JPH0762103A - Thermosetting resin composition - Google Patents

Thermosetting resin composition

Info

Publication number
JPH0762103A
JPH0762103A JP5210299A JP21029993A JPH0762103A JP H0762103 A JPH0762103 A JP H0762103A JP 5210299 A JP5210299 A JP 5210299A JP 21029993 A JP21029993 A JP 21029993A JP H0762103 A JPH0762103 A JP H0762103A
Authority
JP
Japan
Prior art keywords
thermosetting resin
polysiloxane
resin composition
low dielectric
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5210299A
Other languages
Japanese (ja)
Inventor
Sumiya Miyake
澄也 三宅
Toshiro Takeda
敏郎 竹田
Kenichi Suzuki
憲一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP5210299A priority Critical patent/JPH0762103A/en
Publication of JPH0762103A publication Critical patent/JPH0762103A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a thermosetting resin of high resistance to heat, low dielectric constant and low dielectric loss tangent for printed boards by the hydrosilylation reaction in which a specified bisallylnadimide is reacted with a polysiloxane having at least 3 SiH groups. CONSTITUTION:A bisallylnadimide (A) represented by formula I wherein R1 is an organic group having an aromatic ring or aliphatic residue; and R<2> and R<3> are allyl groups one at the 1- to 4-position and another at the 1'-to 4'-position is reacted with a polysiloxane (B) having at least 3 SiH groups in the molecular structure in the presence of a hydrosilylation catalyst (C) to produce a thermosetting resin having a number-average molecular weight of 1000 to 4000. The compound (A) preferably has R1 represented by formula II for its low dielectric constant. The compound (B) is preferably a cyclic polysiloxane, such as tetramethylcyclotetrasiloxane, for its crosslink density. For the catalyst (C), a transition metal is useful in addition to chloroplatinic acid hexahydrate and a complex of palladium. The thermosetting resin thus produced shows good properties as laminated boards suited for printed wiring boards to be used in a high-frequency region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プリント回路基板など
に有用な高耐熱、低誘電率、低誘電正接の熱硬化性樹脂
組成物に関するものであり、ハイドロシリル化反応とし
て広く知られる不飽和結合とSiH基との付加反応を利
用し、ビスアリルナジイミド類とポリシロキサンにより
合成されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermosetting resin composition having a high heat resistance, a low dielectric constant and a low dielectric loss tangent, which is useful for printed circuit boards and the like, and is widely known as an unsaturated hydrosilylation reaction. It is synthesized from bisallylnadimides and polysiloxane by utilizing the addition reaction between the bond and SiH group.

【0002】[0002]

【従来の技術】近年、高周波領域で用いられるプリント
配線に、耐熱性に優れ、低誘電率、低誘電正接の積層板
用樹脂が望まれている。このような背景の中で、ビスア
リルナジイミド類は、その構造の対称性や、脂肪族環で
あるノルボルネン環を有することから、低誘電率である
ことが予想され、かつ骨格中にイミド構造を含むことか
ら高い耐熱性を有することが期待される。しかし、ビス
アリルナジイミド類は、無触媒下での単独硬化では、25
0℃以上の硬化温度が必要で、実用化に際しては大きな
障害となっていた。また、触媒を用いる系においても、
強酸やオニウム塩など、電子材料においては重大な欠点
となる金属腐食性の触媒しか使用できず、かつ最終硬化
は250℃前後の温度が必要であった。
2. Description of the Related Art In recent years, there has been a demand for a resin for a laminated board which has excellent heat resistance, low dielectric constant and low dielectric loss tangent for printed wiring used in a high frequency region. Against this background, bisallylnadiimides are expected to have a low dielectric constant because of the symmetry of the structure and the norbornene ring that is an aliphatic ring, and the imide structure in the skeleton. Since it contains, it is expected to have high heat resistance. However, the bisallyl nadiimides are 25
A curing temperature of 0 ° C or higher was required, which was a major obstacle to practical use. Also in a system using a catalyst,
Only a metal corrosive catalyst, which is a serious drawback in electronic materials such as strong acid and onium salt, can be used, and final curing requires a temperature of around 250 ° C.

【0003】更に、ビスアリルナジイミド以外の低誘電
率樹脂に目を向けると、例えば、フッ素樹脂やポリフェ
ニレンエーテル樹脂などの熱可塑性樹脂が提案されてい
るが、作業性、接着性が悪く、信頼性に欠けるなどの問
題があった。そこで作業性、接着性を改善する目的でエ
ポキシ変性ポリフェニレンエーテル樹脂或いはポリフェ
ニレンエーテル変性エポキシ樹脂も提案されている。し
かしエポキシ樹脂の誘電率が高く満足な特性が得られて
いない。ポリフェニレンエーテル樹脂と多官能シアン酸
エステル樹脂類、更にこれにその他の樹脂を配合し、ラ
ジカル重合開始剤を添加し、予備反応させてなる硬化可
能な樹脂組成物(特開昭57-185350号公報参照)が知ら
れているが、誘電率の低下は不充分であった。
Looking further at low dielectric constant resins other than bisallylnadiimide, for example, thermoplastic resins such as fluororesins and polyphenylene ether resins have been proposed, but their workability and adhesiveness are poor and their reliability is high. There were problems such as lack of sex. Therefore, an epoxy-modified polyphenylene ether resin or a polyphenylene ether-modified epoxy resin has been proposed for the purpose of improving workability and adhesiveness. However, the epoxy resin has a high dielectric constant, and satisfactory characteristics have not been obtained. A curable resin composition prepared by blending a polyphenylene ether resin and a polyfunctional cyanate ester resin, and further another resin, adding a radical polymerization initiator and preliminarily reacting the mixture (JP-A-57-185350). However, the decrease in the dielectric constant was insufficient.

【0004】また熱硬化性の1,2-ポリブタジエンを主成
分とするポリブタジエンは低誘電率であるが、接着性に
劣り耐熱性が不充分であった。ポリフェニレンエーテル
100重量部に対し、1,2-ポリブタジエン5〜20重量部、架
橋性モノマー5〜10重量部及びラジカル架橋剤を配合し
た組成物(特開昭61-83224公報参照)が知られている
が、分子量数千の1,2-ポリブタジエンを用いた場合には
組成物から溶媒を除いた場合にベタツキが残り、ガラス
基材等に塗布、含浸して得られるプリプレグがタックフ
リーの状態を維持できないので実用上問題があった。一
方ベタツキを無くすために高分子量の1,2-ポリブタジエ
ンを用いる方法があるが、この方法によれば溶媒への溶
解性が低下し溶液が高粘度になり流動性が低下し実用上
問題であった。
Although polybutadiene containing thermosetting 1,2-polybutadiene as a main component has a low dielectric constant, it has poor adhesiveness and insufficient heat resistance. Polyphenylene ether
There is known a composition containing 5 to 20 parts by weight of 1,2-polybutadiene, 5 to 10 parts by weight of a crosslinkable monomer and 100 parts by weight of a radical crosslinking agent (see JP-A-61-83224). When 1,2-polybutadiene having a molecular weight of several thousand is used, stickiness remains when the solvent is removed from the composition, and the prepreg obtained by coating and impregnating a glass substrate etc. cannot maintain a tack-free state. So there was a problem in practice. On the other hand, there is a method of using a high molecular weight 1,2-polybutadiene to eliminate stickiness, but this method has a practical problem because the solubility in a solvent is lowered, the solution becomes highly viscous and the fluidity is lowered. It was

【0005】[0005]

【発明が解決しようとする課題】本発明は、低誘電率、
低誘電正接、高耐熱性を有する熱硬化性樹脂組成物を得
るべく鋭意検討を重ねた結果完成するに至ったものであ
る。
The present invention has a low dielectric constant,
As a result of intensive studies, a thermosetting resin composition having a low dielectric loss tangent and high heat resistance was completed.

【0006】[0006]

【課題を解決するための手段】本発明は、下記一般式で
示されるビスアリルナジイミド(A)
DISCLOSURE OF THE INVENTION The present invention provides a bisallylnadimide (A) represented by the following general formula.

【化1】 (ただし、R1は、2価の芳香環を含む有機基又は2価の
脂肪族残基であり、R2,R3は、アリル基であって、そ
れぞれ式中1,2,3,4位のいずれか一つ及び1',2',3',4'位
のいずれか一つの位置で置換している)及び分子内に3
個以上のSiH基を有するポリシロキサン(B)をハイド
ロシリル化触媒(C)の存在下で反応させた、数平均分子
量が1000以上4000以下の熱硬化性樹脂組成物である。
[Chemical 1] (However, R 1 is an organic group containing a divalent aromatic ring or a divalent aliphatic residue, and R 2 and R 3 are allyl groups, each of which is 1,2,3,4 in the formula. At any one position and at any one of the 1 ', 2', 3 ', 4' positions) and 3 in the molecule
A thermosetting resin composition having a number average molecular weight of 1,000 or more and 4,000 or less, which is obtained by reacting polysiloxane (B) having one or more SiH groups in the presence of a hydrosilylation catalyst (C).

【0007】[0007]

【作用】本発明におけるビスアリルナジイミド(A)にお
いて、R1は2価の芳香環を含む有機基又は2価の脂肪族
残基であればよいが、低誘電率、低誘電正接特性実現の
ためには、特に、
In the bisallylnadiimide (A) of the present invention, R 1 may be an organic group containing a divalent aromatic ring or a divalent aliphatic residue, but it has a low dielectric constant and a low dielectric loss tangent property. Especially for

【化2】 がより好ましい。[Chemical 2] Is more preferable.

【0008】また、本発明に用いられるポリシロキサン
は、分子内に3個以上のSiH基を有すればよいが、特
にコストやプレポリマー合成の容易さ、架橋密度などを
考慮すれば、一般式
The polysiloxane used in the present invention may have three or more SiH groups in the molecule, but in consideration of cost, easiness of prepolymer synthesis, crosslink density, etc., the general formula

【化3】 で表わされる環状ポリシロキサン、例えば、テトラメチ
ルシクロテトラシロキサン、トリメチルシクロトリシロ
キサン、ペンタメチルシクロペンタシロキサンなどが好
適であり、必要により2種以上を併用してもよい。
[Chemical 3] The cyclic polysiloxane represented by, for example, tetramethylcyclotetrasiloxane, trimethylcyclotrisiloxane, pentamethylcyclopentasiloxane and the like are preferable, and if necessary, two or more kinds may be used in combination.

【0009】更に、ハイドロシリル化触媒は、塩化白金
酸六水和物や、白金−ジビニルジシロキサン錯体などの
白金化合物や、ロジウム、パラジウム等の各種錯体及び
過酸化物等が挙げられるが、「ADVANCES IN ORGANOMETA
LLIC CHEMISTRY VOL.17(1979)」においてJ.L.SPEIERが
述べているように、Ti,Zr,Hf,Cr,Mo,W,M
n,Re,Fe,Ru,Co,Rh,Ir,Ni,Pd,Ptな
どの多くの遷移金属が触媒として有用である。
Examples of the hydrosilylation catalyst include chloroplatinic acid hexahydrate, platinum compounds such as platinum-divinyldisiloxane complex, various complexes such as rhodium and palladium, and peroxides. ADVANCES IN ORGANOMETA
LLIC CHEMISTRY VOL.17 (1979) ”, as described by JLSPEIER, Ti, Zr, Hf, Cr, Mo, W, M
Many transition metals such as n, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd and Pt are useful as catalysts.

【0010】本発明において得られる熱硬化性樹脂組成
物の数平均分子量は1000以上4000以下がよい。数平均分
子量が1000より小さいと、樹脂の固形化が困難で、積層
板の生産工程において塗布乾燥時にプリプレグのタック
をなくすことが困難であり、かつ硬化性が悪く、ガラス
転移温度の低下を招く。また4000より大きいと、樹脂粘
度が高過ぎ、流動性の低下から、プレス成形性の低下を
招く。
The number average molecular weight of the thermosetting resin composition obtained in the present invention is preferably 1,000 or more and 4,000 or less. If the number average molecular weight is less than 1000, it is difficult to solidify the resin, it is difficult to eliminate the tack of the prepreg during coating and drying in the production process of the laminate, and the curability is poor, leading to a decrease in the glass transition temperature. . On the other hand, when it is more than 4000, the resin viscosity is too high and the fluidity is lowered, so that the press formability is lowered.

【0011】また、ハイドロシリル化反応を利用したプ
レポリマー合成反応においては、二重結合とSiH基と
のモル比は重要な因子であるが、本反応においては、ビ
スアリルナジイミド(A)のノルボルネン環内の二重結合
は環内の内部オレフィンであり、かつイミド構造に起因
する電子密度の低下等により反応性が低く、アリル基の
みが反応すると考えられ、この前提において、アリル基
とSiH基のモル比は、1:2〜2:1の範囲であることが好
ましい。1:2よりもアリル基が少ない場合や、2:1よりも
アリル基が多い場合、ガラス転移温度の急激な低下や、
硬化不良などの問題が生ずる。
Further, in the prepolymer synthesis reaction utilizing the hydrosilylation reaction, the molar ratio of the double bond and the SiH group is an important factor, but in this reaction, the bisallylnadiimide (A) The double bond in the norbornene ring is an internal olefin in the ring, and the reactivity is low due to the decrease in electron density due to the imide structure, and it is considered that only the allyl group reacts. The molar ratio of groups is preferably in the range 1: 2 to 2: 1. When the allyl group is less than 1: 2, or when the allyl group is more than 2: 1, the glass transition temperature sharply decreases,
Problems such as poor curing occur.

【0012】[0012]

【実施例】以下に本発明を詳しく説明するために実施例
を示すが、これらをもって本発明を限定するものではな
い。
EXAMPLES Examples will be shown below for illustrating the present invention in detail, but the present invention is not limited to these examples.

【0013】(実施例1)ジフェニルメタン-4,4'-ビス
アリルナジイミド240.0g、トルエン193.8gを1リットル4
つ口セプラブルフラスコに仕込み、冷却管、温度計を装
着して、90℃に加熱した。内温が安定した後に塩化白金
酸イソプロパノール溶液(重量濃度10mg/ml)1.7mlを添
加し、すぐにテトラメチルシクロテトラシロキサン50.6
gを滴下し、滴下終了後10時間反応させた。得られた樹
脂は、数平均分子量1500で、172℃のゲルタイムは4分1
5秒であった。この樹脂を、トルエンを用いて固形分50
%のワニス溶液を調製し、ガラスクロス(Eガラス厚さ
0.18mm)にレジン分が50%となるように含浸させ、150
℃4分乾燥させ、プリプレグを作成した。この乾燥プリ
プレグ8枚を重ね、上下に厚さ35μmの電解銅箔を重ね
て、圧力40kgf/cm2、温度170℃で1時間加熱加圧成形
を行い、更にアフターベークを190℃4時間実施後、厚
さ1.6mmの積層板を得た。
(Example 1) Diphenylmethane-4,4'-bisallylnadiimide 240.0 g and toluene 193.8 g 1 liter 4
The flask was charged into a single neck separable flask, equipped with a cooling tube and a thermometer, and heated to 90 ° C. After the internal temperature became stable, add 1.7 ml of isopropanolic chloroplatinate solution (weight concentration 10 mg / ml) and immediately add tetramethylcyclotetrasiloxane 50.6
g was added dropwise, and the reaction was carried out for 10 hours after the completion of the addition. The resulting resin has a number average molecular weight of 1500 and a gel time at 172 ° C of 4 minutes 1
It was 5 seconds. This resin was solidified to 50% with toluene.
% Varnish solution, glass cloth (E glass thickness
0.18 mm) so that the resin content is 50%
It was dried at ℃ 4 minutes to prepare a prepreg. After stacking 8 sheets of this dried prepreg, and stacking 35μm thick electrolytic copper foil on top and bottom, heat and pressure molding at a pressure of 40kgf / cm 2 and a temperature of 170 ℃ for 1 hour, and after-baking at 190 ℃ for 4 hours. A laminated board having a thickness of 1.6 mm was obtained.

【0014】誘電率及び誘電正接の測定は JIS C 6481
に準じて行ない、周波数1MHzの静電容量を測定して
求めた。半田耐熱性、ピール強度についても JIS C 648
1に準じて測定し、半田耐熱性は260℃、300秒で外観の
異常の有無を調べた。またガラス転移温度は粘弾性法に
より tan δ のピーク温度から求めた。これらの結果を
合わせて表1に示す。
The measurement of dielectric constant and dielectric loss tangent is JIS C 6481
The electrostatic capacitance at a frequency of 1 MHz was measured and obtained. JIS C 648 for solder heat resistance and peel strength
The solder heat resistance was measured at 260 ° C. for 300 seconds, and the presence or absence of abnormality in the appearance was examined according to 1. The glass transition temperature was determined from the peak temperature of tan δ by the viscoelastic method. The results are shown together in Table 1.

【0015】(実施例2)2,2-ビス(4-フェノキシフェ
ニル)プロパン-4,4'-ビスアリルナジイミド329.3g、ト
ルエン250g、塩化白金酸イソプロパノール溶液2.5ml用
いる以外は全て実施例1と同様の操作で、数平均分子量
1800、172℃ゲルタイム4分5秒の樹脂を得た。更に、実
施例1と同様の操作で積層板を作成した。結果を表1に
示した。
(Example 2) 32,3 g of 2,2-bis (4-phenoxyphenyl) propane-4,4'-bisallylnadiimide, 250 g of toluene, and 2.5 ml of isopropanol chloroplatinate solution were all used in Example 1 By the same operation as, number average molecular weight
A resin having a gel time of 4 minutes and 5 seconds at 1800 and 172 ° C. was obtained. Further, a laminated board was prepared by the same operation as in Example 1. The results are shown in Table 1.

【0016】(比較例1)反応時間を3時間とする以外
は全て実施例1と同様の操作を行い、数平均分子量80
0、172℃ゲルタイム6分30秒の樹脂を得た。実施例1と
同様に、積層板を作成した。
Comparative Example 1 The same operation as in Example 1 was carried out except that the reaction time was 3 hours.
A resin having a gel time of 6 minutes and 30 seconds at 0 and 172 ° C. was obtained. A laminated plate was prepared in the same manner as in Example 1.

【0017】(比較例2)反応時間を15時間とする以外
は全て実施例1と同様の操作を行い、数平均分子量6000
の樹脂を得たが、この樹脂は、172℃のゲル化が速過
ぎ、測定不能であった。また実施例1と同様に積層板作
成を試みたが、流動性が悪く、プレス成形不可能であっ
た。
(Comparative Example 2) The same operation as in Example 1 was repeated except that the reaction time was 15 hours.
However, this resin could not be measured because the gelation at 172 ° C. was too fast. An attempt was made to produce a laminated plate in the same manner as in Example 1, but the fluidity was poor and press molding was impossible.

【0018】(比較例3)テトラメチルジシロキサン5
6.5gをテトラメチルシクロテトラシロキサンの代りに
用い、実施例1と同様の操作で反応時間のみ15時間とし
た。得られた樹脂は、数平均分子量1200であったが、こ
の樹脂は全くゲル化しなかった。以上結果を全て表1に
示す。
Comparative Example 3 Tetramethyldisiloxane 5
6.5 g was used instead of tetramethylcyclotetrasiloxane, and the reaction time was 15 hours in the same manner as in Example 1. The obtained resin had a number average molecular weight of 1200, but this resin did not gel at all. All the above results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明による熱硬化性樹脂組成物を用い
た積層板は、高耐熱性で、かつ低誘電率、低誘電正接で
あり、プリント回路基板用樹脂組成物として優れた特性
を有している。
The laminate using the thermosetting resin composition according to the present invention has high heat resistance, low dielectric constant and low dielectric loss tangent, and has excellent characteristics as a resin composition for printed circuit boards. is doing.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式で示されるビスアリルナジイ
ミド(A) 【化1】 (ただし、R1は、2価の芳香環を含む有機基又は2価の
脂肪族残基であり、R2,R3は、アリル基であって、そ
れぞれ式中1,2,3,4位のいずれか一つ及び1',2',3',4'位
のいずれか一つの位置で置換している)及び分子内に3
個以上のSiH基を有するポリシロキサン(B)をハイド
ロシリル化触媒(C)の存在下で反応させた、数平均分子
量が1000以上4000以下の熱硬化性樹脂組成物。
1. A bisallylnadimide (A) represented by the following general formula: (However, R 1 is an organic group containing a divalent aromatic ring or a divalent aliphatic residue, and R 2 and R 3 are allyl groups, each of which is 1,2,3,4 in the formula. At any one position and at any one of the 1 ', 2', 3 ', 4' positions) and 3 in the molecule
A thermosetting resin composition having a number average molecular weight of 1,000 or more and 4,000 or less, which is obtained by reacting polysiloxane (B) having one or more SiH groups in the presence of a hydrosilylation catalyst (C).
【請求項2】 R1が下記構造である請求項1の熱硬化
性樹脂組成物。 【化2】
2. The thermosetting resin composition according to claim 1, wherein R 1 has the following structure. [Chemical 2]
【請求項3】 ポリシロキサン(B)が下記一般式である
請求項1の熱硬化性樹脂組成物。 【化3】
3. The thermosetting resin composition according to claim 1, wherein the polysiloxane (B) has the following general formula. [Chemical 3]
【請求項4】 ハイドロシリル触媒(C)がTi,Zr,H
f,Cr,Mo,W,Mn,Re,Fe,Ru,Co,Rh,I
r,Ni,Pd,Ptのいずれか一つ以上を含む金属触媒
及び/又は過酸化物触媒である請求項1の熱硬化性樹脂
組成物。
4. The hydrosilyl catalyst (C) is Ti, Zr, H.
f, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, I
The thermosetting resin composition according to claim 1, which is a metal catalyst and / or a peroxide catalyst containing at least one of r, Ni, Pd, and Pt.
【請求項5】 ビスアリルナジイミド(A)のアリル基と
ポリシロキサン(B)のSiH基のモル比が1:2〜2:1であ
る請求項1の熱硬化性樹脂組成物。
5. The thermosetting resin composition according to claim 1, wherein the molar ratio of the allyl group of the bisallylnadiimide (A) and the SiH group of the polysiloxane (B) is 1: 2 to 2: 1.
JP5210299A 1993-08-25 1993-08-25 Thermosetting resin composition Pending JPH0762103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5210299A JPH0762103A (en) 1993-08-25 1993-08-25 Thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5210299A JPH0762103A (en) 1993-08-25 1993-08-25 Thermosetting resin composition

Publications (1)

Publication Number Publication Date
JPH0762103A true JPH0762103A (en) 1995-03-07

Family

ID=16587105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5210299A Pending JPH0762103A (en) 1993-08-25 1993-08-25 Thermosetting resin composition

Country Status (1)

Country Link
JP (1) JPH0762103A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949130A (en) * 1997-09-17 1999-09-07 Fujitsu Limited Semiconductor integrated circuit device employing interlayer insulating film with low dielectric constant
JP2006117710A (en) * 2004-10-19 2006-05-11 Shin Etsu Chem Co Ltd Polyimide silicone resin composition
US7560145B2 (en) 2000-12-27 2009-07-14 Kaneka Corporation Curing agent, curable compositions, compositions for optical materials, optical materials, their production and liquid crystal displays and LED's made by using the materials
JP2011527356A (en) * 2008-07-09 2011-10-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Polymerizable composition
US8273842B2 (en) 2007-11-09 2012-09-25 Kaneka Corporation Process for production of cyclic polyorganosiloxane, curing agent, curable composition, and cured product of the curable composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949130A (en) * 1997-09-17 1999-09-07 Fujitsu Limited Semiconductor integrated circuit device employing interlayer insulating film with low dielectric constant
US7560145B2 (en) 2000-12-27 2009-07-14 Kaneka Corporation Curing agent, curable compositions, compositions for optical materials, optical materials, their production and liquid crystal displays and LED's made by using the materials
EP2270103A2 (en) 2000-12-27 2011-01-05 Kaneka Corporation Curing agent, curable compositions, compositions for optical materials, optical materials, their production, and liquid crystal displays and LED's made by using the materials
JP2006117710A (en) * 2004-10-19 2006-05-11 Shin Etsu Chem Co Ltd Polyimide silicone resin composition
US8273842B2 (en) 2007-11-09 2012-09-25 Kaneka Corporation Process for production of cyclic polyorganosiloxane, curing agent, curable composition, and cured product of the curable composition
JP2011527356A (en) * 2008-07-09 2011-10-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Polymerizable composition

Similar Documents

Publication Publication Date Title
TWI391421B (en) Polyamide resin, epoxy resin composition and cured product thereof
WO2007052523A1 (en) Rubber-modified polyamide resin, epoxy resin composition, and cured object obtained therefrom
US20090156753A1 (en) Silphenylene compound and process for producing the same
US20100096169A1 (en) Polyamide Resin as Well as Epoxy Resin Composition Using the Same and Use Thereof
JPH0762103A (en) Thermosetting resin composition
JPH06271669A (en) Flame-retardant thermosetting resin composition with low dielectric constant
JP2716639B2 (en) Low dielectric constant thermosetting resin composition
JP2001187836A (en) Additive for epoxy resin composition and epoxy resin composition therewith
JPH06207096A (en) Low-permittivity thermosetting resin composition
JP4919659B2 (en) Polyamide resin composition, epoxy resin composition and use thereof
JP2003041001A (en) Thermosetting resin having dihydrobenzoxazine ring structure, resin composition and cured product
JPH06192393A (en) Thermosetting resin composition having low dielectric constant
JP2653608B2 (en) Low dielectric constant thermosetting resin composition
JP2653607B2 (en) Low dielectric constant thermosetting resin composition
JPS63312321A (en) Curable polymer composition
JP2680504B2 (en) Low dielectric constant thermosetting resin composition
JP2004043622A (en) Thermosetting resin having silicone structural unit, cured product thereof, and thermosetting resin composition
JP2680506B2 (en) Low dielectric constant thermosetting resin composition
JP2680505B2 (en) Low dielectric constant thermosetting resin composition
JP3290239B2 (en) Low dielectric constant thermosetting resin composition
JPH07149893A (en) Thermosetting resin composition with low dielectric constant
JP2653609B2 (en) Low dielectric constant thermosetting resin composition
JPH06248074A (en) Low-dielectric thermosetting resin composition
JPH06228415A (en) Resin composition for laminate and laminate
JP3290238B2 (en) Low dielectric constant thermosetting resin composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822