JPH076093B2 - Gas or liquid separation method - Google Patents

Gas or liquid separation method

Info

Publication number
JPH076093B2
JPH076093B2 JP3224633A JP22463391A JPH076093B2 JP H076093 B2 JPH076093 B2 JP H076093B2 JP 3224633 A JP3224633 A JP 3224633A JP 22463391 A JP22463391 A JP 22463391A JP H076093 B2 JPH076093 B2 JP H076093B2
Authority
JP
Japan
Prior art keywords
fiber
hollow
activated carbon
gas
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3224633A
Other languages
Japanese (ja)
Other versions
JPH06128816A (en
Inventor
栄治 田中
敏裕 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Kuraray Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd, Kuraray Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP3224633A priority Critical patent/JPH076093B2/en
Publication of JPH06128816A publication Critical patent/JPH06128816A/en
Publication of JPH076093B2 publication Critical patent/JPH076093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリビニルアルコール
系繊維(以下PVA繊維という)を原料とした、中空状
活性炭繊維を使用した気体または液体の分離方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating gas or liquid using polyvinyl alcohol fiber (hereinafter referred to as PVA fiber) as a raw material and using hollow activated carbon fiber.

【0002】活性炭繊維は既に数種のものがよく知られ
ている。例えば天然繊維、再生セルローズ繊維、フェノ
ール繊維及びPVA繊維等を原料とするものである。活
性炭を繊維状とした場合は、従来から広く使用されてい
る粒状或いは粉末状の吸着剤と較べて、マクロ的な接触
面積が著しく大きため吸着速度が速い他粉塵の発生がな
く、また圧損失が低い等の利点が多い。
Several types of activated carbon fibers are already well known. For example, natural fibers, recycled cellulose fibers, phenol fibers, PVA fibers and the like are used as raw materials. When activated carbon is made into fibrous form, compared with the widely used granular or powdery adsorbents, the macro contact area is much larger, so the adsorption speed is faster and there is no generation of dust and pressure loss. There are many advantages such as low.

【0003】しかし、繊維状活性炭を中空状とすること
により、更にマクロ的接触面積が増大する他、活性炭特
有の吸着性と中空繊維壁の選択透過性を兼ね備えた特異
な物性を示す。本発明は活性炭の吸着性と半透膜の性質
を複合した分子篩性を有する、中空状活性炭繊維を利用
して複数の成分を含む気体または液体の成分を分離する
方法である。
However, by making the fibrous activated carbon hollow, the macroscopic contact area is further increased, and in addition, it exhibits a unique physical property having both the adsorptivity peculiar to activated carbon and the selective permeability of the hollow fiber wall. The present invention is a method for separating a gas or liquid component containing a plurality of components using hollow activated carbon fibers having a molecular sieving property that combines the adsorptivity of activated carbon and the properties of a semipermeable membrane.

【0004】[0004]

【従来の技術】PVA繊維を原料とした炭素繊維の製法
は、特開昭49-24897、同50-35431、同50-52320、及び同
50-52321号公報に記載されており、その要旨は脱水触媒
を塗布或いは含浸せしめたPVA繊維を、酸化性雰囲気
中で180 ℃〜300 ℃で熱処理して炭化し、要すれば更に
高温で処理してグラファイト化を促進し、力学的物性を
向上せしめる方法である。これらは何れも構造材料とし
ての炭素繊維を目的としたもので、PVA繊維の炭化の
面で共通な要素を含んでいるが、形状的に中空ではな
く、また活性炭でもない。
2. Description of the Related Art A method for producing carbon fiber using PVA fiber as a raw material is disclosed in JP-A-49-24897, 50-35431, 50-52320, and
No. 50-52321, the gist of which is to treat PVA fibers coated or impregnated with a dehydration catalyst by heat treatment at 180 ° C. to 300 ° C. in an oxidizing atmosphere to carbonize, and if necessary, treat at a higher temperature. Is a method of promoting graphitization and improving mechanical properties. All of them are intended for carbon fiber as a structural material and include common elements in terms of carbonization of PVA fiber, but they are neither hollow in shape nor activated carbon.

【0005】また特公昭54-3973 号公報は活性炭繊維の
製法に関するもので、紡糸原液に脱水触媒3〜15%を加
え、得られたPVA繊維を180 ℃〜340 ℃で、収率65〜
85%になる迄熱処理して炭化した後、水蒸気を含む不活
性ガス中で600 ℃〜1,000 ℃で、収率10〜35%迄賦活せ
しめる方法である。(同公報第1頁、第1欄、第16〜28
行、特許請求の範囲)。更に脱水触媒の添加方法と得ら
れた活性炭の吸着性は密接な関係があり、予め紡糸原液
に加えておいた場合にのみ、吸着性が高い活性炭繊維
(ヨード吸着量1600〜1700mg/g) が得られる旨記載され
ている(同公報第3頁、第1表及び同頁、第6欄、第5
〜8行)。
Japanese Patent Publication No. 54-3973 discloses a method for producing activated carbon fiber, in which 3 to 15% of a dehydration catalyst is added to a spinning dope, and the resulting PVA fiber is produced at 180 to 340 ° C. with a yield of 65 to
It is a method of heat-treating to 85% and carbonizing, and then activating in an inert gas containing steam at 600 ° C to 1,000 ° C to a yield of 10 to 35%. (Publication 1, page 1, column 1, 16-28
Line, claims). Furthermore, there is a close relationship between the method of adding the dehydration catalyst and the adsorptivity of the obtained activated carbon, and only when it has been added to the spinning dope in advance, activated carbon fibers with high adsorptivity (iodine adsorption amount 1600 to 1700 mg / g) It is stated that it can be obtained (page 3, table 1 and page 6, column 6, column 5 of the publication).
~ Line 8).

【0006】上記活性炭繊維は普通の繊維状で中空には
なっていない。ポリビニルアルコール系樹脂を原料とし
た、半透膜の性質を有する様な薄い繊維の表面層を有す
る中空状活性炭繊維は知られていない。
The activated carbon fibers are ordinary fibrous and are not hollow. A hollow activated carbon fiber having a thin fiber surface layer having a property of a semipermeable membrane, which is made of a polyvinyl alcohol resin, is not known.

【0007】また活性炭粉末の押出成型技術では本発明
の目的とするような直径10数μ或いはそれ以下の中空繊
維は到底作ることができない。
In addition, hollow fibers having a diameter of 10 and several μ or less, which is the object of the present invention, cannot be produced at all by the extrusion molding technique of activated carbon powder.

【0008】[0008]

【発明が解決しようとする課題】比表面積が大きく高い
吸着能を有する活性炭を、表面層が極めて薄い皮膜から
なり、中心部分が中空状となった繊維の形態に成形し
て、その吸着性と薄い皮膜の半透性を利用し、複数成分
を含む気体または液体の分離方法を提供しようとするも
のである。
[Problems to be Solved by the Invention] Activated carbon having a large specific surface area and high adsorption ability is formed into a fiber having a hollow surface in the center portion, which has a very thin surface layer. The present invention aims to provide a method for separating a gas or a liquid containing a plurality of components by utilizing the semipermeable property of a thin film.

【0009】[0009]

【課題を解決するための手段】本発明者等は、PVA繊
維を脱水剤水溶液に浸漬した後熱処理して炭化する工程
において、脱水剤の浸透の度合い及び熱処理条件と得ら
れた炭化物の形状について研究した。その結果両者の間
には密接な関係があり、特定の条件下において中空状の
炭化物が得られることを見出した。更に該炭化物の原料
として湿式紡糸または乾式紡糸したPVA繊維を使用す
ると共に、その他賦活条件も工夫して活性炭繊維の吸着
性を著しく高めうる方法を見出した。またこの様にして
得られた薄い繊維の表面層が分子篩性を有することを見
出して本発明を完成した。
Means for Solving the Problems In the step of soaking PVA fibers in an aqueous solution of a dehydrating agent and then heat-treating and carbonizing the same, the present inventors have studied the degree of penetration of the dehydrating agent, the heat treatment conditions and the shape of the obtained carbide. Researched. As a result, it was found that there is a close relationship between the two and that hollow carbides can be obtained under specific conditions. Further, they have found a method in which PVA fibers that have been wet-spun or dry-spun are used as a raw material for the carbides and other activation conditions are devised to remarkably enhance the adsorptivity of the activated carbon fibers. Further, they have found that the surface layer of the thin fiber thus obtained has a molecular sieving property and completed the present invention.

【0010】すなわち、ポリビニルアルコール系繊維の
表面層に脱水剤を付着せしめた後、繊維が溶融せぬよう
黒褐色ないし黒色になる迄熱処理し、更に400 ℃から1,
000℃迄5分以内に昇温して乾留し、更に賦活して調製
した中空状活性炭繊維を使用して、繊維の外側或いは内
側より複数成分を含む気体或いは液体を供給し、繊維壁
を通過せしめることにより含有成分を分離することを特
徴とする気体または液体の分離方法である。
That is, after attaching a dehydrating agent to the surface layer of polyvinyl alcohol fiber, it is heat-treated until it becomes blackish brown or black so that the fiber does not melt, and further from 400 ° C. to 1,
A hollow activated carbon fiber prepared by heating to 000 ° C within 5 minutes, dry distillation, and activation is used to supply gas or liquid containing multiple components from the outside or inside of the fiber and pass through the fiber wall. It is a method for separating a gas or a liquid, characterized in that the contained components are separated by urging.

【0011】以下本発明について詳しく説明する。The present invention will be described in detail below.

【0012】PVA繊維の製法には乾式紡糸と湿式紡糸
があり、乾式紡糸はポリビニルアルコールを水溶液にし
た紡糸原液を空気中に紡出し、乾燥、延伸して繊維にす
る方法であり、湿式紡糸は紡糸原液をNa2SO4やNaOH等の
濃厚電解質水溶液中に紡出し、水洗・乾燥、延伸して繊
維を形成する方法である。
The PVA fiber production method includes dry spinning and wet spinning. The dry spinning is a method in which a spinning solution containing polyvinyl alcohol in an aqueous solution is spun into air, dried and stretched into a fiber. The wet spinning is In this method, a spinning solution is spun into a concentrated electrolyte aqueous solution such as Na 2 SO 4 or NaOH, washed with water, dried, and stretched to form fibers.

【0013】本発明は何れの方法で得られたPVA繊維
にも適用される。湿式紡糸法PVA繊維の場合には細い
繊度の糸が得られ、中空部分が作り易い。また乾式紡糸
法PVA繊維では湿式紡糸法に比して太い糸が得られ、
中空部分の径を大きくすることが出来る。
The present invention is applicable to PVA fibers obtained by any method. In the case of the wet-spun PVA fiber, a yarn having a fine fineness can be obtained, and the hollow portion can be easily formed. In addition, the dry-spun PVA fiber produces thicker threads than the wet-spun method.
The diameter of the hollow portion can be increased.

【0014】PVA繊維はその物理的性質を向上させる
目的で、ホウ酸やMgSO4 の添加、或いは耐水性向上の目
的でアルデヒド類等の架橋剤により架橋反応を行なう場
合があるが、それらのPVA繊維にも適用できる。また
ビニルアルコールを主成分とした、エチレン、塩化ビニ
ル等他のモノマーとの共重合物の繊維でもよい。更に本
発明では、ポリ塩化ビニル(PVC)を主原料としたエ
マルジョンにPVAの水溶液を混合して芒硝浴中で紡糸
し、通常のPVA繊維の湿式紡糸の場合と同様にして製
造した、いわゆるPVA−PVC繊維を原料繊維として
用いることも出来る。
The PVA fiber may be subjected to a crosslinking reaction with the addition of boric acid or MgSO 4 for the purpose of improving its physical properties, or with a crosslinking agent such as an aldehyde for the purpose of improving the water resistance. It can also be applied to fibers. Fibers of a copolymer containing vinyl alcohol as a main component and another monomer such as ethylene or vinyl chloride may also be used. Further, in the present invention, a so-called PVA produced by mixing an aqueous solution of PVA into an emulsion mainly composed of polyvinyl chloride (PVC) and spinning the mixture in a sodium sulfate bath and producing it in the same manner as in the normal wet spinning of PVA fibers. -PVC fiber can also be used as a raw material fiber.

【0015】本発明に使用される脱水剤は酸性が強い無
機酸例えば硫酸、塩酸、硝酸、リン酸、メタリン酸等が
好適であり、更にルイス酸例えばZnCl2 AlCl3 及び TiC
l2も有効である。尚、酸性のため材質上支障がある場合
はアンモニウム塩を使用することが出来る。これは次の
熱処理工程で熱分解してアンモニアが飛散し、生成した
無機酸が脱水剤として作用するものと考えられる。アン
モニウム塩としては硫酸アンモニウム、塩化アンモニウ
ム、硝酸アンモニウム、リン酸アンモニウム、リン酸1
水素2アンモニウム、リン酸2水素1アンモニウム、メ
タリン酸アンモニウム、ポリリン酸アンモニウム等が効
果的である。
The dehydrating agent used in the present invention is preferably an inorganic acid having a strong acidity such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, metaphosphoric acid and the like, and a Lewis acid such as ZnCl 2 AlCl 3 and TiC.
l 2 is also valid. If there is a problem in terms of material due to acidity, ammonium salt can be used. It is considered that this is because the thermal decomposition in the next heat treatment step causes ammonia to scatter, and the generated inorganic acid acts as a dehydrating agent. As ammonium salts, ammonium sulfate, ammonium chloride, ammonium nitrate, ammonium phosphate, phosphoric acid 1
Diammonium hydrogen, diammonium dihydrogen phosphate, ammonium metaphosphate, ammonium polyphosphate and the like are effective.

【0016】脱水剤は水溶液として、マングロールによ
るディップ方式或いはニップ方式でPVA繊維の表面層
に均一に付着させることが出来る。ここで表面層とは繊
維表面に近い部分で、スキン、コアーと分けた場合略ス
キンに相当する領域をいう。
The dehydrating agent as an aqueous solution can be uniformly attached to the surface layer of the PVA fiber by a dipping method using a mang roll or a nip method. Here, the surface layer is a portion close to the fiber surface, and when divided into a skin and a core, it means a region substantially corresponding to a skin.

【0017】[0017]

【作用】本発明は脱水剤を繊維中心部迄均一に浸透させ
ることなしに、表面層に近い部分のみに止めて急速に乾
燥せしめることにより、後の乾留工程における不融化と
相まって、脱水剤の浸透していないコアー部分(以下中
心層という)を溶融除去して中空状を形成せしめるもの
である。従って、脱水剤は表面層の一定の深さ迄のみ浸
透し、中心部には浸透していない様な不均一な浸透状態
にする必要がある。その様に付着出来る方法であればど
のような方法でもよいが、種々の浸漬条件と中空状形成
の関係をしらべた結果、脱水剤水溶液濃度2〜40%、浸
漬温度40℃〜80℃、浸漬時間5秒〜2分、脱水剤付着量
5〜20重量%として、付着後、速やかに温風で急速乾燥
する方法が好適であることを見出した。
In the present invention, the dehydrating agent is not allowed to uniformly permeate to the center of the fiber, but is stopped only in the portion close to the surface layer and is dried rapidly. The core portion (hereinafter referred to as the central layer) that has not penetrated is melted and removed to form a hollow shape. Therefore, it is necessary that the dehydrating agent penetrates only to a certain depth of the surface layer, and does not penetrate into the central portion, resulting in a non-uniform permeation state. Although any method may be used as long as it can be attached in this way, as a result of examining the relationship between various immersion conditions and hollow formation, the concentration of the dehydrating agent aqueous solution is 2 to 40%, the immersion temperature is 40 ° C to 80 ° C, and the immersion is performed. It has been found that a method of rapidly drying with warm air after adhering with a time of 5 seconds to 2 minutes and an amount of adhering the dehydrating agent of 5 to 20% by weight is suitable.

【0018】すなわち、上記の方法により脱水剤は繊維
の表面層のみに5〜20重量%付着するが、この際2%以
下では熱処理工程における脱水反応が不充分で、繊維が
変形し易く良好な中空形状が出来ない場合があり、また
20%以上付着させると、脱水反応が進行し易く、中空部
分の内径が小さくなる傾向がある。
That is, 5 to 20% by weight of the dehydrating agent adheres only to the surface layer of the fiber by the above-mentioned method, but if it is 2% or less, the dehydration reaction in the heat treatment step is insufficient and the fiber is easily deformed, which is good. It may not be possible to make a hollow shape,
If 20% or more is attached, the dehydration reaction easily proceeds and the inner diameter of the hollow portion tends to be small.

【0019】PVA繊維は脱水剤付着後、速やかに乾燥
させることが好ましい。乾燥方法は特に限定しないが、
120 ℃の温風で3〜4分で急速に乾燥するような方法に
よれば好結果が得られる。乾燥後急速に加熱すると溶融
するおそれがあるので、180℃から300 ℃迄の間徐々に
加熱して、黒褐色または黒色になるようにする方法が適
当で、次に温度を上げ、400 ℃から1,000 ℃迄5分以内
に昇温して乾留を完結せしめる必要がある。その際PV
A分子は脱水反応によりポリエン構造となり不融化され
る。
It is preferable that the PVA fiber is dried immediately after the attachment of the dehydrating agent. The drying method is not particularly limited,
Good results can be obtained by a method in which hot air at 120 ° C. is used for rapid drying in 3 to 4 minutes. It may melt if heated rapidly after drying, so it is appropriate to gradually heat from 180 ℃ to 300 ℃ to obtain blackish brown or black. Next, raise the temperature to 400 ℃ to 1,000 ℃. It is necessary to raise the temperature to ℃ within 5 minutes to complete the dry distillation. Then PV
A molecule becomes a polyene structure by the dehydration reaction and is infusibilized.

【0020】熱処理による脱水反応の速度は高温程大き
いが、PVAの軟化点は220 ℃〜240 ℃であるため、脱
水反応不充分の間に温度がこの領域に達すると、PVA
繊維が溶融収縮して変形が著しく、良好な中空形状が得
られない。熱処理による脱水反応が進行すると、PVA
繊維は褐色から黒褐色または黒色となり、不融化して軟
化点が次第に上昇する。従って、良好な表面層を形成さ
せるためには脱水反応の進行状態に応じて、熱処理温度
は常にその軟化点以下に保たねばならない。急速に加熱
すると溶融して変形し、また中空部が閉塞されるおそれ
があるため、180 ℃から300 ℃迄徐々に加熱する方法が
好ましい。
Although the rate of dehydration reaction due to heat treatment is higher at higher temperatures, the softening point of PVA is 220 ° C. to 240 ° C. Therefore, if the temperature reaches this region during insufficient dehydration reaction, PVA
The fibers are melted and shrunk and deformed remarkably, and a good hollow shape cannot be obtained. When the dehydration reaction by heat treatment progresses, PVA
The fibers change from brown to blackish brown or black and become infusible and the softening point gradually rises. Therefore, in order to form a good surface layer, the heat treatment temperature must be kept below its softening point depending on the progress of the dehydration reaction. If heated rapidly, it may be melted and deformed, and the hollow part may be clogged. Therefore, a method of gradually heating from 180 ° C. to 300 ° C. is preferable.

【0021】一方中心層は脱水剤を含まぬため不融化さ
れず、220 ℃〜240 ℃以上に達した場合、徐々に溶融し
て中空部分が形成されると考えられる。しかし、この段
階で生成する中空部分は尚形状が不完全であるが、更に
400 ℃から1,000 ℃に5分以内に昇温して、短時間高温
乾留することにより、表層部の炭素質化が一層進行する
と共に、中心層の溶融も進行して中空部分の断面形状も
整った円形となり、また完全な黒色となる。尚昇温速度
を低下せしめた場合は、中心部が溶融不良になり、溶融
して除去されないうちに炭化された中空部が狭小化する
ものと、考えられる。
On the other hand, the central layer is not made infusible because it does not contain a dehydrating agent, and it is considered that when it reaches 220 ° C to 240 ° C or more, it gradually melts to form a hollow portion. However, the hollow part created at this stage is still incomplete in shape,
By increasing the temperature from 400 ℃ to 1,000 ℃ within 5 minutes and performing high-temperature dry distillation for a short time, the carbonization of the surface layer progresses further, the melting of the central layer also progresses, and the cross-sectional shape of the hollow part is also adjusted. It has a round shape and is completely black. It is considered that when the temperature rising rate is decreased, the central portion becomes poorly melted, and the hollow portion carbonized before being melted and removed is narrowed.

【0022】熱処理及び乾留は不活性ガス中で行われ、
処理時間は特に限定しないが、180℃〜300 ℃迄60分、2
20 ℃〜300 ℃迄60分程度の場合には良好な結果が得ら
れる。また乾留は一酸化炭素ガス、水素ガスまたは窒素
ガスのいずれかまたはそれらの混合ガス中で行うと整っ
た中空形状が得られ易い。尚中空部分の形状は連続型と
することも独立型とすることも可能である。
The heat treatment and carbonization are carried out in an inert gas,
The treatment time is not particularly limited, but it is 60 minutes from 180 ℃ to 300 ℃, 2
Good results are obtained when the temperature is between 20 ° C and 300 ° C for about 60 minutes. If dry distillation is carried out in any of carbon monoxide gas, hydrogen gas, nitrogen gas, or a mixed gas thereof, it is easy to obtain a regular hollow shape. The shape of the hollow portion may be a continuous type or an independent type.

【0023】前記に詳述した如く、熱処理及び高温乾留
工程は脱水剤付着工程と相まって、本発明の要部である
中空形状を形成せしめる上で重要な役割を果たす工程で
ある。
As described in detail above, the heat treatment and the high temperature dry distillation step, together with the dehydrating agent attaching step, are important steps for forming the hollow shape which is the main part of the present invention.

【0024】次に、乾留工程で形成された中空状炭素繊
維を賦活処理することにより、中空状活性炭繊維が得ら
れる。賦活方法は特に限定しないが、一般に賦活を進め
ると吸着特性は向上するが、強度的性質及び収率は低下
し、2律背反的性質を示す。両者が比較的バランスのと
れた性質を有する様に賦活するためには、液化石油ガス
の燃焼ガスにより炉内を800 ℃〜1,100 ℃の比較的高温
に維持し、そこに乾留したPVA繊維を投入して20〜30
分保持する急速賦活法が好適で、その場合賦活収率は40
〜60%となる。
Next, the hollow carbon fibers formed in the dry distillation step are activated to obtain hollow activated carbon fibers. Although the activation method is not particularly limited, generally, when the activation is promoted, the adsorption property is improved, but the strength property and the yield are lowered, and the property shows a dichotomy. In order to activate the two so that they have a relatively balanced property, the inside of the furnace is maintained at a relatively high temperature of 800 ° C to 1,100 ° C by the combustion gas of liquefied petroleum gas, and the PVA fiber that has been subjected to dry distillation is added thereto. Then 20-30
A rapid activation method that retains the amount of water is preferable, in which case the activation yield is 40
It will be ~ 60%.

【0025】本発明の中空状活性炭繊維は表層部が半透
性を示すものであれば、その太さは限定しないが、通常
外径5〜20数μで表層部繊維壁の厚さは4〜10数μ、中
空部分の容積は10〜70%である。従って、表層部は活性
炭特有の吸着性と半透膜の性質を併せ持った特異な物性
を示す。また中空部分は連続性とすることも独立性とす
ることも可能である。
The thickness of the hollow activated carbon fiber of the present invention is not limited as long as the surface layer shows semi-permeability, but the outer diameter is usually 5 to 20 μm and the thickness of the fiber wall of the surface layer is 4 μm. The volume of the hollow part is 10 to 70%. Therefore, the surface layer shows a unique physical property having both the adsorptivity peculiar to activated carbon and the property of a semipermeable membrane. Moreover, the hollow portion can be continuous or independent.

【0026】本発明の中空状活性炭繊維の特性が最も発
揮されるのは、連続孔を有する活性炭繊維を集束とし
て、適当な長さに切断してガラス管に封入し、両端の繊
維の外側のみ熱硬化性樹脂でガラス管の内壁に固着し、
繊維の中空部分と繊維の外部を表層部により完全に分離
して使用する方式である。
The characteristics of the hollow activated carbon fiber of the present invention are most exerted when the activated carbon fiber having continuous pores is bundled, cut into an appropriate length and enclosed in a glass tube, and only the outside of the fibers at both ends is bundled. It adheres to the inner wall of the glass tube with a thermosetting resin,
In this method, the hollow part of the fiber and the outside of the fiber are completely separated by the surface layer part.

【0027】中空状活性炭繊維のベンゼン吸着量は120
〜130 %、BET 比表面積は1,600 〜2,500m2/g に達して
いる。粒状活性炭は賦活を進めても比表面積は1,500 〜
1,700 m2/gが限度であるから、本発明による中空状活性
炭は極めて大きな比表面積を持ち、従って非常に高い吸
着性を示す。更に表面積が大きいにも拘らず、強度的性
質も優れている。この性質は高温乾留工程で賦与された
ものと考えられる。
The benzene adsorption amount of the hollow activated carbon fiber is 120.
〜130%, BET specific surface area reaches 1,600〜2,500m 2 / g. Granular activated carbon has a specific surface area of 1,500-
Due to the limit of 1,700 m 2 / g, the hollow activated carbon according to the present invention has a very large specific surface area and therefore exhibits a very high adsorptivity. Further, despite having a large surface area, it has excellent strength properties. This property is considered to have been imparted in the high temperature carbonization process.

【0028】前記の様に中空状活性炭繊維の表層部は、
極めて吸着性が高い活性炭よりなっているが、更に表層
部の繊維壁は極めて薄いため半透膜の性質を有し、この
2つの機能が相乗されて特異な分子篩性を示す。これは
実施例6及び7の結果からも明瞭に認められる。更に有
機化合物の精度が高い吸着分離、空気中の窒素及び酸素
の分離、エタノールと水の分離等に使用できる。尚気体
分離の場合は2本のカラムを交互に使用し、圧力スイン
グ法により連続的分離操作も可能である。
As described above, the surface layer of the hollow activated carbon fiber is
Although it is made of activated carbon having a very high adsorptivity, the fiber wall in the surface layer is extremely thin and thus has a property of a semipermeable membrane, and these two functions are synergized to show a unique molecular sieving property. This is clearly seen from the results of Examples 6 and 7. Further, it can be used for highly accurate adsorption separation of organic compounds, separation of nitrogen and oxygen in the air, separation of ethanol and water, and the like. In the case of gas separation, it is possible to use two columns alternately and perform a continuous separation operation by the pressure swing method.

【0029】中空状活性炭繊維の分子篩性の発見及び利
用は、今迄知られていない本発明の顕著な効果である。
The discovery and use of the molecular sieving properties of hollow activated carbon fibers is a remarkable effect of the present invention which has hitherto been unknown.

【0030】その他中空状活性炭繊維は、通常の活性炭
の用途に使用する場合にも極めて高い吸着性を有するか
ら、オゾン分解、糖液脱色精製、脱臭等にも広く使用さ
れる。
Other hollow activated carbon fibers have extremely high adsorptivity even when used for ordinary activated carbon applications, and are therefore widely used for ozone decomposition, sugar solution decolorization purification, deodorization and the like.

【0031】[0031]

【実施例】以下実施例を挙げて本発明を更に具体的に説
明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0032】(実施例1)工業材料用PVA繊維(1800
d/1000f 、強度10.5g/d 、伸度7%)に(NH4)2 SO4 70
g と(NH4)2HPO4を各70g を1,000gの水に溶解し、この水
溶液に上記PVA繊維を70℃で10秒間ディプレマングル
で絞液し、105 ℃で3分間乾燥させた。脱水剤の付着率
は7.3wt %であった。この繊維を300 ℃以下で黒褐色に
なるまで熱処理した後、400 ℃から900 ℃まで3分間で
N2中で昇温し乾留した。その後、スチーム中で1,050 ℃
で賦活収率50%になる迄賦活した。
Example 1 PVA fiber for industrial materials (1800
d / 1000f, strength 10.5g / d, elongation 7%) (NH 4 ) 2 SO 4 70
70 g of each of g and (NH 4 ) 2 HPO 4 was dissolved in 1,000 g of water, and the PVA fiber was squeezed by diple mangle at 70 ° C. for 10 seconds and dried at 105 ° C. for 3 minutes. The deposition rate of the dehydrating agent was 7.3 wt%. After heat-treating this fiber at 300 ℃ or less until it becomes blackish brown, 400 ℃ to 900 ℃ in 3 minutes
The temperature was raised in N 2 and the mixture was dried and distilled. Then in steam at 1,050 ° C
Activation was carried out until the activation yield reached 50%.

【0033】処理条件及び物性値を表1に示す。尚表面
積はCarlo Erba社製 Sorptomatic1800により、活性炭の
常法であるB.E.T.法(Brunauer Emmett & Teller法)
により測定したものである。
Table 1 shows processing conditions and physical property values. The surface area was measured by Carlo Erba's Sorptomatic 1800 using the BET method (Brunauer Emmett & Teller method), which is the usual method for activated carbon.
It was measured by.

【0034】[0034]

【表1】 [Table 1]

【0035】繊維断面の中空部の形状を光学顕微鏡及び
走査型電子顕微鏡で観察した。その形状を示すため図面
に代わる写真として、繊維断面の走査型電子顕微鏡写真
(2,000 倍) を図1に示す。
The shape of the hollow portion of the fiber cross section was observed with an optical microscope and a scanning electron microscope. A scanning electron micrograph (× 2000) of the fiber cross section is shown in Fig. 1 as a photograph instead of a drawing to show its shape.

【0036】尚上記実施例1において、300 ℃以下で黒
褐色になるまで熱処理した後高温乾留をせず、上記と同
一条件で賦活したところ中空部が狭小で連続型となら
ず、また中空部分の形状も著しく不規則であった。
In Example 1, the heat treatment was performed at 300 ° C. or lower until it became blackish brown, and then high temperature dry distillation was not performed. When activated under the same conditions as above, the hollow portion was narrow and did not become a continuous type. The shape was also extremely irregular.

【0037】(比較例1)400 ℃から900 ℃迄の昇温時
間を10分間とした他、実施例1と同一条件であるが、中
空部内径0.6 μ、内部空間率0.2 %で中空部が極めて狭
小か或いは殆ど生成しなかった。徐々に温度を上げた場
合は、脱水剤が浸透していない中心部の溶融状態が不良
になる。これはコアー部分が溶融して除去されないうち
に炭化されたためと考えられる。尚昇温速度を更に低下
して昇温時間を20分間とした場合は中空部は全く認めら
れなかった。その処理条件及び物性値を表2に示す。
Comparative Example 1 The same conditions as in Example 1 were used except that the temperature rising time from 400 ° C. to 900 ° C. was 10 minutes, but the inner diameter of the hollow portion was 0.6 μ, and the internal void ratio was 0.2%. Very small or hardly produced. When the temperature is gradually raised, the melted state of the central portion where the dehydrating agent has not penetrated becomes poor. This is probably because the core portion was melted and carbonized before being removed. When the temperature rising rate was further reduced and the temperature rising time was set to 20 minutes, no hollow part was observed. Table 2 shows the processing conditions and physical property values.

【0038】[0038]

【表2】 [Table 2]

【0039】(比較例2)脱水剤(NH4)2SO4及び(NH4)2
HPO4の付着率を、それぞれ12%及び13%に増加した他実
施例1と略同一条件で処理したものであるが、中空部内
径2.1 μ、内部空間率3.2 %で、中空部は狭小でまた独
立孔であった。
(Comparative Example 2) Dehydrating agents (NH 4 ) 2 SO 4 and (NH 4 ) 2
The HPO 4 deposition rate was increased to 12% and 13%, respectively, and the treatment was performed under substantially the same conditions as in Example 1. However, the inner diameter of the hollow part was 2.1 μ, the internal void ratio was 3.2%, and the hollow part was narrow. It was also an independent hole.

【0040】処理条件及び物性値を表2に示す。Table 2 shows processing conditions and physical property values.

【0041】(実施例2〜5)脱水剤として夫々硫酸、
塩化亜鉛或いはリン酸を使用し、また高温乾留条件も変
化させたもので、実施例2〜4の処理条件及び物性値を
表1に、実施例5は表2に示す。
(Examples 2 to 5) Sulfuric acid was used as a dehydrating agent,
Zinc chloride or phosphoric acid was used, and the high temperature dry distillation conditions were also changed. The treatment conditions and physical properties of Examples 2 to 4 are shown in Table 1, and Example 5 is shown in Table 2.

【0042】(実施例6)表2に示した処理条件及び物
性値を有する、外径12μ、内径7〜8μの中空状活性炭
繊維のトウを、内径5cm、長さ50cmのガラス管に挿入
し、繊維束の両端とガラス管の内面をエポキシ樹脂で充
填して、中空状繊維の中空部と繊維の外部を分離し、そ
れぞれに出入口を設けた構造とした。
(Example 6) A tow of hollow activated carbon fiber having an outer diameter of 12 µ and an inner diameter of 7 to 8 µ having the treatment conditions and physical properties shown in Table 2 was inserted into a glass tube having an inner diameter of 5 cm and a length of 50 cm. Both ends of the fiber bundle and the inner surface of the glass tube were filled with an epoxy resin to separate the hollow portion of the hollow fiber from the outside of the fiber, and a port was provided for each.

【0043】繊維の外部側を0.3kg/cm2 程度の僅かに加
圧した状態に保持して、連続的に空気で流しておくと、
酸素ガスは活性炭繊維の表面層を透過して繊維の中空部
に流入し、繊維の外部側出口から窒素ガスが濃縮された
気体が連続的に流出する。
When the outer side of the fiber is kept slightly pressurized at about 0.3 kg / cm 2 and continuously blown with air,
Oxygen gas permeates the surface layer of the activated carbon fiber and flows into the hollow portion of the fiber, and a gas enriched with nitrogen gas continuously flows out from the outlet of the fiber on the outer side.

【0044】空気を分離装置の空間速度 0.1hr -1で通
気した場合、分離された窒素ガス中の酸素濃度は0.1 %
となり、効率よく空気中の酸素と窒素を分離しうること
が認められた。
When air is aerated at the space velocity of the separator of 0.1 hr -1 , the oxygen concentration in the separated nitrogen gas is 0.1%.
Therefore, it was confirmed that oxygen and nitrogen in the air can be efficiently separated.

【0045】(実施例7)実施例3で得られた中空状活
性炭繊維を用いて、実施例6と同じサイズのカラムを作
成し、繊維の外部側入口よりCHCl3 及びCCl4をそれぞれ
1%含む窒素ガスを僅かに加圧した状態で、分離装置の
空間速度 0.1hr -1で連続的に流した。
(Example 7) A column having the same size as in Example 6 was prepared using the hollow activated carbon fiber obtained in Example 3, and CHCl 3 and CCl 4 were added at 1% from the outside inlet of the fiber. The nitrogen gas containing the nitrogen gas was slightly pressurized and was continuously flowed at a space velocity of the separator of 0.1 hr −1 .

【0046】繊維の表層部を透過して中空部に流れ込ん
だガス中に含まれる有機成分の99.99 %はCHCl3 で、CC
l4は殆ど認められなかった。
99.99% of the organic components contained in the gas that has permeated the surface layer of the fiber and flowed into the hollow portion are CHCl 3 and CC
Almost no l 4 was observed.

【0047】[0047]

【発明の効果】中空状活性炭繊維の表層部が有する高い
吸着性と、薄い表層部繊維壁の半透性の相乗作用による
分子篩性を利用して、空気から窒素及び酸素の分離、有
機化合物の精度が高い吸着分離、エタノールと水の分離
等に使用できる。また気体分離の場合は圧力スイング法
により連続的分離操作も可能である。
EFFECTS OF THE INVENTION By utilizing the high molecular weight of the hollow surface activated carbon fiber having a high adsorptivity and the semipermeable property of the thin surface fiber wall, the separation of nitrogen and oxygen from the air and the organic compound It can be used for highly accurate adsorption separation, separation of ethanol and water, etc. Further, in the case of gas separation, a continuous separation operation is possible by the pressure swing method.

【0048】その他中空状活性炭繊維は活性炭としも極
めて高い吸着性を有するから、オゾン分解、糖液脱色精
製、脱臭等の用途にも広く使用出来る。
In addition, since the hollow activated carbon fiber has an extremely high adsorptivity even as activated carbon, it can be widely used for applications such as ozone decomposition, sugar solution decolorization and purification, and deodorization.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた中空状活性炭繊維の断面の
走査型電子顕微鏡写真を示す(2,000 倍) 。
FIG. 1 shows a scanning electron micrograph of a cross section of the hollow activated carbon fiber obtained in Example 1 (2,000 times).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリビニルアルコール系繊維の表面層に
脱水剤を付着せしめた後、繊維が溶融せぬよう黒褐色な
いし黒色になる迄熱処理し、更に400 ℃から1,000 ℃迄
5分以内に昇温して乾留し、更に賦活して調製した中空
状活性炭繊維を使用して、繊維の外側或いは内側より複
数成分を含む気体或いは液体を供給し、繊維壁を通過せ
しめることにより含有成分を分離することを特徴とする
気体または液体の分離方法。
1. After applying a dehydrating agent to the surface layer of polyvinyl alcohol fiber, heat treatment is performed until it becomes blackish brown or black so as not to melt the fiber, and further heated from 400 ° C. to 1,000 ° C. within 5 minutes. It is possible to separate the contained components by supplying a gas or liquid containing multiple components from the outside or inside of the fiber by using the hollow activated carbon fiber prepared by dry distillation and further activation. Characteristic method for separating gas or liquid.
【請求項2】 複数成分を含む気体として空気を使用
し、分離成分が窒素ガスである特許請求の範囲第1項記
載の分離方法。
2. The separation method according to claim 1, wherein air is used as a gas containing a plurality of components, and the separation component is nitrogen gas.
JP3224633A 1991-08-10 1991-08-10 Gas or liquid separation method Expired - Fee Related JPH076093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3224633A JPH076093B2 (en) 1991-08-10 1991-08-10 Gas or liquid separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224633A JPH076093B2 (en) 1991-08-10 1991-08-10 Gas or liquid separation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59168416A Division JPS6147827A (en) 1984-08-10 1984-08-10 Hollow activated carbon fiber

Publications (2)

Publication Number Publication Date
JPH06128816A JPH06128816A (en) 1994-05-10
JPH076093B2 true JPH076093B2 (en) 1995-01-25

Family

ID=16816773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224633A Expired - Fee Related JPH076093B2 (en) 1991-08-10 1991-08-10 Gas or liquid separation method

Country Status (1)

Country Link
JP (1) JPH076093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812661B2 (en) 2002-05-13 2006-08-23 信越化学工業株式会社 Purification method of silicone oil

Also Published As

Publication number Publication date
JPH06128816A (en) 1994-05-10

Similar Documents

Publication Publication Date Title
US10563323B2 (en) Method for production of carbon nanofiber mat or carbon paper
Yue et al. Carbonization and activation for production of activated carbon fibers
US3639953A (en) Method of producing carbon fibers
DE2715486C3 (en) Process for the production of activated carbon fibers
DE10226969B4 (en) Activated carbon fibers and process for their preparation
US3556729A (en) Process for oxidizing and carbonizing acrylic fibers
US3497318A (en) Preparation of carbon textiles from polyacrylonitrile base textiles
RU2429316C1 (en) Procedure for continuous production of hydrated cellulose of carbon fibre in form of unidirectional braid
CN105040164B (en) A kind of method for preparing activated carbon fiber as matrix with polyolefin
KR102157184B1 (en) Methode for preparing acrylonitrile based copolymer fiber
US4925604A (en) Process for preparing a carbon fiber of high strength
JPS6147827A (en) Hollow activated carbon fiber
US5269984A (en) Process of making graphite fiber
JPH076093B2 (en) Gas or liquid separation method
US4948574A (en) Method of manufacturing of pitch-base carbon fiber
DE2246572C2 (en) Process for producing a carbon fiber
JPH02242920A (en) Carbon fiber containing composite metal
JP6365675B2 (en) Carbon material manufacturing method
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JPH02160924A (en) Porous carbon fiber and production thereof
DE2506344B2 (en) METHOD FOR MANUFACTURING CARBON FIBERS
KR101221615B1 (en) Preparation method of carbon nano-fiber using electrospinning
WO2013060792A1 (en) Carbon fibres, carbon fibre precursors and production thereof
JPS62152533A (en) Base material for removing trihalomethane
JPH01132832A (en) Method for producing carbon material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees