JPH0760760B2 - Induction accelerator - Google Patents

Induction accelerator

Info

Publication number
JPH0760760B2
JPH0760760B2 JP22157986A JP22157986A JPH0760760B2 JP H0760760 B2 JPH0760760 B2 JP H0760760B2 JP 22157986 A JP22157986 A JP 22157986A JP 22157986 A JP22157986 A JP 22157986A JP H0760760 B2 JPH0760760 B2 JP H0760760B2
Authority
JP
Japan
Prior art keywords
capacitor
exciting coil
inductance
load
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22157986A
Other languages
Japanese (ja)
Other versions
JPS6376299A (en
Inventor
明 徳地
紀彦 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP22157986A priority Critical patent/JPH0760760B2/en
Publication of JPS6376299A publication Critical patent/JPS6376299A/en
Publication of JPH0760760B2 publication Critical patent/JPH0760760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は誘導形加速器の改良に関するものである。TECHNICAL FIELD The present invention relates to improvements in induction accelerators.

誘導形加速器は真空に保持された加速管の中を通過する
パルス状の電子ビームやイオンビームなどの荷電粒子ビ
ーム(以下ビームという)に対して誘導電場を与えて加
速するもので、この段数を増すことにより1MeVのエネル
ギーを持つ電子ビームを数10MeVまで加速した例が米国
で発表されるなど、慣性核融合研究や自由電子レーザ増
幅器などの分野で開発が進められている。
The induction type accelerator gives an induction electric field to a charged particle beam (hereinafter referred to as a beam) such as a pulsed electron beam or an ion beam that passes through an accelerating tube held in a vacuum to accelerate it. By increasing the number of electron beams having an energy of 1 MeV to several tens of MeV, an example was announced in the United States, and development is proceeding in fields such as inertial fusion research and free electron laser amplifiers.

従来の技術 第3図は従来の誘導形加速器で、(イ)は説明用簡略断
面図、(ロ)は等価回路図である。1は真空に保持され
た円筒状の金属製加速管で、この加速管1の中を図に示
していない磁場にガイドされたビーム2が通過する。電
源3、スイッチ4、回路インピーダンス5などで構成さ
れるパルス電源11の動作によって、フェライト、アモル
ファス、ケイ素鋼などの強磁性体6を1巻きした形状を
なす加速管1の一部分、すなわち励磁コイル12のa、b
間に電圧を印加すると、磁束の変化により前記加速管1
の磁気的な絶縁空間10に電場を与えて、誘導的にビーム
を加速することになる。いいかえれば励磁コイル12は変
圧器の一次コイルに相当し、そして二次コイルに相当す
るc、d間に発生した電圧はビーム2に対してエネルギ
ーを与える。つまり、誘導的にビーム2を加速すること
になる。
2. Description of the Related Art FIG. 3 is a conventional induction type accelerator, in which (a) is a simplified sectional view for explanation and (b) is an equivalent circuit diagram. Reference numeral 1 denotes a cylindrical metallic acceleration tube held in a vacuum, and a beam 2 guided by a magnetic field (not shown) passes through the acceleration tube 1. A part of the accelerating tube 1 having a shape in which a ferromagnetic material 6 such as ferrite, amorphous, or silicon steel is wound once by the operation of the pulse power supply 11 composed of the power supply 3, the switch 4, the circuit impedance 5, etc., that is, the exciting coil 12 A, b
When a voltage is applied between the accelerating tube 1 and the change in magnetic flux,
An electric field is applied to the magnetically insulating space 10 in order to inductively accelerate the beam. In other words, the exciting coil 12 corresponds to the primary coil of the transformer, and the voltage generated between c and d corresponding to the secondary coil energizes the beam 2. That is, the beam 2 is accelerated inductively.

第3図(イ)に示す加速器の等価回路は同図(ロ)に示
すようになり、電源3の例としてコンデンサ3′を、回
路インピーダンス5の例としてインダクタンス5′を、
励磁コイル12のインダクタンス6′、ビーム2の例とし
て負荷2′などで示した。図示しない要素によりコンデ
ンサ3′に電荷を蓄えた後にスイッチ4を閉じると、イ
ンダクタンス5′および6′にコンデンサ3′の電荷の
放電が始まる。このときビーム2が通過中であれば、負
荷2′に対してエネルギーが与えられ、通過後は無負荷
状態になる。モジュールAをモジュールB、……………
…と複数段取付けて行けば、その取付け数だけ加速電圧
は上昇することになる。
An equivalent circuit of the accelerator shown in FIG. 3 (a) is as shown in FIG. 3 (b). A capacitor 3'is an example of the power source 3, an inductance 5'is an example of the circuit impedance 5.
The inductance 6'of the exciting coil 12 and the load 2'as an example of the beam 2 are shown. When the switch 4 is closed after the charge is stored in the capacitor 3'by an element not shown, the discharge of the charge in the capacitor 3'in the inductances 5'and 6'begins. At this time, if the beam 2 is passing, energy is applied to the load 2 ', and after passing, the load is not applied. Module A to Module B ...
... If you install multiple stages, the acceleration voltage will increase by the number of installations.

発明が解決しようとする問題点 負荷2′に有効にエネルギーを与えるには、インダクタ
ンス5′はインダクタンス6′に対して充分に小さなも
のでなければならないのと同様に、そのインピーダンス
は負荷2′のインピーダンスよりも充分小さくなければ
ならない。
Problems to be Solved by the Invention In order to effectively energize the load 2 ', the impedance of the load 5'must be the same as that of the inductance 5', as well as the inductance of the load 2 '. Must be well below the impedance.

一般にビーム2のパルス幅は10〜100nsと非常に短いた
めに、誘導的にエネルギーを与えようとしても、これに
追従する充分な応答特性を持たねばならない。インダク
タンス5′のインダクタンスをL、負荷2′のインピー
ダンスをZで表し、負荷2′への応答特性をτで表す
と、 となる。
Generally, the pulse width of the beam 2 is as short as 10 to 100 ns, so that even if an inductive energy is applied, it must have a sufficient response characteristic to follow the energy. If the inductance of the inductance 5 ′ is L, the impedance of the load 2 ′ is Z, and the response characteristic to the load 2 ′ is τ, Becomes

すなわち、パルス幅の短い負荷2′に対して有効にエネ
ルギーを与えるには、そのパルス幅より充分小さなτに
しなければならない。例えばZ=10Ω、パルス幅が20ns
の場合、その応答時間はパルス幅の1/10を考えると、τ
2nsとなる。つまり、Lは20nH以下にせねばならな
い。インダクタンス5′は電源3からパルスを伝送する
ための回路に存在するもので、同軸ラインや平行平板ラ
インを、またこれらを複数個使用する努力をしても限度
ばあり、前記20nH以下にすることは非常に困難な技術で
ある。従って、低インピーダンスのビームやパルス幅の
短いビームに対して、今日の技術では応答性良く、有効
にビームに対してエネルギーを与えることができなかっ
た。
That is, in order to effectively apply energy to the load 2'having a short pulse width, τ must be made sufficiently smaller than the pulse width. For example, Z = 10Ω, pulse width is 20ns
, The response time is 1/10 of the pulse width, τ
2ns. That is, L must be 20 nH or less. The inductance 5'is present in the circuit for transmitting the pulse from the power source 3, and there is a limit even if efforts are made to use coaxial lines, parallel plate lines, or a plurality of these lines, and should be 20 nH or less. Is a very difficult technique. Therefore, it is difficult to effectively apply energy to a beam having a low impedance or a beam having a short pulse width by using the present technology.

問題点を解決するための手段 本発明は前述の問題を解決するため、負荷と並列に適正
な静電容量を持つコンデンサを挿入し、パルス電源より
一たんエネルギーをこのコンデンサに蓄え、ビームの通
過時に低インダクタンス回路で有効にビームにエネルギ
ーを与えようとするもので、円筒状の金属製加速管の内
部を真空にし、該加速管の外周に強磁性体を1巻きして
パルス電源を接続した励磁コイルを設け、該励磁コイル
の磁束の変化により、前記加速管内の磁気的な絶縁空間
に電場を与えてビームを加速する誘導形加速器におい
て、励磁コイルと直結した絶縁空間にコンデンサを設け
た誘導形加速器を提供しようとするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention inserts a capacitor having an appropriate capacitance in parallel with a load, stores energy in the capacitor only from a pulse power supply, and passes the beam. At times, a low-inductance circuit is used to effectively impart energy to the beam. The inside of a cylindrical metal acceleration tube is evacuated, and a ferromagnetic material is wound around the outer circumference of the acceleration tube to connect a pulse power source. In an induction type accelerator in which an exciting coil is provided and a beam is accelerated by applying an electric field to the magnetic insulating space in the accelerating tube by a change in the magnetic flux of the exciting coil, an induction provided with a capacitor in an insulating space directly connected to the exciting coil. It is intended to provide a compact accelerator.

実施例 本発明の誘導形加速器を第1図に示す一実施例について
説明する。同図(イ)は説明用の簡略断面図、同図
(ロ)は等価回路図である。1は真空に保持された円筒
状の金属製加速管で、この加速管1の中を図に示してい
ない磁場にガイドされたビーム2が通過する。電源3、
スイッチ4、回路インピーダンス5などで構成されるパ
ルス電源11の動作によって、フェライト、アモルファ
ス、ケイ素鋼などの強磁性体6を1巻きした形状をなす
加速管1の一部分、すなわち励磁コイル12のa、b間に
電圧を印加すると、磁束の変化により前記加速管1の磁
気的な絶縁空間10に電場を与えて誘導的にビーム2を加
速する。絶縁筒7および8は加速管1の一部分である励
磁コイル12に直結して設けた磁気的な絶縁空間10に図に
示していない方法でそれぞれ気密に取付けられている。
コンデンサ9は気密に保持された空間に誘電率の高い液
体、例えば純水、グリセリンなどが充填され、c、d間
に適正な静電容量値を持つように形成されている。
Embodiment An embodiment of the induction type accelerator of the present invention shown in FIG. 1 will be described. The figure (a) is a simplified sectional view for explanation, and the figure (b) is an equivalent circuit diagram. Reference numeral 1 denotes a cylindrical metallic acceleration tube held in a vacuum, and a beam 2 guided by a magnetic field (not shown) passes through the acceleration tube 1. Power supply 3,
By the operation of the pulse power supply 11 including the switch 4 and the circuit impedance 5, a part of the accelerating tube 1 having a shape in which a ferromagnetic material 6 such as ferrite, amorphous, and silicon steel is wound once, that is, a of the exciting coil 12, When a voltage is applied between points b, a change in magnetic flux gives an electric field to the magnetic insulating space 10 of the accelerating tube 1 to inductively accelerate the beam 2. The insulating cylinders 7 and 8 are airtightly mounted in a magnetic insulating space 10 directly connected to an exciting coil 12 which is a part of the acceleration tube 1 by a method not shown in the drawing.
The capacitor 9 is filled with a liquid having a high dielectric constant, such as pure water or glycerin, in a space hermetically held, and is formed to have an appropriate capacitance value between c and d.

第1図(イ)に示す加速器の等価回路は同図(ロ)に示
すようになり、前記コンデンサ9を負荷2′にごく接近
して並列に挿入されたことになる。
The equivalent circuit of the accelerator shown in FIG. 1 (a) is as shown in FIG. 1 (b), and the capacitor 9 is inserted in parallel in close proximity to the load 2 '.

次にその動作を同図(ロ)について説明すると、コンデ
ンサ3′に蓄えられた電荷はスイッチ4を閉じるとイン
ダクタンス5′を経由してコンデンサ9′を充電する。
このコンデンサ9′の電圧が充分上昇した段階で、ビー
ム2が磁気的な絶縁空間10のc、d間を通過すると、す
なわち負荷2′に対してコンデンサ9′よりエネルギー
が有効に与えられる。
Next, the operation will be described with reference to FIG. 9B. The electric charge stored in the capacitor 3'charges the capacitor 9'through the inductance 5'when the switch 4 is closed.
When the beam 2 passes between c and d of the magnetic insulating space 10 when the voltage of the capacitor 9'is sufficiently increased, that is, the energy is effectively supplied from the capacitor 9'to the load 2 '.

従来の技術ではインダクタンス5′を経由して負荷2′
へエネルギーを与えていたが、本発明ではビーム2の通
過する加速管1の内径近傍にコンデンサ9が取付けられ
ているため、ビーム2までのインダクタンスはきわめて
小さく、インダクタンス5′に比べてほとんど無視でき
る程度の小さな値になる。それ故に電荷を一たんコンデ
ンサ9′に蓄えることによってきわめて応答性がよく、
負荷2′にエネルギーを与えることができる優れた性能
を有している。
In the conventional technique, the load 2'via the inductance 5 '.
However, in the present invention, since the condenser 9 is mounted in the vicinity of the inner diameter of the accelerating tube 1 through which the beam 2 passes, the inductance up to the beam 2 is extremely small and can be almost ignored as compared with the inductance 5 '. It becomes a small value. Therefore, by storing the charge in the capacitor 9 ', the response is very good,
It has excellent performance capable of supplying energy to the load 2 '.

第2図は本発明の誘導形加速器の他の実施例で、コンデ
ンサ9にセラミックコンデンサや紙またはフィルムコン
デンサ、あるいは誘電率の高い絶縁板、棒などを用いて
もその効果はある。この実施例では励磁コイル12の中も
加速管の中と同様に真空状態に保持した構造を示した
が、第1図に示す絶縁筒7または絶縁筒7と絶縁筒8の
両方を取付けすることにより、絶縁空間10の中に耐電圧
の向上をはかるために絶縁油などの別の媒質を入れても
よい。
FIG. 2 shows another embodiment of the induction type accelerator according to the present invention, which is effective even if a ceramic capacitor, a paper or film capacitor, or an insulating plate or rod having a high dielectric constant is used as the capacitor 9. In this embodiment, the structure in which the exciting coil 12 is held in a vacuum state as in the accelerating tube is shown, but the insulating cylinder 7 or both the insulating cylinder 7 and the insulating cylinder 8 shown in FIG. 1 should be attached. Therefore, another medium such as insulating oil may be put in the insulating space 10 in order to improve the withstand voltage.

発明の効果 本発明の誘導形加速器は、従来の誘導形加速器にコンデ
ンサ9を設けることによって、このコンデンサ9に一た
ん電荷を蓄えるとともにきわめて低インダクタンス回路
でビーム2へエネルギーを与えることができるために応
答性に優れ、特にパルス幅の短いビームやインピーダン
スの低いビームに対して優れた応答性が得られるなどの
効果があり、工業的ならびに実用的価値の大なるもので
ある。
EFFECTS OF THE INVENTION In the induction accelerator of the present invention, by providing the capacitor 9 in the conventional induction accelerator, it is possible to store electric charge in the capacitor 9 and to give energy to the beam 2 with an extremely low inductance circuit. It is excellent in responsiveness, and particularly has an effect of obtaining excellent responsiveness to a beam having a short pulse width or a beam having a low impedance, and is of great industrial and practical value.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の誘導形加速器の一実施例で、(イ)は
説明用簡略断面図、(ロ)は等価回路図、第2図は本発
明の誘導形加速器の他の実施例の説明用簡略断面図、第
3図は従来の誘導形加速器で、(イ)は説明用簡略断面
図、(ロ)は等価回路図である。 1:加速管、2:ビーム、2′:負荷、3:電源 3′:コンデンサ、4:スイッチ 5:回路インピーダンス、5′:インダクタンス 6:強磁性体、6′:インダクタンス 7、8:絶縁筒、9、9′:コンデンサ 10:絶縁空間、11:パルス電源 12:励磁コイル
FIG. 1 is an embodiment of the induction type accelerator of the present invention, (a) is a simplified sectional view for explanation, (b) is an equivalent circuit diagram, and FIG. 2 is another example of the induction type accelerator of the present invention. FIG. 3 is a simplified sectional view for explanation, FIG. 3 is a conventional induction type accelerator, (a) is a simplified sectional view for explanation, and (b) is an equivalent circuit diagram. 1: Accelerator, 2: Beam, 2 ': Load, 3: Power supply 3': Capacitor, 4: Switch 5: Circuit impedance, 5 ': Inductance 6: Ferromagnetic material, 6': Inductance 7, 8: Insulation cylinder , 9, 9 ': Capacitor 10: Insulation space, 11: Pulse power supply 12: Excitation coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】円筒状の金属製加速管の内部を真空にし、
該加速管の外周に強磁性体を1巻きしてパルス電源を接
続した励磁コイルを設け、該励磁コイルの磁束の変化に
より、前記加速管内の磁気的な絶縁空間に電場を与えて
ビームを加速する誘導形加速器において、前記励磁コイ
ルと直結した絶縁空間にコンデンサを設けたことを特徴
とする誘導形加速器。
1. A vacuum is applied to the inside of a cylindrical metal acceleration tube,
An exciting coil connected to a pulse power source by winding a ferromagnetic material around the outer circumference of the accelerating tube is provided, and an electric field is applied to a magnetic insulating space in the accelerating tube to change the magnetic flux of the exciting coil to accelerate the beam. The induction accelerator according to claim 1, wherein a capacitor is provided in an insulating space directly connected to the exciting coil.
【請求項2】前記コンデンサの誘電体が水であることを
特徴とする特許請求の範囲第1項記載の誘導形加速器。
2. The induction type accelerator according to claim 1, wherein the dielectric of the capacitor is water.
【請求項3】前記コンデンサの誘電体がセラミックであ
ることを特徴とする特許請求の範囲第1項記載の誘導形
加速器。
3. The induction type accelerator according to claim 1, wherein the dielectric of the capacitor is ceramic.
JP22157986A 1986-09-18 1986-09-18 Induction accelerator Expired - Fee Related JPH0760760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22157986A JPH0760760B2 (en) 1986-09-18 1986-09-18 Induction accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22157986A JPH0760760B2 (en) 1986-09-18 1986-09-18 Induction accelerator

Publications (2)

Publication Number Publication Date
JPS6376299A JPS6376299A (en) 1988-04-06
JPH0760760B2 true JPH0760760B2 (en) 1995-06-28

Family

ID=16768953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22157986A Expired - Fee Related JPH0760760B2 (en) 1986-09-18 1986-09-18 Induction accelerator

Country Status (1)

Country Link
JP (1) JPH0760760B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661366A (en) * 1994-11-04 1997-08-26 Hitachi, Ltd. Ion beam accelerating device having separately excited magnetic cores
JP2867933B2 (en) * 1995-12-14 1999-03-10 株式会社日立製作所 High-frequency accelerator and annular accelerator

Also Published As

Publication number Publication date
JPS6376299A (en) 1988-04-06

Similar Documents

Publication Publication Date Title
Kim et al. Development and tests of fast 1-MA linear transformer driver stages
Remnev et al. A high-current pulsed accelerator with a matching transformer
CN112562995B (en) High-power pulse transformer with corrugated winding structure
US5138627A (en) Preionizationd device, in particular for x-ray preionization in discharge-pumped gas lasers, in particular excimer lasers
Piejak et al. Electric field in inductively coupled gas discharges
JPH0760760B2 (en) Induction accelerator
US3319106A (en) Plasmoid generator and accelerator utilizing an annular magnetic core
US3384772A (en) Method and apparatus for controlling breadown voltage in vacuum
US4849649A (en) Electric pulse generator of the type with a saturatable inductance coil
JPS62257100A (en) Device for converting radioactive energy into electrical energy
Mazarakis et al. Inductive voltage adder (IVA) for submillimeter radius electron beam
Vintizenko Linear induction accelerators for high-power microwave devices
US4912738A (en) Magnetically energized pulser
US3588590A (en) Gas discharge plasma tube having a multiturn primary winding
Birx Induction linear accelerators
SU794683A1 (en) Relativistic magnetron generator
RU2303338C1 (en) Generator of high voltage linearly fading impulses of microsecond duration
SU739759A1 (en) X-ray generator
SU519072A1 (en) Linear induction accelerator
US5760496A (en) Inverse-pinch voltage pulse generator
SU621282A1 (en) Induction pulse accelerator
JPH03245499A (en) Quodrupole particle accelerator
RU2360357C1 (en) Pulse generator
SU1295540A1 (en) Injector of linear-induction accelerator
Luo et al. Design of 500 kV pulse transformers using magnetic insulation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees