JPH076384B2 - Boiling cooling device for internal combustion engine - Google Patents

Boiling cooling device for internal combustion engine

Info

Publication number
JPH076384B2
JPH076384B2 JP61077844A JP7784486A JPH076384B2 JP H076384 B2 JPH076384 B2 JP H076384B2 JP 61077844 A JP61077844 A JP 61077844A JP 7784486 A JP7784486 A JP 7784486A JP H076384 B2 JPH076384 B2 JP H076384B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
water jacket
condenser
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61077844A
Other languages
Japanese (ja)
Other versions
JPS62237022A (en
Inventor
芳則 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61077844A priority Critical patent/JPH076384B2/en
Priority to US06/918,052 priority patent/US4721071A/en
Priority to DE8686114221T priority patent/DE3681395D1/en
Priority to EP86114221A priority patent/EP0219099B1/en
Publication of JPS62237022A publication Critical patent/JPS62237022A/en
Publication of JPH076384B2 publication Critical patent/JPH076384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ウオータジヤケツト内の所定レベルまで液
相冷媒を貯留しておき、その沸騰気化により内燃機関各
部の冷却を行う内燃機関の沸騰冷却装置に関し、特に大
気開放したリザーバタンクを介して系内圧力を略大気圧
に保つようにした形式の沸騰冷却装置の改良に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling apparatus for an internal combustion engine, which stores liquid phase refrigerant up to a predetermined level in a water jacket and cools each part of the internal combustion engine by boiling vaporization of the liquid phase refrigerant. In particular, the present invention relates to an improvement of a boiling cooling device of a type in which the system pressure is maintained at about atmospheric pressure via a reservoir tank open to the atmosphere.

従来の技術 本出願人は、ウオータジヤケツトとコンデンサと冷媒供
給ポンプとを主体として閉ループ状の冷媒循環系を形成
し、ウオータジヤケツトで発した冷媒蒸気をコンデンサ
に導いて凝縮させた後、液面センサの検出に基づく冷媒
供給ポンプの作動によつて再度ウオータジヤケツトへ補
給するようにした沸騰冷却装置を種々提案している(例
えば特開昭60−36712号公報、特開昭60−36715号公報
等)。このものでは、コンデンサを強制冷却する冷却フ
アンとして電動式フアンを用い、ウォータジャケットに
設けた温度センサに基づいて強制冷却風を調節すること
で系内温度を制御している。
Conventional technology The applicant of the present invention forms a closed-loop refrigerant circulation system mainly composed of a water jacket, a condenser, and a refrigerant supply pump, and guides the refrigerant vapor generated by the water jacket to a condenser to condense the liquid. Various boiling cooling devices have been proposed in which the coolant supply pump is actuated based on the detection of the surface sensor to replenish the water jacket again (for example, JP-A-60-36712 and JP-A-60-36715). No. In this device, an electric fan is used as a cooling fan for forcibly cooling the condenser, and the system temperature is controlled by adjusting the forced cooling air based on a temperature sensor provided in the water jacket.

また本出願人は、複雑な温度制御等を行わずに非常に簡
素化したものとして、大気開放型の沸騰冷却装置も提案
している(特願昭60−147814号等)。これは、大気開放
されたリザーバタンクとコンデンサロアタンクとを常時
連通状態とし、コンデンサやウオータジヤケツト等から
なる系内を略大気圧に保つようにしたものであり、リザ
ーバタンクとコンデンサの間で液相冷媒が自由に移動で
きるので、コンデンサの放熱量と機関発熱量とが平衡す
るようにコンデンサ内の液面位置が自然に上下動しつつ
系内温度を略一定に保つことができるのである。そし
て、車両走行風が得られないアイドリング時等の凝縮性
能を確保するために、やはり電動式冷却フアンを設け、
例えばロアタンク内の冷媒温度が高まつたときに強制冷
却風を与えるように構成している。
The applicant has also proposed an atmospheric open-type boiling cooling device as a very simplified one without performing complicated temperature control (Japanese Patent Application No. 60-147814). In this system, the reservoir tank open to the atmosphere and the condenser lower tank are always in communication so that the inside of the system consisting of the condenser and water jacket is kept at approximately atmospheric pressure. Since the phase refrigerant can move freely, it is possible to keep the system temperature substantially constant while the liquid level position in the condenser naturally moves up and down so that the heat radiation amount of the condenser and the heat generation amount of the engine are balanced. And, in order to secure the condensation performance at the time of idling where the vehicle traveling wind is not obtained, also provided with an electric cooling fan,
For example, when the temperature of the refrigerant in the lower tank is high, the forced cooling air is supplied.

発明の解決しようとする問題点 上記のような大気開放型の沸騰冷却装置にあつては、種
々の運転条件においてコンデンサ放熱量が機関発熱量を
上廻るように適当な余裕を見込んでコンデンサの放熱面
積を設計するのであるが、例えば高地での冷媒沸点の低
下によるコンデンサ放熱能力の低下や、外気温が非常に
高温になつた場合、あるいは極端な高負荷運転を継続し
た場合など極めて稀な悪条件が重なると、コンデンサ放
熱量が機関発熱量を下廻り、リザーバタンクに冷媒蒸気
が噴出する虞れがある。また、この蒸気の噴出を完全に
防止するためには、コンデンサは非常に大型なものとな
つてしまう。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the above open-air type boiling cooling device, the heat radiation of the condenser should be made with an appropriate allowance so that the heat radiation of the condenser may exceed the heat generation of the engine under various operating conditions. The design of the area is extremely rare, for example, when the heat dissipation capacity of the condenser is reduced due to a decrease in the boiling point of the refrigerant in highlands, when the outside temperature becomes extremely high, or when extremely high load operation is continued. If the conditions are overlapped, the amount of heat radiated from the condenser may be less than the amount of heat generated from the engine, and the refrigerant vapor may be jetted into the reservoir tank. Further, in order to completely prevent the vapor from being blown out, the condenser becomes very large.

そこで、この発明は、冷却系を基本的には大気開放型に
するとともに、コンデンサ放熱量が不十分なときに冷媒
沸点を高めてコンデンサ放熱量を増大させるようにした
ものである。
Therefore, the present invention basically makes the cooling system open to the atmosphere, and when the heat radiation amount of the condenser is insufficient, the boiling point of the refrigerant is increased to increase the heat radiation amount of the condenser.

問題点を解決するための手段 この発明に係る内燃機関の沸騰冷却装置は、所定レベル
に液面検出手段が設けられ、かつ液相冷媒が貯留される
ウォータジャケットと、上記ウォータジャケットで発生
した冷媒蒸気が導入され、かつ下部のロアタンクに凝縮
した液相冷媒が貯留されるコンデンサと、このコンデン
サで凝縮した液相冷媒を上記ウォータジャケットに補給
する冷媒供給ポンプと、上記液面検出手段の検出に基づ
き、ウォータジャケット内の液面位置を所定レベルに保
つように上記冷媒供給ポンプを制御するポンプ制御手段
と、上記ロアタンクとの間で液相冷媒が自由に往来する
ように該ロアタンクに常時連通し、かつ大気連通路を介
して大気に開放されたリザーバタンクと、上記ウォータ
ジャケット内の冷媒温度を検出する第1温度センサと、
上記ロアタンクの冷媒温度を検出する第2温度センサ
と、上記大気連通路に配設され、かつ該大気連通路を閉
する電磁弁と、第1,第2温度センサの検出温度の温度差
が所定値より大きなときに上記電磁弁を開状態に保ち、
かつ所定値以下のときに閉作動させる電磁弁制御手段と
を備えて構成されている。
Means for Solving Problems A boiling cooling apparatus for an internal combustion engine according to the present invention is provided with a liquid level detecting means at a predetermined level, and a water jacket in which a liquid phase refrigerant is stored, and a refrigerant generated in the water jacket. A condenser in which vapor is introduced and the condensed liquid-phase refrigerant in the lower tank is stored, a refrigerant supply pump that replenishes the liquid-phase refrigerant condensed by the condenser to the water jacket, and the liquid level detection means for detection. Based on this, pump control means for controlling the refrigerant supply pump so as to keep the liquid level position in the water jacket at a predetermined level and the lower tank are always in communication with the lower tank so that the liquid-phase refrigerant freely moves between the lower tank and the lower tank. And a first temperature for detecting the refrigerant temperature in the water jacket and the reservoir tank opened to the atmosphere through the atmosphere communication passage A sensor,
There is a predetermined temperature difference between the second temperature sensor that detects the refrigerant temperature of the lower tank, the electromagnetic valve that is disposed in the atmosphere communication passage and that closes the atmosphere communication passage, and the temperature detected by the first and second temperature sensors. When the value is larger than the value, keep the solenoid valve open,
And a solenoid valve control means for closing the valve when it is below a predetermined value.

作用 通常の運転状態においてはコンデンサの放熱量が機関発
熱量よりも大きく確保されるので、コンデンサでの過冷
却度を示す第1,第2温度センサの温度差は十分に大き
い。そのため、電磁弁は開状態にあり、リザーバタンク
内が大気開放されているので、コンデンサやウオータジ
ヤケツト等の内部の圧力は略大気圧に保たれ、格別な温
度制御を要さずに機関温度が安定に維持される。一方、
種々の悪条件によりコンデンサの放熱量が機関発熱量に
対し相対的に小さくなると、コンデンサでの過冷却度が
小さくなつてロアタンク内の冷媒温度は上昇する。そし
て、ウォータジャケット内の冷媒温度つまり略大気圧下
での冷媒沸との温度差が所定値以下となると電磁弁が閉
作動する。この電磁弁の閉作動によつて内部の圧力は多
少上昇し、冷媒沸点が高まる。そのため、コンデンサの
限られた放熱面積での放熱量が増大する。これにより、
コンデンサの放熱量と機関発熱量とは再び平衡するよう
になる。その後、機関発熱量の低下等により検出温度差
が大きくなれば、再び電磁弁は開放される。
Action Under normal operating conditions, the amount of heat radiated by the capacitor is secured to be larger than the amount of heat generated by the engine, so the temperature difference between the first and second temperature sensors, which indicates the degree of subcooling in the capacitor, is sufficiently large. Therefore, the solenoid valve is in the open state and the inside of the reservoir tank is open to the atmosphere, so the internal pressure of the condenser, water jacket, etc. is maintained at approximately atmospheric pressure, and the engine temperature is maintained without special temperature control. Is maintained stable. on the other hand,
When the amount of heat radiated from the condenser becomes relatively small with respect to the amount of heat generated by the engine due to various bad conditions, the degree of supercooling in the condenser becomes small and the temperature of the refrigerant in the lower tank rises. Then, when the temperature of the refrigerant in the water jacket, that is, the temperature difference between the temperature of the refrigerant and the temperature of the refrigerant boiling at approximately atmospheric pressure becomes equal to or less than a predetermined value, the solenoid valve closes. Due to the closing operation of the solenoid valve, the internal pressure rises to some extent and the boiling point of the refrigerant rises. Therefore, the heat radiation amount in the limited heat radiation area of the capacitor increases. This allows
The amount of heat dissipated by the capacitor and the amount of heat generated by the engine are again in equilibrium. After that, when the detected temperature difference becomes large due to a decrease in engine heat generation amount or the like, the solenoid valve is opened again.

実施例 第1図はこの発明に係る沸騰冷却装置の一実施例を示す
もので、同図において、1はウオータジヤケツト2を備
えてなる内燃機関、3は気相冷媒を凝縮するためのコン
デンサ、4は電動式の冷媒供給ポンプを夫々示してい
る。
Embodiment FIG. 1 shows an embodiment of a boiling cooling apparatus according to the present invention, in which 1 is an internal combustion engine equipped with a water jacket 2 and 3 is a condenser for condensing a vapor phase refrigerant. Reference numerals 4 and 5 denote electric refrigerant supply pumps, respectively.

上記ウオータジヤケツト2は、内燃機関1のシリンダお
よび燃焼室の外周部を包囲するようにシリンダブロック
5およびシリンダヘッド6の両者に亘つて形成されたも
ので、通常気相空間となる上部が各気筒で互いに連通し
ているとともに、その上部の適宜な位置に複数の蒸気出
口7が設けられている。この蒸気出口7は、気液分離機
能を持つ蒸気マニホルド8によつて互いに集合された上
で、蒸気通路9を介してコンデンサ3の上部入口3aに連
通している。尚、10は、気液分離により捕捉した液相冷
媒をウオータジヤケツト2に戻す冷媒回収通路である。
また上記ウオータジヤケツト2の所定レベル、具体的に
はシリンダヘッド6側の略中間の高さ位置に、液相冷媒
の有無によつてON・OFF信号を発する例えばロードスイ
ツチを用いたフロート式液面センサ11が配設されてお
り、かつこれより下方つまり通常液相冷媒中に没する位
置に、サーミスタ等からなる第1温度センサ12が配設さ
れている。
The water jacket 2 is formed over both the cylinder block 5 and the cylinder head 6 so as to surround the cylinder of the internal combustion engine 1 and the outer peripheral portion of the combustion chamber. The cylinders communicate with each other, and a plurality of steam outlets 7 are provided at appropriate positions above the cylinders. The steam outlets 7 are collected by a steam manifold 8 having a gas-liquid separation function, and then communicate with an upper inlet 3a of the condenser 3 via a steam passage 9. In addition, 10 is a refrigerant recovery passage for returning the liquid-phase refrigerant captured by the gas-liquid separation to the water jacket 2.
In addition, a float type liquid using a load switch, for example, which outputs an ON / OFF signal depending on the presence or absence of the liquid phase refrigerant at a predetermined level of the water jacket 2, specifically, at a substantially intermediate height position on the cylinder head 6 side. A surface sensor 11 is provided, and a first temperature sensor 12 including a thermistor or the like is provided below the surface sensor 11, that is, at a position where the surface sensor 11 is normally immersed in the liquid phase refrigerant.

コンデンサ3は、上記入口3aを有するアツパタンク13
と、上下方向に沿つた微細なチユーブを主体としたコア
部14と、このコア部14で凝縮された液相冷媒を一時貯留
るロアタンク15とから構成されたもので、例えば車両前
部など車両走行風を受け得る位置に設置され、更にその
前面あるいは背面に、強制冷却用の電動式冷却フアン16
が臨設されている。また上記ロアタンク15には、その内
部の冷媒温度を検出するサーミスタ等からなる第2温度
センサ17が配設されている。
The condenser 3 is an upper tank 13 having the inlet 3a.
And a core portion 14 mainly composed of a fine tube along the vertical direction, and a lower tank 15 for temporarily storing the liquid phase refrigerant condensed in the core portion 14, for example, a vehicle such as a vehicle front portion. It is installed at a position that can receive running wind, and on the front or back of it, an electric cooling fan 16 for forced cooling is installed.
Has been installed. Further, the lower tank 15 is provided with a second temperature sensor 17 including a thermistor or the like for detecting the temperature of the refrigerant inside thereof.

21は、上記液面センサ11の設定レベルと略等しい高さ位
置に配設されたリザーバタンクであつて、これは大気連
通路22を介して上部空間が大気に開放されているととも
に、第1冷媒循環通路23を介してロアタンク15に接続さ
れ、かつ冷媒供給ポンプ4が介装された第2冷媒循環通
路24を介してウオータジヤケツト2に接続されている。
尚、25はウオータジヤケツト2からリザーバタンク21へ
の冷媒の逆流を阻止する逆止弁である。また上記大気連
通路22には、常開型の電磁弁26が介装されている。
Reference numeral 21 denotes a reservoir tank disposed at a height position substantially equal to the set level of the liquid level sensor 11, which has an upper space open to the atmosphere via an atmosphere communication passage 22 and has a first It is connected to the lower tank 15 via the refrigerant circulation passage 23, and is connected to the water jacket 2 via the second refrigerant circulation passage 24 in which the refrigerant supply pump 4 is interposed.
Reference numeral 25 is a check valve that prevents the reverse flow of the refrigerant from the water jacket 2 to the reservoir tank 21. A normally open solenoid valve 26 is provided in the atmosphere communication passage 22.

27は、冷媒供給ポンプ4,冷却アン16および電磁弁26の制
御を司る制御装置であつて、これは所謂マイクロコンピ
ユーからなり、後述するような所定のプログラムに従つ
て一連の制御を行つている。
Reference numeral 27 denotes a control device that controls the refrigerant supply pump 4, the cooling fan 16, and the solenoid valve 26, which is a so-called micro computer and performs a series of controls according to a predetermined program described later. There is.

次に、第2図上記制御装置27によつて実行される制御の
内容を示すフローチヤートであつて、以下、このフロー
チヤートを参照して上記のように構成された沸騰冷却装
置の作動を説する。
Next, FIG. 2 is a flow chart showing the contents of the control executed by the control device 27, and the operation of the boiling cooling device constructed as described above will be explained below with reference to this flow chart. To do.

先ず機関の停止状態においては、ウオータジヤケツト2
やコンデンサ3の内部が液相冷媒(例えばエチレングリ
コール水溶液等)で満たされており、かつリザーバタン
ク21には多少の液相冷媒が残存している。この状態で機
関が始動すると、ウオータジヤケツト2内の冷媒は滞留
状態にあるので、速やかに温度上昇し、やがて沸騰が始
まる。ここで、始動直後は当然のことながら第1温度セ
ンサ12の検出温度Tと第2温度センサ17の検出温度T
との温度差(T−T)は小さいが、ウオータジヤ
ケツト2内冷媒温度Tが80℃以上となるまでは、温度
の大小に拘らず電磁弁26の閉作動および冷却フアン16の
作動は行われない(ステツプ1)。
First, when the engine is stopped, the water jacket 2
The interior of the condenser 3 is filled with a liquid-phase refrigerant (for example, an ethylene glycol aqueous solution), and some liquid-phase refrigerant remains in the reservoir tank 21. When the engine is started in this state, the refrigerant in the water jacket 2 is in a stagnant state, so that the temperature rises quickly and boiling starts soon. Immediately after the start, the temperature T E detected by the first temperature sensor 12 and the temperature T detected by the second temperature sensor 17 are naturally required.
Although the temperature difference (T E −T C ) from C is small, until the refrigerant temperature T E in the water jacket 2 reaches 80 ° C. or higher, regardless of the temperature, the solenoid valve 26 is closed and the cooling fan 16 is closed. Is not performed (step 1).

沸騰が始まると、発生蒸気圧によつて系内の圧力が高ま
り、コンデンサ3のロアタンク15からリザーバタンク21
に余剰冷媒が徐々に押し出されて、ウオータジヤケツト
2の上部らびにコンデンサ3の上部に気相冷媒領が拡大
して行く。そして沸騰によりウオータジヤケツト2内の
冷媒液面が液面センサ11の設定レベル以下に低下する
と、ステツプ15〜17の制御によつて冷媒供給ポンプ4が
間欠的に作動し、リザーバタンク21からウオータジヤケ
ツト2へ液相冷媒を補給する。この結果、ウオータジヤ
ケツト2内の冷媒液面は、以後機関停止に至るまで略一
定に保たれる。
When boiling begins, the pressure in the system increases due to the generated vapor pressure, and the lower tank 15 of the condenser 3 to the reservoir tank 21
The excess refrigerant is gradually pushed out, and the vapor phase refrigerant region expands to the upper part of the water jacket 2 and the upper part of the condenser 3. Then, when the liquid level of the refrigerant in the water jacket 2 drops below the set level of the liquid level sensor 11 due to boiling, the refrigerant supply pump 4 operates intermittently under the control of steps 15 to 17, and the water from the reservoir tank 21 is discharged. Supply liquid-phase refrigerant to the jacket 2. As a result, the liquid level of the refrigerant in the water jacket 2 is kept substantially constant until the engine is stopped.

尚、この実施例ではコンデンサ3で凝縮した液相冷媒が
リザーバタンク21を経由してウオータジヤケツト2に戻
される形となつているが、コンデンサ3のロアタンク5
から直接ウオータジヤケツト2に供給する構成としても
良い。
In this embodiment, the liquid-phase refrigerant condensed in the condenser 3 is returned to the water jacket 2 via the reservoir tank 21, but the lower tank 5 of the condenser 3 is used.
It is also possible to directly supply the water from the water jacket 2.

またコンデンサ3の上部に気相冷媒領域が拡大するに従
つてコンデンサ3の放熱能力が増大するので、この放熱
能力と機関発熱量とが平衡した位置にコンデンサ3の液
面位置が定まる。つまり機関の負荷や車両走行風などに
応じてコンデンサ3の液面位置が自然に上下動しつつ機
関温度を略一定に保つ。尚、ウオータジヤケツト2等の
内部の圧力はリザーバタンク21を介して略大気圧に保た
れるので、機関温度は概ね大気圧下での冷媒沸点とな
る。そして、高負荷時などにコンデンサ3内の液面位置
がかなり低下して過冷却度が小さくなると、具体的には
温度差(T−T)が8℃以下となると冷却フアンが
作動開始し、コンデンサ3を強制冷却する(ステツプ2,
7)。この冷却フアン16の作動は、温度差(T
)が10℃にまで拡大したら停止する(ステツプ2,
9)。
Further, since the heat radiation capacity of the condenser 3 increases as the vapor phase refrigerant region expands above the condenser 3, the liquid level position of the condenser 3 is determined at a position where the heat radiation capacity and the engine heat generation amount are in equilibrium. In other words, the liquid surface position of the condenser 3 naturally moves up and down according to the load of the engine, the vehicle wind, etc., while keeping the engine temperature substantially constant. Since the internal pressure of the water jacket 2 and the like is maintained at about atmospheric pressure via the reservoir tank 21, the engine temperature is approximately the boiling point of the refrigerant under atmospheric pressure. Then, when the liquid level position in the condenser 3 is considerably lowered and the degree of supercooling is reduced when the load is high, specifically, when the temperature difference (T E −T C ) becomes 8 ° C. or less, the cooling fan starts operating. And forcibly cool the condenser 3 (step 2,
7). The operation of the cooling fan 16 depends on the temperature difference (T E
When T C reaches 10 ° C, stop (Step 2,
9).

このように、通常は電磁弁26が開いた状態で冷却の沸騰
・凝縮を利用した冷却が行われる。尚、フローチヤート
中のフラグは電磁弁26の開閉状態に対応し、「0」が
「開」を、「1」が「閉」を夫々示す。
In this way, normally, cooling using boiling / condensation of cooling is performed with the solenoid valve 26 open. The flag in the flow chart corresponds to the open / closed state of the solenoid valve 26, where "0" indicates "open" and "1" indicates "closed".

これに対し、万一何らかの原因でコンデンサ3の放熱能
力が機関発熱量を下廻るような状態となると、コンデン
サ3の冷媒液面が最大限に低下し、コンデンサ3での過
冷却度が小くなる。そして、検出された温度差(T
)が4℃以下となつた時点で電磁弁26が閉じ、リザ
ーバタンク21が密閉される(ステツプ2,5)。そのた
め、コンデンサ3等の内部の圧力が上昇し、冷媒沸点の
上昇を来すので、コンデンサ3に流入する冷媒蒸気の温
度が高まり、コンデンサ3の放熱能力が増大する。この
結果、機関温度が僅かに上昇した状態でコンデンサ3の
放熱能力と機関発熱量と再び平衡することになり、冷媒
蒸気の噴出あるいは機関温度の過度の上昇が確実に回避
される。尚、沸騰状態では、コンデンサ3入口側の蒸気
温度とウオータジヤケツト2内の冷媒温度とは略等し
く、従つて上記のように温度差(T−T)を用いれ
ば、例えば高地で大気圧下の冷媒沸点が低下したような
場合でも、コンデンサ3の冷媒液面が限界付近まで低下
したことを精度良く検出することができ、過度の余裕を
見込む必要がない。
On the other hand, if the heat radiation capacity of the condenser 3 falls below the heat value of the engine for some reason, the liquid level of the refrigerant in the condenser 3 is lowered to the maximum, and the degree of supercooling in the condenser 3 is reduced. Become. Then, the detected temperature difference (T E
When T C ) falls below 4 ° C., the solenoid valve 26 is closed and the reservoir tank 21 is sealed (steps 2, 5). Therefore, the pressure inside the condenser 3 and the like rises and the boiling point of the refrigerant rises, so that the temperature of the refrigerant vapor flowing into the condenser 3 rises and the heat dissipation capability of the condenser 3 increases. As a result, the heat radiation capacity of the condenser 3 and the engine heat generation amount are rebalanced in a state where the engine temperature slightly rises, and the ejection of the refrigerant vapor or the excessive rise of the engine temperature is surely avoided. In the boiling state, the steam temperature on the inlet side of the condenser 3 and the refrigerant temperature in the water jacket 2 are substantially equal to each other. Therefore, if the temperature difference (T E −T C ) is used as described above, for example, at high altitude, Even when the boiling point of the refrigerant under atmospheric pressure decreases, it can be accurately detected that the liquid level of the refrigerant in the condenser 3 has dropped to the limit, and it is not necessary to allow an excessive margin.

また、上記のように電磁弁26が一旦閉じた場合には、そ
の閉じた瞬間のウオータジヤケツト2内冷媒温度TEO
記憶(ステツプ6)しておき、運転条件の変化等により
ウオータジヤケツト2内の冷媒温度Tがこれよりも3
℃低くなつた時点で電磁弁26を開状態に復帰させるよう
になつている。尚、何らかの故障等で放熱量の増大が図
れず、ウオータジヤケツト2の冷媒温度Tが過度に昇
温(例えば120℃)した場合にも電磁弁26が開かれる
(ステツプ11,13)。
Further, when the solenoid valve 26 is once closed as described above, the temperature T EO of the refrigerant in the water jacket 2 at the moment of closing is stored (step 6), and the water jacket is changed due to changes in operating conditions. Refrigerant temperature T E in 2 is less than 3
The solenoid valve 26 is returned to the open state when the temperature is lowered by ° C. Incidentally, not Hakare an increase in heat dissipation by some failure or the like, the electromagnetic valve 26 is opened even when the refrigerant temperature T E of the water-di burnt bracts 2 is excessively heated (e.g. 120 ° C.) (step 11, 13).

また機関停止後は一定時間(例えば30秒間)上述した制
御が継続され、機関停止後の過熱を防止している(ステ
ツプ18〜20)。そして、一定時間後に電源がOFFとな
り、一連の制御が終了する(ステツプ21)。この電源OF
Fにより、電磁弁26は開状態を保つので、ウオータジヤ
ケツト2やコンデンサ3の内部は最終的に液相冷媒で満
たされた状態となる。
Further, after the engine is stopped, the above control is continued for a certain time (for example, 30 seconds) to prevent overheating after the engine is stopped (steps 18 to 20). Then, after a certain period of time, the power supply is turned off, and the series of control ends (step 21). This power OF
Due to F, the solenoid valve 26 is kept in the open state, so that the inside of the water jacket 2 and the condenser 3 is finally filled with the liquid phase refrigerant.

発明の効果 以上の説明で明らかなように、この発明に係る内燃機関
の沸騰冷却装置によれば、リザーバタンクを介して系内
圧力を略大気圧に保つようにしたものにおいて、コンデ
ンサを過度に大型化せずとも冷媒蒸気の噴出や機関の過
熱を確実に防止できる。またウオータジヤケツト内冷媒
温度とコンデンサロアタンク内冷媒温度との温度差に基
づき電磁弁を制御しているので、気圧の高低等に影響さ
れずに、コンデンサの冷媒液面が限界付近まで低下した
ことを精度良く検出することができる。
EFFECTS OF THE INVENTION As is clear from the above description, according to the boiling cooling apparatus for an internal combustion engine according to the present invention, in the system in which the system internal pressure is maintained at approximately atmospheric pressure via the reservoir tank, the condenser is excessively It is possible to reliably prevent ejection of refrigerant vapor and overheating of the engine without increasing the size. Also, since the solenoid valve is controlled based on the temperature difference between the refrigerant temperature in the water jacket and the refrigerant temperature in the condenser lower tank, the refrigerant liquid level in the condenser has dropped to near the limit without being affected by high or low atmospheric pressure. Can be accurately detected.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す構成説明図、第2図
はこの実施例における制御の内容を示すフローチヤーで
ある。 1……内燃機関、2……ウオータジヤケツト、3……コ
ンデンサ、4……冷媒供給ポンプ、11……液面センサ、
12……第1温度センサ、15……ロアタンク、16……冷却
フアン、17……第2温度センサ、21……リザーバタン
ク、22……大気連通路、26……電磁弁、27……制御装
置。
FIG. 1 is a structural explanatory view showing an embodiment of the present invention, and FIG. 2 is a flow chart showing the contents of control in this embodiment. 1 ... Internal combustion engine, 2 ... Water jacket, 3 ... Condenser, 4 ... Refrigerant supply pump, 11 ... Liquid level sensor,
12 …… First temperature sensor, 15 …… Lower tank, 16 …… Cooling fan, 17 …… Second temperature sensor, 21 …… Reservoir tank, 22 …… Atmosphere communication path, 26 …… Solenoid valve, 27 …… Control apparatus.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定レベルに液面検出手段が設けられ、か
つ液相冷媒が貯留されるウォータジャケットと、上記ウ
ォータジャケットで発生した冷媒蒸気が導入され、かつ
下部のロアタンクに凝縮した液相冷媒が貯留されるコン
デンサと、このコンデンサで凝縮した液相冷媒を上記ウ
ォータジャケットに補給する冷媒供給ポンプと、上記液
面検出手段の検出に基づき、ウォータジャケット内の液
面位置を所定レベルに保つように上記冷媒供給ポンプを
制御するポンプ制御手段と、上記ロアタンクとの間で液
相冷媒が自由に往来するように該ロアタンクに常時連通
し、かつ大気連通路を介して大気に開放されたリザーバ
タンクと、上記ウォータジャケット内の冷媒温度を検出
する第1温度センサと、上記ロアタンク内の冷媒温度を
検出する第2温度センサと、上記大気連通路に配設さ
れ、かつ該大気連通路を開閉する電磁弁と、第1,第2温
度センサの検出温度の温度差が所定値より大きなときに
上記電磁弁を開状態に保ち、かつ所定値以下のときに閉
作動させる電磁弁制御手段とを備えてなる内燃機関の沸
騰冷却装置。
1. A water jacket in which liquid level detection means is provided at a predetermined level and a liquid phase refrigerant is stored, and a refrigerant vapor generated in the water jacket is introduced and condensed in a lower tank below. Is stored, a refrigerant supply pump that replenishes the liquid-phase refrigerant condensed by the condenser to the water jacket, and a liquid level position in the water jacket is maintained at a predetermined level based on the detection of the liquid level detection means. And a reservoir tank which is always in communication with the lower tank so that liquid-phase refrigerant can freely flow between the lower tank and pump control means for controlling the refrigerant supply pump, and which is open to the atmosphere through an atmosphere communication passage. A first temperature sensor for detecting the temperature of the refrigerant in the water jacket, and a second temperature for detecting the temperature of the refrigerant in the lower tank. Sensor and an electromagnetic valve disposed in the atmosphere communication passage and opening / closing the atmosphere communication passage, and the solenoid valve is opened when the temperature difference between the temperatures detected by the first and second temperature sensors is larger than a predetermined value. And a boiling cooling device for an internal combustion engine, which is provided with an electromagnetic valve control means for keeping the valve closed at a predetermined value and closing the valve at a predetermined value or less.
JP61077844A 1985-10-15 1986-04-04 Boiling cooling device for internal combustion engine Expired - Lifetime JPH076384B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61077844A JPH076384B2 (en) 1986-04-04 1986-04-04 Boiling cooling device for internal combustion engine
US06/918,052 US4721071A (en) 1985-10-15 1986-10-14 Cooling system for automotive engine or the like
DE8686114221T DE3681395D1 (en) 1985-10-15 1986-10-14 COOLING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE.
EP86114221A EP0219099B1 (en) 1985-10-15 1986-10-14 Cooling system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61077844A JPH076384B2 (en) 1986-04-04 1986-04-04 Boiling cooling device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62237022A JPS62237022A (en) 1987-10-17
JPH076384B2 true JPH076384B2 (en) 1995-01-30

Family

ID=13645361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61077844A Expired - Lifetime JPH076384B2 (en) 1985-10-15 1986-04-04 Boiling cooling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH076384B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125910A (en) * 1984-07-16 1986-02-05 Nissan Motor Co Ltd Boiling medium cooling device in engine

Also Published As

Publication number Publication date
JPS62237022A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
EP0126422B1 (en) Improved cooling system for automotive engine or the like
JPH0530965B2 (en)
JPH0580565B2 (en)
JPH073172B2 (en) Boiling cooling device for internal combustion engine
JPH0692730B2 (en) Boiling cooling device for internal combustion engine for vehicles
JPS61247819A (en) Evaporative cooling device for internal-combustion engine
JPS611818A (en) Boiling and cooling apparatus for engine
EP0134006B1 (en) Cooling system for automotive engine or the like
JPH06102975B2 (en) Boiling cooling device for internal combustion engine
JPH0475369B2 (en)
JPH076384B2 (en) Boiling cooling device for internal combustion engine
US4633822A (en) Cooling system for automotive engine or the like
JPS6125910A (en) Boiling medium cooling device in engine
JPH0713459B2 (en) Boiling cooling device for internal combustion engine
JPH032670Y2 (en)
JPH0248664Y2 (en)
JPH034726B2 (en)
JPH0223781Y2 (en)
JPH0410331Y2 (en)
JPH0519546Y2 (en)
JPH034727B2 (en)
JPS61291715A (en) Evaporative cooling apparatus for internal-combustion engine
JPH06102976B2 (en) Boiling cooling device for internal combustion engine
JPH07116938B2 (en) Cooling device for internal combustion engine
JPS62237021A (en) Evaporative cooling device for internal combustion engine