JPH0760852A - Pipe joint made of fiber-reinforced resin and its manufacture - Google Patents

Pipe joint made of fiber-reinforced resin and its manufacture

Info

Publication number
JPH0760852A
JPH0760852A JP5213923A JP21392393A JPH0760852A JP H0760852 A JPH0760852 A JP H0760852A JP 5213923 A JP5213923 A JP 5213923A JP 21392393 A JP21392393 A JP 21392393A JP H0760852 A JPH0760852 A JP H0760852A
Authority
JP
Japan
Prior art keywords
resin
fiber
pipe joint
impregnated
short tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5213923A
Other languages
Japanese (ja)
Inventor
Satoyuki Kobayashi
智行 小林
Hirohide Nakagawa
裕英 中川
Kimitoku Takao
公徳 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5213923A priority Critical patent/JPH0760852A/en
Publication of JPH0760852A publication Critical patent/JPH0760852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To provide a pipe joint made of FRP, capable of ensuring excellent resistance to weeping and the dimentional accuracy or smoothness of an inner face and provide the manufacture of the same at a low cost. CONSTITUTION:In a pipe joint made of fiber-reinforced resin, a short pipe-like resin- molded product 10 is fixed to an inner face of at lease one receiving port from the inlet of the receiving port through the rear side thereof, and the material of a fiber- reinforced resin portion 21 facing the outer face at the end on the rear side of the molded product 10 is made of a material which hardly causes sags and runs of resin in an uncured state rather than that of other fiber-reinforced resin portions 22. At least one end of a rotary core 35 is overlaid with a short pipe-like resin-molded product member 1, and a fiber face material 210 impregnated with a curable resin having high viscosity is wound around a boundary portion between the outer face at the end on the rear side of the molded product member and the outer face of the core. Then, a curable resin-impregnated continuous fiber material 220 is wound around and laiminated on the short pipe-like resin-molded product and the core and, furthermore, the resin impregnated in the face material and the resin impregnated in the continuous fiber material are cured by heating and, thereafter, the cured pipe joint is released from a mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水道管等の高内圧管の接
合に使用する繊維強化樹脂製管継手及びその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced resin pipe joint used for joining a high internal pressure pipe such as a water pipe and a method for producing the pipe joint.

【0002】[0002]

【従来の技術】繊維強化樹脂製管継手(以下、繊維強化
樹脂をFRPと称する)においては、合成樹脂製管継手
の耐腐食性、軽量性等に加え、優れた内圧(引張り)強
度、衝撃強度等を備えている。
2. Description of the Related Art In a fiber reinforced resin pipe joint (hereinafter, fiber reinforced resin is referred to as FRP), in addition to the corrosion resistance and light weight of the synthetic resin pipe joint, excellent internal pressure (tensile) strength and impact It has strength and the like.

【0003】このFRP製管継手中、樹脂を含浸した連
続繊維をマンドレルに巻回・積層し、樹脂の硬化後、マ
ンドレルを脱型して製造する管継手、すなわち、フィラ
メントワインディング法(以下、FW法と称する)によ
り成形したFRP製管継手においては、繊維に内圧フ−
プストレスを効果的に負担させ得、特に高い内圧強度を
備えている。
In this FRP pipe joint, a continuous pipe impregnated with a resin is wound around and laminated on a mandrel, and after the resin is cured, the mandrel is released from the mold, that is, a filament winding method (hereinafter referred to as FW). In the FRP pipe joint molded by
It can effectively bear the stress and has a high internal pressure strength.

【0004】しかしながら、FW法FRP製管継手を、
高圧下、特に脈動負荷条件下で使用すると、例えば、水
道管の管継手として使用すると、内部の水が発汗状に漏
水する現象、すなわちウィ−ピング現象が発生し易い。
However, the FW method FRP pipe joint is
When used under high pressure, especially under pulsating load conditions, for example, when used as a pipe joint for a water pipe, a phenomenon that internal water leaks in a sweating manner, that is, a weeping phenomenon is likely to occur.

【0005】かかるウィ−ピング現象を防止するため
に、FRP製管継手の全内周面に、ポリ塩化ビニル等の
ブロ−成形により成形した合成樹脂製成形体を固着し、
この合成樹脂製成形体をウィ−ピング防止層とすること
が公知である(特開昭60−229742号公報)。
In order to prevent such a weeping phenomenon, a synthetic resin molding formed by blow molding of polyvinyl chloride or the like is fixed to the entire inner peripheral surface of the FRP pipe joint,
It is known to use this synthetic resin molded body as a weeping prevention layer (JP-A-60-229742).

【0006】[0006]

【発明が解決しようとする課題】管継手においては、同
一口径の管に対し、直線状管継手(ソケット)、ベンド
管継手、T型管継手、十字型管継手等の形状の異なる多
種類のものが必要とされる。
In the pipe joint, for pipes having the same diameter, there are many types of pipes having different shapes such as a straight pipe joint (socket), a bend pipe joint, a T-shaped pipe joint, and a cross-shaped pipe joint. Things are needed.

【0007】従って、上記の従来例においては、管継手
の種類に応じて多種類の成樹脂製成形体を成形する必要
があり、多種類のブロ−成形金型を必要とし、製造費が
高コストになり、また、ブロ−成形品の管理もやっかい
である。
Therefore, in the above-mentioned conventional example, it is necessary to mold many kinds of molded products made of resin according to the kind of the pipe joint, many kinds of blow molding dies are required, and the manufacturing cost is high. It is costly and management of blow molded products is difficult.

【0008】ところで、通常のFRP製管継手のウィ−
ピング現象を観察すると、ウィ−ピングの発生箇所は、
管挿口が挿入される部分、すなわち、受口、特に、受口
奥方のテ−パ段面、止水用ゴムリング装着溝箇所、抜け
止めリング装着溝箇所等が多く、通常、管挿口との接触
があり得ない管継手内面中央部には、ウィ−ピングの発
生は殆んど観られない。
By the way, an ordinary FRP pipe joint
Observing the ping phenomenon, the location of the weeping
There are many parts where the pipe insertion port is inserted, that is, the reception port, especially the taper step surface at the back of the reception port, the rubber ring mounting groove for water stop, the retaining ring mounting groove position, etc. At the central portion of the inner surface of the pipe joint where there is no contact therewith, weeping is hardly observed.

【0009】これは、管挿口先端との当接による局部的
応力、高内圧作用下での溝等の凹凸箇所での応力集中、
或いは、抜け止めリングの当接による局部的応力等のた
めに、それらの箇所に初期マイクロクラックが発生し、
このマイクロクラックが樹脂と繊維との界面を繋ぐよう
に連鎖的に伝播していく結果であると推察でき、FRP
製管継手の全内面にウィ−ピング防止層を設けても、挿
口が接触することのない管継手内面中央部のウィ−ピン
グ防止層部分はウィ−ピング防止に殆んど寄与すること
がない。
This is because local stress due to contact with the tip of the pipe insertion port, stress concentration at uneven portions such as grooves under the action of high internal pressure,
Or, due to local stress due to the contact of the retaining ring, etc., initial microcracks occur at those locations,
It can be inferred that these microcracks propagate in a chain so as to connect the interface between the resin and the fiber.
Even if the weeping prevention layer is provided on the entire inner surface of the pipe joint, the weeping prevention layer portion at the center of the inner surface of the pipe joint, which does not come into contact with the insertion opening, can contribute almost to the prevention of weeping. Absent.

【0010】上記した従来例においては、ブロ−成形に
よるウィ−ピング防止合成樹脂製成形体をFWのマンド
レルとして使用し、通常のFW法におけるマンドレルか
らの脱型作業を省略して、成形時間の短縮化を図ってい
るが、多種類のウィ−ピング防止合成樹脂製成形体のブ
ロ−成形に要する費用(特に、金型コスト)並びに多種
類のウィ−ピング防止合成樹脂製成形体の管理に要する
費用を勘案すれば、高コスト化を否定し難い。
In the above-mentioned conventional example, a weeping-preventing synthetic resin molded body by blow molding is used as a mandrel of the FW, and the demolding work from the mandrel in the usual FW method is omitted, and the molding time is reduced. Although we are trying to shorten the cost, it is necessary to manage the blow molding cost of various types of weeping prevention synthetic resin moldings (particularly the die cost) and the management of many types of weeping prevention synthetic resin moldings. Considering the cost required, it is difficult to deny the cost increase.

【0011】本発明の目的は、同一口径の多種類の継
手、すなわち、直線状管継手、ベンド管継手、T型管継
手、十字型管継手等の低コスト化を、優れた耐ウィ−ピ
ングと更には内面寸法精度乃至は内面平滑性を保障しつ
つ可能とするFRP製管継手及びその製造方法を提供す
ることにある。
An object of the present invention is to reduce the cost of various types of joints having the same diameter, that is, straight pipe joints, bend pipe joints, T-shaped pipe joints, cross-shaped pipe joints, etc., and to obtain excellent weeping resistance. Another object of the present invention is to provide a pipe joint made of FRP and a method for producing the same, which guarantees inner surface dimensional accuracy and inner surface smoothness.

【0012】[0012]

【課題を解決するための手段】本発明に係る繊維強化樹
脂製管継手は、繊維強化樹脂製の管継手において、少な
くとも一個の受口内面に受口入口から奥側にわたり短管
状樹脂成形体が固着され、該成形体の奥側端部外面に臨
む繊維強化樹脂部分の材質が他の繊維強化樹脂部分より
も、未硬化状態での樹脂だれを生じ難い材質とされてい
ることを特徴とする構成である。
A fiber-reinforced resin pipe joint according to the present invention is a pipe joint made of a fiber-reinforced resin, in which at least one socket inner surface has a short tubular resin molded body extending from the socket inlet to the inner side. It is characterized in that the material of the fiber reinforced resin portion that is fixed and faces the outer surface of the back end of the molded body is less likely to cause resin dripping in an uncured state than other fiber reinforced resin portions. It is a composition.

【0013】本発明に係る繊維強化樹脂製管継手の製造
方法は、回転芯型の少なくとも一端に短管状樹脂成形体
部材を被せ、該成形体部材の奥側端部外面と芯型外面と
の境界部分を、高粘度硬化性樹脂を含浸した繊維面材で
巻回し、次いで、短管状樹脂成形体上並びに芯型上に硬
化性樹脂含浸連続繊維材を巻回積層し、更に、加熱によ
り上記面材の含浸樹脂並びに連続繊維材の含浸樹脂を硬
化させ、而るのち、硬化体を脱型することを特徴とする
構成である。
In the method for manufacturing a fiber-reinforced resin pipe joint according to the present invention, at least one end of the rotary core mold is covered with a short tubular resin molded body member, and the outer surface of the inner end of the molded body member and the outer surface of the core mold are separated from each other. The boundary portion is wound with a fiber surface material impregnated with a high-viscosity curable resin, and then the curable resin-impregnated continuous fiber material is wound and laminated on the short tubular resin molded body and the core die, and further heated by the above. The constitution is characterized in that the impregnating resin for the face material and the impregnating resin for the continuous fiber material are cured, and then the cured body is demolded.

【0014】以下、図面を参照しつつ本発明の構成を詳
細に説明する。図1は本発明において使用する短管状樹
脂成形体部材1を示し、管継手受口の内面形状に応じた
形状とされ、図示の例においては、受口の先端内面を形
成するストレ−ト部11とゴムリングを収容する溝部1
2と抜け止めリングを収容する溝部13と管挿口先端部
を受容するスリ−ブ部14と被トリミング部15とを備
えている。
The structure of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a short tubular resin molded member 1 used in the present invention, which has a shape corresponding to the inner surface shape of a pipe joint receiving port, and in the illustrated example, a straight portion forming the inner surface of the tip of the receiving port. Groove 1 for housing 11 and rubber ring
2, a groove portion 13 for accommodating the retaining ring, a sleeve portion 14 for receiving the distal end portion of the tube insertion opening, and a trimmed portion 15.

【0015】図2は本発明に係るFRP製管継手の一例
を示し、受口内面に短管状樹脂成形体10が固着され、
短管状樹脂成形体10の奥側端部外面に臨む繊維強化樹
脂部分21においては、繊維含浸樹脂の未硬化時に該樹
脂のたれが生じ難い材質のものが使用され、通常、手巻
きにより形成されている。他の繊維強化樹脂部分22は
FW法による樹脂含浸連続繊維材の巻回積層により形成
されている。これに対し、短管状樹脂成形体10の先端
部外面に臨む繊維強化樹脂部分21は、後述するよう
に、強化繊維として繊維面材を用いたもので形成するこ
とができる。勿論、未硬化時に樹脂だれを生じ難い硬化
性樹脂含浸繊維材であれば、他のものの使用も可能であ
る。
FIG. 2 shows an example of the FRP pipe joint according to the present invention, in which the short tubular resin molded body 10 is fixed to the inner surface of the receiving port,
The fiber-reinforced resin portion 21 facing the outer surface of the inner end of the short tubular resin molded body 10 is made of a material that does not easily sag when the fiber-impregnated resin is uncured, and is usually formed by manual winding. ing. The other fiber reinforced resin portion 22 is formed by winding and laminating a resin-impregnated continuous fiber material by the FW method. On the other hand, the fiber-reinforced resin portion 21 that faces the outer surface of the distal end portion of the short tubular resin molded body 10 can be formed by using a fiber surface material as the reinforcing fiber, as described later. Of course, other curable resin-impregnated fibrous materials that hardly cause resin dripping when uncured can be used.

【0016】図3は本発明の管継手の製造方法に使用さ
れる通常のFW装置の概略を示し、ボビン31,…から
引き出された連続繊維材が樹脂含浸槽32に浸漬状態で
通過され、更にフィ−ドアイ34により帯状に収束され
たうえで芯型35に巻き付けられていき、この間、樹脂
含浸連続繊維材の巻き付けパタ−ンに応じた速度で、フ
ィ−ドアイ34が芯型35の軸方向(X軸方向)、この
X軸方向に対するY軸方向、更にはZ軸方向にそれぞれ
正逆走行されると共に芯型35が回転される。
FIG. 3 schematically shows a general FW apparatus used in the method for manufacturing a pipe joint of the present invention, in which the continuous fiber material drawn out from the bobbins 31 ,. Further, it is converged into a band shape by the feed eye 34 and then wound around the core die 35. During this time, the feed eye 34 is rotated at a speed corresponding to the winding pattern of the resin-impregnated continuous fiber material. Direction (X-axis direction), the Y-axis direction with respect to the X-axis direction, and the Z-axis direction, the core die 35 is rotated.

【0017】図2に示したFRP製管継手を本発明の製
造方法により製造するには、まず、図3において芯型3
5の両端に、図4の(イ)に示すように短管状樹脂成形
体部材1をスペ−サ4を介して支着し、次いで、図4の
(ロ)に示すように、樹脂だれを生じ難い高粘度の硬化
性樹脂を含浸した繊維面材210を、短管状樹脂成形体
部材1の奥側端部外面と芯型1の表面との境界部分に巻
回する。
To manufacture the FRP pipe joint shown in FIG. 2 by the manufacturing method of the present invention, first, in FIG.
Short tubular resin molded member 1 is attached to both ends of 5 through spacers 4 as shown in FIG. 4 (a), and then resin dripping is caused as shown in FIG. 4 (b). A fibrous surface material 210 impregnated with a hard highly viscous curable resin is wound around the boundary portion between the outer surface of the inner end of the short tubular resin molded member 1 and the surface of the core die 1.

【0018】而るのち、図3においてボビン31から引
き出した連続繊維材を樹脂含浸槽32に浸漬状態で通過
させ、更にフィ−ドアイ34に通して帯状に収束し、巻
回パタ−ンに応じた速度で芯型35を回転させると共に
フィ−ドアイ34を芯型の軸方向(X軸方向)並びにY
軸方向に往復走行させ、フィ−ドアイ34からの樹脂含
浸連続繊維材220を、図4の(ハ)に示すように、両
端の短管状樹脂成形体1,1上並びに芯型35中央部上
に複数層にて、各層所定の巻き付け角で巻回していく。
After that, the continuous fiber material drawn out from the bobbin 31 in FIG. 3 is passed through the resin impregnation tank 32 in a dipped state, and further passed through the feed eye 34 to converge into a band shape, which corresponds to the winding pattern. The core die 35 is rotated at a constant speed and the feed eye 34 is moved in the axial direction (X-axis direction) of the core die and in the Y direction.
The resin-impregnated continuous fiber material 220 from the feed eye 34 is made to reciprocate in the axial direction, and as shown in FIG. In a plurality of layers, each layer is wound at a predetermined winding angle.

【0019】このようにして樹脂含浸連続繊維材を所定
量にて巻回積層すれば、巻回積層体を芯型と共に加熱炉
に搬入し、繊維面材の含浸樹脂並びに連続繊維材の含浸
樹脂を硬化させ、該硬化体を短管状樹脂成形体部材の固
着一体のもとで芯型から脱型し、両端をトリミングし、
これにて図2に示すFRP製管継手の製造を終了する。
When the resin-impregnated continuous fiber material is wound and laminated in a predetermined amount in this manner, the wound laminated body is carried into the heating furnace together with the core die, and the fiber face material is impregnated with the resin and the continuous fiber material is impregnated with the resin. Is cured, and the cured product is demolded from the core mold while the short tubular resin molded member is integrally fixed, and both ends are trimmed,
This completes the manufacture of the FRP pipe joint shown in FIG.

【0020】上記において、短管状樹脂成形体部材の奥
側端と芯型との間に、若干の隙間(通常、1mm程度の
ギャツプ)が生じることは避けられない。而るに、この
隙間に臨む繊維強化樹脂部分(図2の21)を、未硬化
時に樹脂だれを生じ難い高粘度の硬化性樹脂を含浸した
繊維面材の巻回により形成してあるから、樹脂の硬化工
程前、未硬化樹脂が上記隙間より短管状樹脂成形体部材
1内にたれ流れるのを防止でき、従って、FRP製管継
手の短管状樹脂成形体内面に樹脂が固着するのを排除で
きる。また、短管状樹脂成形体部材1の奥側端に臨む繊
維強化樹脂部分以外の繊維強化樹脂部分(図2の22)
に対しては、含浸樹脂に未硬化時粘度が低粘度の樹脂を
使用でき、FW法により、樹脂の良好な含浸作業性を保
障して良好な作業性を確保できる。
In the above, it is unavoidable that a slight gap (usually, a gap of about 1 mm) is formed between the inner end of the short tubular resin molded member and the core die. Therefore, since the fiber reinforced resin portion (21 in FIG. 2) facing this gap is formed by winding a fiber face material impregnated with a highly viscous curable resin that hardly causes resin dripping when uncured, Before the resin curing step, it is possible to prevent the uncured resin from dripping and flowing into the short tubular resin molded body member 1 through the above-mentioned gap, and therefore, it is possible to prevent the resin from sticking to the inner surface of the short tubular resin molded body of the FRP pipe joint. it can. Further, a fiber reinforced resin portion other than the fiber reinforced resin portion facing the inner end of the short tubular resin molded member 1 (22 in FIG. 2).
On the other hand, a resin having a low viscosity when uncured can be used as the impregnating resin, and the FW method can ensure good impregnating workability of the resin and ensure good workability.

【0021】上記短管状樹脂成形体部材の奥側端に臨む
繊維強化樹脂部分21の含浸硬化性樹脂には、エポキシ
樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、
フェノ−ル樹脂等であって、短管状樹脂成形体との接着
性に優れ、通常、25℃下で1000cp〜3000c
pの範囲内であるものが使用される。けだし、1000
cp以下では、上記の樹脂のたれ流れを防止し難く、3
000cp以上では繊維面材への樹脂の含浸が困難にな
る。25℃下での樹脂粘度をかかる範囲の高粘度に設定
するには、25℃下での樹脂自体の粘度がかかる範囲
内に属する熱硬化性樹脂を使用する、樹脂に増粘剤を
添加する、樹脂に充填材を配合する等の方法を使用で
きる。
The impregnating curable resin of the fiber reinforced resin portion 21 facing the inner end of the short tubular resin molded member is an epoxy resin, an unsaturated polyester resin, a vinyl ester resin,
A phenolic resin or the like, which has excellent adhesiveness to a short tubular resin molded body, and is usually 1000 cp to 3000 c at 25 ° C.
Those within the range of p are used. Kashidashi, 1000
Below cp, it is difficult to prevent the above resin dripping flow.
If it is 000 cp or more, it becomes difficult to impregnate the fiber surface material with the resin. In order to set the resin viscosity at 25 ° C. to a high value within such a range, use a thermosetting resin that falls within the range where the resin itself has a viscosity at 25 ° C. Add a thickener to the resin Alternatively, a method of blending a resin with a filler can be used.

【0022】この場合、の方法で使用する増粘剤とし
ては、熱硬化性樹脂と化学的に結合して線状あるいは一
部交差結合を生じさせて分子量の増大により増粘させる
性質を有するもの、例えば、トルイレンジイソシアネ−
トの如きジイソシアネ−ト類、アルミニウムイソプロポ
キシドやチタンテトラブトキシドの如き金属アルコキシ
ド類、酸化マグネシウムや酸化カルシウムや酸化ベリリ
ウムの如き二価金属の酸化物、水酸化カルシウムの如き
二価金属の水酸化物、ヘキサメチレンジアミンの如きア
ミン類等を挙げることができる。
In this case, the thickener used in the method (1) has a property of chemically binding to the thermosetting resin to form a linear or partial cross-linking and increasing the viscosity by increasing the molecular weight. , For example, toluylene diisocyanate
, Metal alkoxides such as aluminum isopropoxide and titanium tetrabutoxide, divalent metal oxides such as magnesium oxide and calcium oxide and beryllium oxide, and divalent metal hydroxides such as calcium hydroxide. And amines such as hexamethylenediamine.

【0023】また、の方法で使用する充填材として
は、炭酸カルシウム、炭酸マグネシウム、硫酸バリウ
ム、タルク、マイカ、アルミナ、ガラス粉、アエロジル
(極微小繊維)、水酸化アルミニウム、水酸化マグネシ
ウム、寒水石、硅砂、樹脂粉砕片、ゲルコ−トチップ等
が挙げられ、添加量、粒径等は設定粘度、経済性、作業
性、製品強度等を考慮して定められる。
As the filler used in the method (1), calcium carbonate, magnesium carbonate, barium sulfate, talc, mica, alumina, glass powder, aerosil (microfiber), aluminum hydroxide, magnesium hydroxide, cold water stone. , Silica sand, resin crushed pieces, gel coat chips and the like, and the addition amount, particle size and the like are determined in consideration of the set viscosity, economy, workability, product strength and the like.

【0024】上記短管状樹脂成形体部材の奥側端に臨む
繊維強化樹脂部分21の繊維面材には、樹脂保有性のあ
るものであれば適宜のものを使用できるが、ポリエステ
ル繊維、ポリアミド繊維、アラミド繊維等の有機繊維、
ガラス繊維、炭素繊維等の無機繊維を用いた織布(例え
ば、ロ−ビングクロス、ガラスフィットテ−プ等)、不
織布(例えば、ニ−ドルパンチやステッチボンドでマッ
ト化したもの、適宜のバインダにより繊維を集束したも
の等)を使用することが好ましい。
As the fiber face material of the fiber reinforced resin portion 21 facing the inner end of the short tubular resin molded body member, any suitable resin can be used as long as it has resin retention property. Polyester fiber, polyamide fiber , Organic fibers such as aramid fibers,
Woven fabrics using inorganic fibers such as glass fibers and carbon fibers (for example, roving cloth, glass fit tape, etc.), non-woven fabrics (for example, matted with needle punch or stitch bond, with an appropriate binder It is preferable to use a bundle of fibers).

【0025】上記短管状樹脂成形体部材の奥側端部に臨
む繊維強化樹脂部分21以外の繊維強化樹脂部分22の
含浸硬化性樹脂には、エポキシ樹脂、不飽和ポリエステ
ル樹脂、ビニルエステル樹脂、フェノ−ル樹脂等であっ
て、短管状樹脂成形体との接着性に優れ、粘度がFW法
に適する低粘度のものが使用される。上記した短管状樹
脂成形体部材の奥側端に臨む繊維強化樹脂部分21の樹
脂には、この樹脂と同種のものを使用することが好まし
い。短管状樹脂成形体部材の奥側端に臨む繊維強化樹脂
部分21以外の繊維強化樹脂部分22の連続繊維材に
は、ガラス繊維や炭素繊維等の無機繊維、あるいはアラ
ミッド繊維やボリエステル繊維やポリアミド繊維等の有
機繊維を使用でき、その繊維強化樹脂部分の連続繊維材
の含有率は管継手の許容内水圧、許容外圧、肉圧等によ
り設定される。
As the impregnating and hardening resin for the fiber reinforced resin portion 22 other than the fiber reinforced resin portion 21 facing the inner end of the short tubular resin molded member, epoxy resin, unsaturated polyester resin, vinyl ester resin, pheno resin is used. A resin having a low viscosity suitable for the FW method and having excellent adhesiveness to the short tubular resin molded body is used. It is preferable to use the same kind of resin as the resin of the fiber-reinforced resin portion 21 facing the inner end of the short tubular resin molded member described above. As the continuous fiber material of the fiber reinforced resin portion 22 other than the fiber reinforced resin portion 21 facing the far side end of the short tubular resin molded member, inorganic fiber such as glass fiber or carbon fiber, or aramid fiber, polyester fiber or polyamide fiber is used. And the like, and the content ratio of the continuous fiber material in the fiber reinforced resin portion is set by the allowable internal water pressure, the allowable external pressure, and the wall pressure of the pipe joint.

【0026】本発明において使用する短管状樹脂成形体
部材は、緻密な樹脂組織を有することが要求され、その
成形には、真空成形法(プラスチックプレ−ト原反を真
空成形金型を使用して、加熱下で減圧吸引成形し、成形
品の端面をカットする)、ブロ−成形法(押出機からの
バリソンを膨張させてブロ−成形型で成形し、成形品の
端面をカットする)または射出成形法等を使用できる
が、管挿口の管受口への挿入上の寸法精度を保障するた
めに、内径寸法精度に優れた射出成形法または真空成形
法を使用することが好ましい。特に、上記図1に例示し
た短管状樹脂成形体部材においては、アンダ−カットを
有するので、割金型を使用する必要がある。このアンダ
−カットを有する短管状樹脂成形体部材を、例えば、真
空成形法により成形するには、図5の(イ)に示すよう
な割り構造の金型5を使用し、加熱軟化させたプラスチ
ック板にこの金型を当接し、金型内通路の真空引きによ
り、図5の(ロ)に示すように、その軟化プラスチック
板51を金型5の表面に吸引・密着させ、これを冷却固
化のうえ、分割金型511の中央ピ−スを抜脱し、次い
で、対向ピ−ス512,512を抜脱し、最後に対向ピ
−ス513,513を抜脱し、成形体の両端を図5の
(ハ)に示すように、カットし、これにて、短管状樹脂
成形体部材1の成形を終了する。
The short tubular resin molded member used in the present invention is required to have a dense resin structure, and its molding is carried out by a vacuum molding method (using a plastic plate original fabric in a vacuum molding die). Then, perform vacuum suction molding under heating to cut the end surface of the molded product), blow molding method (expand the ballison from the extruder to mold with a blow molding die, and cut the end surface of the molded product) or Although an injection molding method or the like can be used, it is preferable to use an injection molding method or a vacuum molding method having excellent inner diameter dimensional accuracy in order to ensure dimensional accuracy when inserting the tube insertion port into the tube receiving port. In particular, the short tubular resin molded body member illustrated in FIG. 1 has an undercut, so it is necessary to use a split mold. In order to form a short tubular resin molded body member having this undercut by, for example, a vacuum forming method, a metal mold 5 having a split structure as shown in FIG. This mold is brought into contact with the plate, and the softened plastic plate 51 is suctioned and adhered to the surface of the mold 5 by vacuuming the inside mold passage, as shown in FIG. In addition, the central piece of the split mold 511 is removed, then the opposing pieces 512 and 512 are removed, and finally the opposing pieces 513 and 513 are removed, and both ends of the molded body are removed as shown in FIG. As shown in (c), it is cut, and the molding of the short tubular resin molded member 1 is completed.

【0027】上記短管状樹脂成形体部材1の樹脂として
は、管継手受口の内面形状に成形可能なものであれば使
用でき、具体的には、エポキシ樹脂、不飽和ポリエステ
ル、ビニルエステル樹脂、フェノ−ル樹脂等の熱硬化性
樹脂、ポリ塩化ビニル、塩素化ポリ塩化ビニル、ポリエ
チレン、ポリプロピレン、アクリロニトリル−ブタジエ
ン−スチレン共重合体、ポリスチレン、ポリカ−ボネ−
ト、ポリアミド、ポリフッ化ビニリデン、ポリフェニレ
ンサルファイド、ポリスルホン、ポリエ−テル・エ−テ
ルケトン等の熱可塑性樹脂等が挙げられる。これらの樹
脂に必要に応じて、充填材、低収縮剤、熱安定剤、可塑
剤、滑剤、酸化防止剤、改質剤、短繊維、顔料等の添加
剤を添加することもできる。また、繊維強化樹脂との接
着性を確保するために、短管状樹脂成形体部材の外面に
接着剤或いは表面処理剤を塗布することが好ましく、そ
の接着剤或いは表面処理剤としては、不飽和ポリエステ
ル系、エポキシ系、ウレタン系、ビニルエステル系等を
挙げることができ、接着強度、塗布作業性等の点から溶
剤揮発型の一液性ウレタン系表面処理剤の使用が最も好
ましい。
As the resin of the short tubular resin molded member 1, any resin can be used as long as it can be molded into the shape of the inner surface of the pipe fitting receptacle, and specifically, epoxy resin, unsaturated polyester, vinyl ester resin, Thermosetting resin such as phenol resin, polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene, polypropylene, acrylonitrile-butadiene-styrene copolymer, polystyrene, polycarbonate
And thermoplastic resins such as polyamide, polyvinylidene fluoride, polyphenylene sulfide, polysulfone, and polyether ether ketone. If necessary, additives such as fillers, low-shrinking agents, heat stabilizers, plasticizers, lubricants, antioxidants, modifiers, short fibers, and pigments can be added to these resins. Further, in order to secure the adhesiveness with the fiber reinforced resin, it is preferable to apply an adhesive or a surface treatment agent to the outer surface of the short tubular resin molded member, and the adhesive or the surface treatment agent may be an unsaturated polyester. Examples thereof include epoxy-based, urethane-based, vinyl ester-based, and the like, and it is most preferable to use a solvent-volatile one-component urethane surface-treating agent from the viewpoint of adhesive strength, coating workability, and the like.

【0028】上記したFRP製管継手の例においては、
短管状樹脂成形体1の奥側端部外面に臨む繊維強化樹脂
部分のみを、高粘度の硬化性樹脂を含浸した繊維面材で
形成ているが、図6に示すように、繊維強化樹脂が露出
する内面部分の全体にわたる部分211を高粘度の硬化
性樹脂を含浸した繊維面材で形成することもできる。こ
の部分211においては、型が平坦な外面であって連続
繊維強化樹脂部分22の繊維の配向状態が特に良好であ
るために、FW法により形成する連続繊維強化樹脂部分
22の繊維の補強作用を極めて効果的に発揮させ得るの
で、面材繊維強化樹脂部分211においては、繊維含有
率を低くし、それだけ樹脂含有率を高くして柔らかく伸
びやすい層にし、水圧脈動に対する耐クラック性等を高
めることが好ましい。(その樹脂含有率は30〜95容
積%の範囲とされる。30容積%以下では効果が無く、
95容積%以上では積層時での樹脂だれが生じる)。
In the above example of the FRP pipe joint,
Although only the fiber reinforced resin portion facing the outer surface of the inner end of the short tubular resin molded body 1 is formed of the fiber face material impregnated with the high-viscosity curable resin, as shown in FIG. It is also possible to form the portion 211 over the entire exposed inner surface portion with a fiber surface material impregnated with a high-viscosity curable resin. In this portion 211, since the mold has a flat outer surface and the orientation state of the fibers of the continuous fiber reinforced resin portion 22 is particularly good, the reinforcing effect of the fibers of the continuous fiber reinforced resin portion 22 formed by the FW method is exerted. In the face material fiber reinforced resin portion 211, the fiber content can be made extremely effective, so that the fiber content should be low, and the resin content should be high to make it a layer that is soft and easy to stretch, and has improved crack resistance against water pressure pulsation. Is preferred. (The resin content is in the range of 30 to 95% by volume. Below 30% by volume, there is no effect,
If the content is 95% by volume or more, resin dripping occurs during lamination).

【0029】[0029]

【作用】短管状樹脂成形体1と芯型35との境界部分
に、樹脂だれを生じ難い硬化性樹脂含浸繊維材を巻回し
たうえで、全体にFW法で繊維強化樹脂層を形成してお
り、短管状樹脂成形体内への樹脂のたれ流れを防止でき
る。
Function: A curable resin-impregnated fiber material that hardly causes resin dripping is wound around a boundary portion between the short tubular resin molded body 1 and the core die 35, and then a fiber reinforced resin layer is formed on the whole by the FW method. Therefore, it is possible to prevent the resin from dripping into the short tubular resin molded body.

【0030】また、受口の入口から奥方の端部にわたる
管挿口先端の当接、止水用ゴムリングや抜け止めリング
の受口内面への当接または、内圧による溝凹凸面の歪等
に対し、短管状樹脂成形体10で初期マイクロクラック
の発生が抑制され、ウィ−ピングの発生がよく防止され
る。
Further, the tip of the pipe insertion portion from the inlet to the inner end of the receiving port is brought into contact, the rubber ring for preventing water and the retaining ring are brought into contact with the inner surface of the receiving port, and the groove uneven surface is distorted by internal pressure. On the other hand, in the short tubular resin molded body 10, the generation of initial microcracks is suppressed, and the generation of weeping is well prevented.

【0031】更に、図7の(イ)〜(ニ)に示すよう
に、同一口径のもとで、直線状管継手、ベンド管継手、
T型管継手、十字型管継手等の多種類の管継手に短管状
樹脂成形体10を共用できる。
Further, as shown in (a) to (d) of FIG. 7, under the same diameter, a straight pipe joint, a bend pipe joint,
The short tubular resin molded body 10 can be commonly used for many types of pipe joints such as T-type pipe joints and cross-type pipe joints.

【0032】[0032]

【実施例】本発明によれば、内面寸法精度、内周平滑性
並びに耐ウィ−ピング性に優れたFRP製管継手を得る
ことができ、このことは次ぎの実施例と比較例との対比
によっても確認できる。
EXAMPLE According to the present invention, it is possible to obtain an FRP pipe joint having excellent inner surface dimensional accuracy, inner peripheral smoothness and weeping resistance, which is compared with the following example and comparative example. You can also check by.

【0033】実施例1 この実施例におけるFRP製管継手の構成並びに寸法等
は、口径φ150mmの水道管用の直線管継手であり、
図2に示す、短管状樹脂成形体10の先端部外面に臨む
繊維強化樹脂部分21のみを高粘度樹脂含浸繊維面材で
の手巻きで形成し、他の繊維強化樹脂部分22は低粘度
樹脂含浸連続繊維材のFW法により形成したものであ
る。
Example 1 The construction and dimensions of the FRP pipe joint in this example is a straight pipe joint for a water pipe having a diameter of 150 mm.
As shown in FIG. 2, only the fiber reinforced resin portion 21 facing the outer surface of the distal end of the short tubular resin molded body 10 is formed by manual winding with a high viscosity resin-impregnated fiber face material, and the other fiber reinforced resin portions 22 are low viscosity resin. The impregnated continuous fiber material is formed by the FW method.

【0034】短管状樹脂成形体には、厚さ3mmの塩化
ビニル樹脂シ−トを図示した真空成形により成形し、外
周面にウレタン系表面処理剤を塗布したものを使用し
た。連続繊維材には、ガラス繊維ロ−ビング(番手22
30g/km)を10本束ねたものを使用し、その含浸
樹脂には、不飽和ポリエステル樹脂(オルソ系)100
重量部と硬化剤(メチルエチルケトンパ−オキシッド)
0.8重量部と硬化促進剤(6%ナフテン酸コバルト)
0.3重量部とからなる配合物を使用した。
As the short tubular resin molded product, a product in which a vinyl chloride resin sheet having a thickness of 3 mm was molded by the illustrated vacuum molding and the outer peripheral surface was coated with a urethane surface treating agent was used. For continuous fiber material, glass fiber roving (count 22
(30 g / km) 10 bundles are used and the impregnating resin is unsaturated polyester resin (ortho type) 100
Parts by weight and curing agent (methyl ethyl ketone peroxide)
0.8 parts by weight and curing accelerator (6% cobalt naphthenate)
A formulation consisting of 0.3 parts by weight was used.

【0035】繊維面材には、目付量31g/m2のガラ
スフィトテ−プ(巾100mm)を使用し、その高粘度
含浸樹脂には、不飽和ポリエステル樹脂(オルソ系)1
00重量部と硬化剤(メチルエチルケトンパ−オキシッ
ド)0.8重量部と硬化促進剤(6%ナフテン酸コバル
ト)0.3重量部と充填剤(粒径が平均8μmの炭酸カ
ルシウム)100重量部とからなる、25℃での粘度が
ほぼ1843cpの配合物を使用した。
A glass phyto-tape (width 100 mm) having a basis weight of 31 g / m 2 was used as the fiber surface material, and the unsaturated polyester resin (ortho type) 1 was used as the high-viscosity impregnated resin.
00 parts by weight, a curing agent (methyl ethyl ketone peroxide) 0.8 parts by weight, a curing accelerator (6% cobalt naphthenate) 0.3 parts by weight, and a filler (calcium carbonate having an average particle size of 8 μm) 100 parts by weight. A formulation having a viscosity of approximately 1843 cp at 25 ° C. was used.

【0036】高粘度樹脂含浸繊維面材は手巻きし、樹脂
含浸連続繊維材はFW法により、フィ−ドアイの走行を
芯型の軸方向以外に図3におけるY方向にも制御しつつ
90 0並びに±600の角度で巻回した。
The high-viscosity resin-impregnated fiber face material is wound manually
The impregnated continuous fiber material is used for running the feed eye by the FW method.
While controlling not only the core type axial direction but also the Y direction in FIG.
90 0And ± 600It was wound at an angle of.

【0037】硬化は50℃で2時間の条件で行った。 実施例2 実施例1に対し、繊維面材に目付量200g/m2のポ
リエステル不織布(巾100mm)を使用し、その高粘
度含浸樹脂には、不飽和ポリエステル樹脂(オルソ系)
100重量部と硬化剤(メチルエチルケトンパ−オキシ
ッド)0.8重量部と硬化促進剤(6%ナフテン酸コバ
ルト)0.3重量部と増粘剤(酸化マグネシウム)10
0重量部とからなる、25℃での粘度がほぼ2230c
pの配合物を使用し以外、実施例1に同じとした。
Curing was performed at 50 ° C. for 2 hours. Example 2 In contrast to Example 1, a polyester nonwoven fabric (width 100 mm) having a basis weight of 200 g / m 2 was used as the fiber surface material, and the high-viscosity impregnated resin was an unsaturated polyester resin (ortho type).
100 parts by weight, curing agent (methyl ethyl ketone peroxide) 0.8 parts by weight, curing accelerator (6% cobalt naphthenate) 0.3 parts by weight, and thickener (magnesium oxide) 10
A viscosity of about 2230c at 25 ° C consisting of 0 parts by weight.
Same as Example 1 but using p formulation.

【0038】実施例3 実施例1に対し、高粘度樹脂含浸繊維面材を、図6に示
すように、両短管状樹脂成形体の先端部外面の間の全域
211にわたって巻回した以外、実施例1に同じとし
た。
Example 3 The procedure of Example 1 was repeated except that the high-viscosity resin-impregnated fiber face material was wound over the entire area 211 between the outer surfaces of the distal end portions of both short tubular resin moldings as shown in FIG. Same as Example 1.

【0039】比較例 実施例に対し、高粘度樹脂含浸繊維面材の巻回を省略
し、この省略部分にわたって樹脂含浸連続繊維材の巻回
を施した以外、実施例に同じとした。
Comparative Example The same as Example, except that the winding of the high-viscosity resin-impregnated fiber face material was omitted and the resin-impregnated continuous fiber material was wound over this omitted portion.

【0040】上記の実施例品並びに比較例品について、
短管状樹脂成形体内面での樹脂の付着の有無を調査した
ところ、比較例品では樹脂が付着していたが、実施例品
では樹脂の付着は観られず、また、内径寸法精度を測定
したところ、実施例品では短管状樹脂成形体の内径寸法
精度そのものの精度であり、±0.1mmと高精度であ
ったが、比較例品では短管状樹脂成形体内面での樹脂の
付着のために、±1.5mmと低い精度であった。
Regarding the above-mentioned example product and comparative example product,
When the presence or absence of resin adhesion on the inner surface of the short tubular resin molded body was investigated, the resin was adhered in the comparative example product, but the resin adhesion was not observed in the example product, and the inner diameter dimensional accuracy was measured. However, in the example product, the accuracy of the inner diameter dimension itself of the short tubular resin molded body was as high as ± 0.1 mm, but in the comparative example product, the resin adhered to the inner surface of the short tubular resin molded body. The accuracy was as low as ± 1.5 mm.

【0041】更に、上記実施例品並びに比較例品につい
て、両受口に管を挿入接続した状態で静水圧試験を行っ
たところ、比較例品では、水圧30kgf/cm2で管
継手と管との間から水漏れが生じたが、実施例品におい
ては、かかる箇所からの水漏れは観られず、実施例1並
びに2においては、水圧65kgf/cm2で短管状樹
脂成形体と繊維強化樹脂との層間に水漏れ生じ、実施例
3においては繊維強化樹脂が破壊した。
Further, a hydrostatic pressure test was carried out on the above-mentioned example product and comparative example product in a state where pipes were inserted and connected to both receptacles. As a result, the comparative example product had a pipe joint and a pipe at a water pressure of 30 kgf / cm 2. Although water leakage occurred from the gap, in the Example product, no water leakage was observed from such a portion, and in Examples 1 and 2 , the short tubular resin molded body and the fiber-reinforced resin at a water pressure of 65 kgf / cm 2 were observed. Water leakage occurred between the layers and, and in Example 3, the fiber-reinforced resin was broken.

【0042】[0042]

【発明の効果】本発明は、上述した通りの構成であり、
従来の繊維強化樹脂製管継手におけるウィ−ピングの発
生が受口部に多発していることに鑑み、受口内面にのみ
にウィ−ピング防止部材である短管状樹脂成形体を固着
しており、口径が同一である以上、、直線状管継手、ベ
ンド管継手、T型管継手、十字型管継手等の異種管継手
間で共通のウィ−ピング防止部材を使用でき、ウィ−ピ
ング防止部材の成形金型の種類を少なくでき、ウィ−ピ
ング防止部材の管理が簡単になる。また、短管状樹脂成
形体と芯型との境界部分に、樹脂だれを生じ難い硬化性
樹脂含浸繊維材を巻回したうえで、FW法で繊維強化樹
脂層を形成しており、短管状樹脂成形体内への樹脂のた
れ流れを防止でき、短管状樹脂成形体の内面寸法精度、
内周平滑性を保障でき、しかも、繊維強化樹脂の大部分
をFW法で、良好な含浸作業性を保持しつつ形成でき
る。
The present invention has the constitution as described above,
Considering that the occurrence of weeping in conventional fiber-reinforced resin pipe joints frequently occurs at the receiving part, a short tubular resin molded body that is a weeping prevention member is fixed only to the inner surface of the receiving port. As long as the bore diameters are the same, a common weeping prevention member can be used between different types of pipe joints such as a straight pipe joint, a bend pipe joint, a T-type pipe joint, and a cross type pipe joint. The number of molding dies can be reduced, and the management of the weeping prevention member becomes easy. In addition, a curable resin-impregnated fiber material that hardly causes resin dripping is wound around the boundary between the short tubular resin molded body and the core die, and then a fiber reinforced resin layer is formed by the FW method. It is possible to prevent the resin from dripping into the molded body, and to improve the inner surface dimensional accuracy of the short tubular resin molded body.
Inner peripheral smoothness can be guaranteed, and most of the fiber-reinforced resin can be formed by the FW method while maintaining good impregnation workability.

【0043】従って、本発明によれば、耐ウィ−ピング
性並びに内面寸法精度、内周平滑性に優れたFRP製管
継手を良好な作業性で低コストにて製造できる。
Therefore, according to the present invention, an FRP pipe joint having excellent weeping resistance, inner surface dimensional accuracy, and inner peripheral smoothness can be manufactured with good workability and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において使用する短管状樹脂成形部材を
示す断面図である。
FIG. 1 is a cross-sectional view showing a short tubular resin molded member used in the present invention.

【図2】本発明に係る繊維強化樹脂製管継手の一実施例
を示す断面図である。
FIG. 2 is a cross-sectional view showing an embodiment of a fiber-reinforced resin pipe joint according to the present invention.

【図3】本発明の繊維強化樹脂製管継手の製造方法にお
いて使用するフィラメントワインディング装置を示す説
明図である。
FIG. 3 is an explanatory view showing a filament winding device used in the method for producing a fiber-reinforced resin pipe joint of the present invention.

【図4】本発明に係る繊維強化樹脂製管継手の製造方法
の一実施例の作業手順を示す説明図である。
FIG. 4 is an explanatory diagram showing a work procedure of an embodiment of a method for manufacturing a fiber-reinforced resin pipe joint according to the present invention.

【図5】本発明において使用する短管状樹脂成形部材の
真空成形法を示す説明図である。
FIG. 5 is an explanatory view showing a vacuum forming method of a short tubular resin molded member used in the present invention.

【図6】本発明に係る繊維強化樹脂製管継手の別実施例
を示す断面図である。
FIG. 6 is a sectional view showing another embodiment of the fiber-reinforced resin pipe joint according to the present invention.

【図7】本発明に係る繊維強化樹脂製管継手の製造方法
によって製造される種類の異なる繊維強化樹脂製管継手
の断面図である。
FIG. 7 is a cross-sectional view of different types of fiber-reinforced resin pipe joints manufactured by the method for manufacturing a fiber-reinforced resin pipe joint according to the present invention.

【符号の説明】[Explanation of symbols]

1 短管状樹脂成形体部材 10 短管状樹脂成形体 21 短管状樹脂成形体の奥側端部外面に臨む
繊維強化樹脂部分 22 他の繊維強化樹脂部分 210 硬化性高粘度樹脂含浸繊維面材 220 硬化性樹脂含浸連続繊維材 32 樹脂含浸槽 34 フィ−ドアイ 35 芯型
DESCRIPTION OF SYMBOLS 1 Short tubular resin molded member 10 Short tubular resin molded body 21 Fiber reinforced resin portion facing the outer surface of the inner end of the short tubular resin molded body 22 Other fiber reinforced resin portion 210 Curable high viscosity resin impregnated fiber surface material 220 Cured Resin impregnated continuous fiber material 32 resin impregnation tank 34 feed eye 35 core type

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】繊維強化樹脂製の管継手において、少なく
とも一個の受口内面に受口入口から奥側にわたり短管状
樹脂成形体が固着され、該成形体の奥側端部外面に臨む
繊維強化樹脂部分の材質が他の繊維強化樹脂部分より
も、未硬化状態での樹脂だれを生じ難い材質とされてい
ることを特徴とする繊維強化樹脂製管継手。
1. In a pipe joint made of fiber reinforced resin, a short tubular resin molded body is fixed to at least one inner surface of the receiving port from the receiving port inlet to the inner side, and the fiber reinforced facing the outer surface of the rear end of the molded body. A fiber-reinforced resin pipe joint, characterized in that the material of the resin portion is less likely to cause resin dripping in the uncured state than other fiber-reinforced resin portions.
【請求項2】回転芯型の少なくとも一端に短管状樹脂成
形体部材を被せ、該成形体部材の奥側端部外面と芯型外
面との境界部分を、高粘度硬化性樹脂を含浸した繊維面
材で巻回し、次いで、短管状樹脂成形体上並びに芯型上
に硬化性樹脂含浸連続繊維材を巻回積層し、更に、加熱
により上記面材の含浸樹脂並びに連続繊維材の含浸樹脂
を硬化させ、而るのち、硬化体を脱型することを特徴と
する繊維強化樹脂製管継手の製造方法。
2. A fiber in which at least one end of a rotary core mold is covered with a short tubular resin molded member, and a boundary portion between the outer surface of the inner end of the molded member and the outer surface of the core mold is impregnated with a high-viscosity curable resin. The face material is wound, then the curable resin-impregnated continuous fiber material is wound and laminated on the short tubular resin molded body and the core die, and further, the face resin impregnated resin and the continuous fiber material impregnated resin are heated. A method for producing a fiber-reinforced resin pipe joint, which comprises curing and then removing the cured body from the mold.
JP5213923A 1993-08-30 1993-08-30 Pipe joint made of fiber-reinforced resin and its manufacture Pending JPH0760852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5213923A JPH0760852A (en) 1993-08-30 1993-08-30 Pipe joint made of fiber-reinforced resin and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5213923A JPH0760852A (en) 1993-08-30 1993-08-30 Pipe joint made of fiber-reinforced resin and its manufacture

Publications (1)

Publication Number Publication Date
JPH0760852A true JPH0760852A (en) 1995-03-07

Family

ID=16647288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5213923A Pending JPH0760852A (en) 1993-08-30 1993-08-30 Pipe joint made of fiber-reinforced resin and its manufacture

Country Status (1)

Country Link
JP (1) JPH0760852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611984B2 (en) 2005-07-13 2009-11-03 Fujitsu Microelectronics Limited Manufacture method for semiconductor device having improved copper diffusion preventive function of plugs and wirings made of copper or copper alloy
CN112959702A (en) * 2021-03-01 2021-06-15 深圳安吉尔饮水产业集团有限公司 Glass fiber reinforced plastic pressure container and processing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611984B2 (en) 2005-07-13 2009-11-03 Fujitsu Microelectronics Limited Manufacture method for semiconductor device having improved copper diffusion preventive function of plugs and wirings made of copper or copper alloy
US8383509B2 (en) 2005-07-13 2013-02-26 Fujitsu Semiconductor Limited Manufacture method for semiconductor device having improved copper diffusion preventive function of plugs and wirings made of copper or copper alloy and semiconductor device of this kind
EP3133637A1 (en) 2005-07-13 2017-02-22 Fujitsu Semiconductor Limited Semiconductor device and manufacturing method
CN112959702A (en) * 2021-03-01 2021-06-15 深圳安吉尔饮水产业集团有限公司 Glass fiber reinforced plastic pressure container and processing method thereof

Similar Documents

Publication Publication Date Title
US5213379A (en) Frp pipe with threaded end joint section
US4306591A (en) Hose with improved resistance to deformation, and method
WO1990011175A1 (en) Improvements relating to flexible tubular structures, methods of manufacturing same and pipes and pipe linings formed from said flexible tubular structures
US3468346A (en) Pipe fittings having an inner thermoplastic surface and an outer thermoset surface
KR830001833B1 (en) Composite for the production of fibre reinforced tubular products
GB2097879A (en) Pipe joints of reinforced resin
JPH0760852A (en) Pipe joint made of fiber-reinforced resin and its manufacture
US4361455A (en) Method of forming hose with improved resistance to deformation
CN105034339A (en) Machining method and device for continuous fiber multi-layer winding thermoplasticity composite pipeline
JP3375375B2 (en) Method for producing fiber-reinforced resin tubular body
JP2007090811A (en) Member of fiber-reinforced plastic and manufacturing method of the same
US20040158987A1 (en) Method for exchanging an elastic roller casing
JP3569324B2 (en) Mandrel for hose production
JP3219540B2 (en) Fiber reinforced plastic fittings
JP2000109274A (en) Core of fiberglass reinforced plastics
KR101410609B1 (en) High pressur Gas Hose
JP2004330559A (en) Method for producing fiber-reinforced hollow structure
JPH03149485A (en) Multiple-unit tube
JPH08174701A (en) Manufacture of hollow fiber reinforced thermoplastic resin product
JP5252774B2 (en) Acrylic rubber material and molded hose
JPS6321825Y2 (en)
JPS63152786A (en) Fiber reinforced thermoplastic resin pipe and manufacture thereof
JPH06328624A (en) Fiber reinforced resin tubular member
JP3588501B2 (en) Tubular body with fiber reinforced resin flange
JPH08258165A (en) Tubular body and its manufacture