod of the present invention, showing an embodiment of the present invention.

【図6】本発明の一実施例を示し、通常の燃料集合体の
場合、及び本発明の流量調整要素と流量調整ロッドとを
併用した場合による流量の変化を示し、また、チャネル
当たりの出力密度を示す。
FIG. 6 shows an embodiment of the present invention, showing changes in the flow rate in the case of a normal fuel assembly and in the case of using the flow rate adjusting element and the flow rate adjusting rod of the present invention together, and the output per channel. Indicates the density.

【符号の説明】[Explanation of symbols]

1 流量抑制ロッド 2 ラッパ管 3 燃料要素 4 流量調整要素 5 入口孔 6 出口孔 1 Flow rate suppression rod 2 Trumpet pipe 3 Fuel element 4 Flow rate adjustment element 5 Inlet hole 6 Outlet hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 六角形横断面のラッパ管と、該ラッパ管
内に規則的な格子状に配設された複数の燃料要素及び少
なくとも1本の流量調整要素と、前記ラッパ管の内壁及
びその内側の隣接する燃料要素で形成される空間にそれ
ぞれ配設された複数の流量抑制ロッドとを具備し、前記
流量調整要素は、円筒形で、炉心下端付近に冷却材の入
口孔が、炉心上端付近に冷却材の出口孔がそれぞれ配設
され、前記ラッパ管は下部にエントランスノズルが、上
端に出口孔を有するハンドリングヘッドがそれぞれ形成
されていることを特徴とするチャンネル流量調整型燃料
集合体。
1. A trumpet tube having a hexagonal cross section, a plurality of fuel elements and at least one flow rate adjusting element arranged in a regular lattice in the trumpet tube, an inner wall of the trumpet tube and an inner side thereof. And a plurality of flow rate restraining rods respectively disposed in the spaces formed by the adjacent fuel elements, wherein the flow rate adjusting element is cylindrical and has a coolant inlet hole near the lower end of the core and near the upper end of the core. A channel flow rate controllable fuel assembly characterized in that an outlet hole for a coolant is provided in each of the fuel cells, an entrance nozzle is formed in the lower portion of the trumpet tube, and a handling head having an outlet hole in the upper end is formed.
JP5232257A 1993-08-26 1993-08-26 Channel flow rate regulation type fuel assembly Withdrawn JPH0763869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5232257A JPH0763869A (en) 1993-08-26 1993-08-26 Channel flow rate regulation type fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5232257A JPH0763869A (en) 1993-08-26 1993-08-26 Channel flow rate regulation type fuel assembly

Publications (1)

Publication Number Publication Date
JPH0763869A true JPH0763869A (en) 1995-03-10

Family

ID=16936438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5232257A Withdrawn JPH0763869A (en) 1993-08-26 1993-08-26 Channel flow rate regulation type fuel assembly

Country Status (1)

Country Link
JP (1) JPH0763869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178178A (en) * 2005-12-27 2007-07-12 Central Res Inst Of Electric Power Ind Nuclear fuel assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178178A (en) * 2005-12-27 2007-07-12 Central Res Inst Of Electric Power Ind Nuclear fuel assembly
JP4630811B2 (en) * 2005-12-27 2011-02-09 財団法人電力中央研究所 Nuclear fuel assembly

Similar Documents

Publication Publication Date Title
US6516043B1 (en) Fuel assembly and reactor core and fuel spacer and channel box
US4235669A (en) Nuclear reactor composite fuel assembly
JP3328364B2 (en) Low pressure drop spacer for nuclear fuel assemblies
JP4559957B2 (en) Reactor with fuel assembly and core loaded with this fuel assembly
JPH06102384A (en) Fuel assembly and reactor core
JP2015515635A (en) Fuel bundles for liquid metal cooled reactors
US5787140A (en) Handle assembly and channel for a nuclear reactor fuel bundle assembly
JP4537585B2 (en) Control rod
US5493590A (en) Critical power enhancement system for a pressurized fuel channel type nuclear reactor using CHF enhancement appendages
US6885722B2 (en) Fuel assembly
JPH0763869A (en) Channel flow rate regulation type fuel assembly
JP3220247B2 (en) Boiling water reactor fuel assemblies
JP3434790B2 (en) Heterogeneous fuel assemblies for fast reactors
JP2856728B2 (en) Fuel assembly
CN109935348A (en) A kind of two-sided cooling annular fuel assembly being provided with periphery protection structure
JP3761290B2 (en) Fuel assembly
CN218038585U (en) Fuel rod and fuel assembly
EP1012851B1 (en) Nuclear fuel assembly
JPH10123273A (en) Fuel bundle assembly for reactor and reactor
JP3402142B2 (en) Fuel assembly
JPH05107377A (en) Fuel assembly
JP3115392B2 (en) Fuel assembly for boiling water reactor
JP2001091682A (en) Fuel assembly and core for fast reactor
JPH02222864A (en) Fuel assembly
JP2667856B2 (en) Boiling water reactor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031