JPH0760757B2 - Inorganic compound / metal thin film two-layer structure X-ray anticathode - Google Patents

Inorganic compound / metal thin film two-layer structure X-ray anticathode

Info

Publication number
JPH0760757B2
JPH0760757B2 JP4168571A JP16857192A JPH0760757B2 JP H0760757 B2 JPH0760757 B2 JP H0760757B2 JP 4168571 A JP4168571 A JP 4168571A JP 16857192 A JP16857192 A JP 16857192A JP H0760757 B2 JPH0760757 B2 JP H0760757B2
Authority
JP
Japan
Prior art keywords
anticathode
ray
thin film
metal thin
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4168571A
Other languages
Japanese (ja)
Other versions
JPH05343193A (en
Inventor
弘基 中沢
周一 下村
Original Assignee
科学技術庁無機材質研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁無機材質研究所長 filed Critical 科学技術庁無機材質研究所長
Priority to JP4168571A priority Critical patent/JPH0760757B2/en
Publication of JPH05343193A publication Critical patent/JPH05343193A/en
Publication of JPH0760757B2 publication Critical patent/JPH0760757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線対陰極に関し、より
詳細には、従来の金属製のものに比べてより多くの出力
が得られる二層構造X線対陰極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray anticathode, and more particularly, to a two-layer structure X-ray anticathode capable of producing more power than a conventional metallic one.

【0002】[0002]

【従来の技術】X線は、透過能を利用したレントゲン撮
影による内部の検査や、蛍光X線を利用した元素の分析
や、回折X線を利用した結晶構造の解析などの幅広い用
途に用いられているが、より効率よく短時間で測定する
ためには、輝度の高いX線源が求められる。
2. Description of the Related Art X-rays are used for a wide range of purposes such as internal inspection by radiography utilizing transmissivity, elemental analysis using fluorescent X-rays, and crystal structure analysis using diffracted X-rays. However, an X-ray source with high brightness is required for more efficient and short-time measurement.

【0003】従来のX線対陰極は、熱伝導率の高い銅或
いは高融点のタングステン又はそれらの上に他の金属を
渡金した金属材料で作られ、それ自身を冷却水で冷却す
ることにより、熱を逃しながらX線を発生させていた。
The conventional X-ray anticathode is made of copper having a high thermal conductivity, tungsten having a high melting point, or a metal material having another metal deposited thereon, and is cooled by cooling water itself. , X-rays were being generated while escaping heat.

【0004】また、電子線照射により対陰極材料が融解
しない範囲でX線を発生させることができるので、X線
の強さの限界は対陰極材料と冷却能力で決まる。より強
力なX線を発生させるためには回転対陰極がある。これ
は、円筒状の対陰極を回転させながら冷却するもので、
電子線の照射される部分が回転しているために、冷却時
間を長くすることができるので、強力なX線を発生させ
ることができるが、装置は大きくなり振動も起こり易く
なる。
Further, since X-rays can be generated within a range where the anticathode material is not melted by electron beam irradiation, the limit of X-ray intensity is determined by the anticathode material and the cooling capacity. There is a rotating anticathode to generate stronger X-rays. This is to cool while rotating the cylindrical anticathode,
Since the portion irradiated with the electron beam is rotating, the cooling time can be lengthened, so that strong X-rays can be generated, but the device becomes large and vibration easily occurs.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の対陰極
材料では、X線の強度を大きくするためには電子線の強
度を大きくすれば良いが、電子線の強度を大きくすると
対陰極でX線の発生に寄与しなかった電子による対陰極
の加熱も大きくなり、冷却が十分でなくなると対陰極が
融解してしまうという問題点がある。
However, in the conventional anti-cathode material, the intensity of the electron beam may be increased in order to increase the intensity of the X-ray. There is a problem that the heating of the anticathode by the electrons that did not contribute to the generation of the line becomes large and the anticathode is melted if the cooling is insufficient.

【0006】固定式の対陰極において現状より有効な放
熱或いはX線の発生と発熱の分離ができれば、より強い
電子線照射が可能で、したがって、より強いX線を発生
させることができるようになる。
If the fixed type anticathode can more effectively dissipate heat or generate X-rays and separate heat from the current state, stronger electron beam irradiation is possible, and therefore stronger X-rays can be generated. .

【0007】本発明は、上記従来技術の問題点を解決し
て、このような要求に応えるべくなされたものであっ
て、より大きい出力が得られるX線対陰極を提供するこ
とを目的としている。
The present invention has been made to solve the above-mentioned problems of the prior art and to meet such a demand, and an object thereof is to provide an X-ray anticathode capable of obtaining a larger output. .

【0008】[0008]

【課題を解決するための手段】本発明者は、対陰極にお
ける十分な放熱及びX線の発生と発熱の問題を解決し得
る方策について研究を重ねた結果、X線を発生させる部
分を、使用する対陰極材料の金属薄膜で形成して有効に
X線を発生させて、一方、熱はその後方のダイヤモンド
或いはBNのような高融点で熱伝導率の非常に良い無機
化合物中で主として発生させ且つ放熱させれば良いこと
を知見し、ここに本発明を完成したものである。
The inventor of the present invention has conducted extensive research on measures for sufficiently dissipating heat in the anticathode and for solving the problems of X-ray generation and heat generation, and as a result, the X-ray generating portion is used. The X-ray is effectively generated by forming a thin metal film of an anti-cathode material, while heat is mainly generated in the inorganic compound behind it, such as diamond or BN, having a high melting point and a very good thermal conductivity. In addition, the present invention has been completed based on the finding that it is sufficient to radiate heat.

【0009】すなわち、本発明に係るX線対陰極は、高
融点且つ高熱伝導率の無機化合物の上に金属薄膜を設け
て無機化合物/金属薄膜二層構造にしたことを特徴とし
ている。
That is, the X-ray anticathode according to the present invention is characterized in that a metal thin film is provided on an inorganic compound having a high melting point and a high thermal conductivity to form an inorganic compound / metal thin film two-layer structure.

【0010】以下に本発明を更に詳述する。The present invention will be described in more detail below.

【0011】[0011]

【作用】[Action]

【0012】本発明によるX線対陰極は、ダイヤモンド
或いはBNなどの高融点且つ高熱伝導率の無機化合物の
上に、必要な波長の特性X線を発生する金属薄膜を設け
た無機化合物/金属薄膜二層構造である。
The X-ray anticathode according to the present invention is an inorganic compound / metal thin film in which a metal thin film for generating a characteristic X-ray of a required wavelength is provided on an inorganic compound such as diamond or BN having a high melting point and a high thermal conductivity. It has a two-layer structure.

【0013】高融点且つ高熱伝導率の無機化合物として
は、透光性を持っているダイヤモンドやBNが好ましい
が、高融点で高熱伝導率を持つ限り、他の無機化合物も
可能である。これらの無機化合物はCVDなどの方法に
より適宜厚さ、形状に作成される。
As the inorganic compound having a high melting point and a high thermal conductivity, diamond or BN having a light transmitting property is preferable, but other inorganic compounds can be used as long as they have a high melting point and a high thermal conductivity. These inorganic compounds are formed into a suitable thickness and shape by a method such as CVD.

【0014】また、金属薄膜としては、必要な波長の特
性X線を発生する金属であれば良く、例えば、銅、鉄、
モリブデン、タングステンなどが挙げられる。
The metal thin film may be any metal that can generate a characteristic X-ray having a required wavelength, such as copper, iron, or the like.
Examples include molybdenum and tungsten.

【0015】この無機化合物/金属薄膜二層構造X線対
陰極の作用は以下の通りである。すなわち、対陰極材料
の金属薄膜は電子線のエネルギーを受けてX線を発生さ
せる。そのときに金属薄膜で吸収されなかった電子線は
金属薄膜の後に設けたダイヤモンド或いはBNの部分で
吸収されて熱に変化する。ダイヤモンド或いはBNの後
方を冷却水で冷却することにより、発生した熱は高熱伝
導率のダイヤモンド或いはBNを通じて放熱される。こ
のような作用により、従来のように全体が金属材料で作
られた対陰極よりも、X線を発生する部分での発熱が少
なく放熱も良くなるので、より強い電子線を照射して強
いX線を発生させることができる。
The operation of this inorganic compound / metal thin film two-layer structure X-ray anticathode is as follows. That is, the metal thin film of the anticathode material receives the energy of the electron beam to generate the X-ray. At that time, the electron beam which is not absorbed by the metal thin film is absorbed by the diamond or BN portion provided after the metal thin film and converted into heat. By cooling the rear of the diamond or BN with cooling water, the generated heat is radiated through the diamond or BN having a high thermal conductivity. By such an action, compared to the conventional anticathode which is entirely made of a metal material, less heat is generated in the part that generates X-rays and heat is radiated better. Lines can be generated.

【0016】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0017】[0017]

【実施例1】図1は、無機化合物としてCVDにより作
成したダイヤモンド又はBNを用い、金属薄膜として銅
を用いた無機化合物/金属薄膜二層構造のX線対陰極を
示している。高熱伝導率のダイヤモンド或いはBN(2)
はホルダー(3)により固定され、前方の真空と後方の冷
却水(4)を遮断している。ダイヤモンド或いはBN(2)
の前方には金属薄膜の対陰極材料(1)が取付けられてい
る。
EXAMPLE 1 FIG. 1 shows an X-ray anticathode having an inorganic compound / metal thin film two-layer structure using diamond or BN prepared by CVD as an inorganic compound and copper as a metal thin film. High thermal conductivity diamond or BN (2)
Is fixed by a holder (3) to block the front vacuum and the rear cooling water (4). Diamond or BN (2)
An anticathode material (1) of a metal thin film is attached in front of the.

【0018】この構造において、電子線は前方から金属
薄膜の対陰極材料に照射されてX線が発生する。この
時、X線のエネルギー(keV)より遥かに小さなエネルギ
ーで発生する熱(<1ev)はダイヤモンド或いはBN(2)
で主として発生し効率良く伝導して冷却水(4)により取
り除かれる。このため、従来の対陰極に比べてより強い
電子線を照射して強いX線を発生させることができる。
In this structure, an electron beam is applied to the anticathode material of the metal thin film from the front to generate X-rays. At this time, the heat (<1 ev) generated with energy much smaller than the energy of X-ray (keV) is diamond or BN (2).
It is mainly generated in and is efficiently conducted and removed by cooling water (4). Therefore, a stronger X-ray can be generated by irradiating a stronger electron beam as compared with the conventional anticathode.

【0019】[0019]

【実施例2】図2は、実施例1のダイヤモンド/金属薄
膜二層構造X線対陰極を回転対陰極に適用した例を示し
ている。ローター(3´)の表面にCVDダイヤモンド
(2)を付けて、その上に金属薄膜(1)を付けた構造であ
る。
EXAMPLE 2 FIG. 2 shows an example in which the diamond / metal thin film double layer structure X-ray anticathode of Example 1 is applied to a rotating anticathode. CVD diamond on the surface of the rotor (3 ')
This is a structure in which (2) is attached and the metal thin film (1) is attached thereon.

【0020】この対陰極に電子線(5)を照射するとX線
(6)が発生する。この時、X線のエネルギーより遥かに
小さなエネルギーで発生する熱は、CVDダイヤモンド
(2)で発生し効率良く伝導して冷却水(4)により取り除
かれる。このため、従来の回転対陰極に比べて、より強
い電子線を照射して強いX線を発生させることができ
る。また、同じX線の強さであれば、より小型の回転対
陰極にしたり、回転数を下げたりすることができる。
When this anticathode is irradiated with an electron beam (5), X-rays are emitted.
(6) occurs. At this time, the heat generated by the energy much smaller than the energy of the X-ray is the CVD diamond.
It is generated in (2), is efficiently conducted, and is removed by cooling water (4). Therefore, as compared with the conventional rotating anticathode, a stronger X-ray can be generated by irradiating a stronger electron beam. Further, if the X-ray intensity is the same, it is possible to use a smaller rotating anticathode or reduce the number of rotations.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
電子線のエネルギーの中でX線の発生に寄与せず、熱に
変化したエネルギーを高熱伝導率の材料によって効率良
く放熱できるので、従来よりも大きな強度の電子線を照
射しても対陰極材料は融解しない。したがって、より強
いX線を発生させることができる。更にダイヤモンド或
いはBNは透光性であるので、後方から蛍光により電子
線の焦点の形を観測することができ、実用上の大きな効
果も有するので、様々なX線を利用した分野において利
用することが可能である。
As described above, according to the present invention,
Of the energy of the electron beam, it does not contribute to the generation of X-rays, and the energy converted into heat can be efficiently radiated by the material with high thermal conductivity. Does not melt. Therefore, stronger X-rays can be generated. Furthermore, since diamond or BN is transparent, the shape of the focal point of the electron beam can be observed from behind by fluorescence, which has a great practical effect. Therefore, it can be used in various fields using X-rays. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】ダイヤモンド或いはBN/金属薄膜二層構造X
線対陰極を示す説明図である。
Figure 1: Diamond or BN / metal thin film double layer structure X
It is explanatory drawing which shows a line anticathode.

【図2】ダイヤモンド/金属薄膜二層構造X線対陰極を
回転対陰極に適用した場合の説明図である。
FIG. 2 is an explanatory diagram when a diamond / metal thin film double-layer structure X-ray anticathode is applied to a rotating anticathode.

【符合の説明】 1 金属薄膜 2 ダイヤモンド或いはBN 3 ホルダー 3´ ローター 4 冷却水 5 電子線 6 X線[Description of symbols] 1 metal thin film 2 diamond or BN 3 holder 3'rotor 4 cooling water 5 electron beam 6 X-ray

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高融点且つ高熱伝導率の無機化合物の上
電子ビームが照射されてX線を発生させる金属薄膜が
設けられて無機化合物/金属薄膜二層構造とされている
ことを特黴とするX線対陰極。
1. A two-layer structure of an inorganic compound / metal thin film, in which a metal thin film which is irradiated with an electron beam to generate X-rays is provided on an inorganic compound having a high melting point and a high thermal conductivity . An X-ray anticathode that specializes in that.
【請求項2】 高融点且つ高熱伝導率の無機化合物がダ
イヤモンド又はBNである請求項1に記載のX線対陰
極。
2. The X-ray anticathode according to claim 1, wherein the inorganic compound having a high melting point and a high thermal conductivity is diamond or BN.
【請求項3】 高融点且つ高熱伝導率の無機化合物の後
方に冷却手段が設けられている請求項1又は2に記載の
X線対陰極。
3. The X-ray anticathode according to claim 1, wherein a cooling means is provided behind the inorganic compound having a high melting point and a high thermal conductivity.
JP4168571A 1992-06-03 1992-06-03 Inorganic compound / metal thin film two-layer structure X-ray anticathode Expired - Lifetime JPH0760757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4168571A JPH0760757B2 (en) 1992-06-03 1992-06-03 Inorganic compound / metal thin film two-layer structure X-ray anticathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4168571A JPH0760757B2 (en) 1992-06-03 1992-06-03 Inorganic compound / metal thin film two-layer structure X-ray anticathode

Publications (2)

Publication Number Publication Date
JPH05343193A JPH05343193A (en) 1993-12-24
JPH0760757B2 true JPH0760757B2 (en) 1995-06-28

Family

ID=15870514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4168571A Expired - Lifetime JPH0760757B2 (en) 1992-06-03 1992-06-03 Inorganic compound / metal thin film two-layer structure X-ray anticathode

Country Status (1)

Country Link
JP (1) JPH0760757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020101B2 (en) 2012-03-27 2015-04-28 Rigaku Corporation Target for X-ray generator, method of manufacturing the same and X-ray generator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3612795B2 (en) * 1994-08-20 2005-01-19 住友電気工業株式会社 X-ray generator
US5878110A (en) * 1994-08-20 1999-03-02 Sumitomo Electric Industries, Ltd. X-ray generation apparatus
DE102004045181B4 (en) 2004-09-17 2016-02-04 Epcos Ag SAW device with reduced temperature response and method of manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267844A (en) * 1989-04-08 1990-11-01 Seiko Epson Corp X-ray generating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020101B2 (en) 2012-03-27 2015-04-28 Rigaku Corporation Target for X-ray generator, method of manufacturing the same and X-ray generator

Also Published As

Publication number Publication date
JPH05343193A (en) 1993-12-24

Similar Documents

Publication Publication Date Title
US3239706A (en) X-ray target
TWI307110B (en) Method and apparatus for controlling electron beam current
Mallozzi et al. Laser‐generated plasmas as a source of x rays for medical applications
US7460644B2 (en) X-ray generating method and x-ray generating apparatus
EP0184623A2 (en) Heat dissipation means for X-ray generating tubes
US7436931B2 (en) X-ray source for generating monochromatic x-rays
Herrlin et al. Generation of x rays for medical imaging by high-power lasers: preliminary results.
US20090323898A1 (en) Thermionic emitter designed to control electron beam current profile in two dimensions
JP2008536255A (en) Monochromatic X-ray source and X-ray microscope using such an X-ray source
US5535255A (en) System for the cooling of an anode for an X-ray tube in a radiogenic unit without heat exchanger
JPH0760757B2 (en) Inorganic compound / metal thin film two-layer structure X-ray anticathode
US6477234B2 (en) X-ray source having a liquid metal target
EP2856492A1 (en) Cooled stationary anode for an x-ray tube
US3821579A (en) X ray source
KR20190040265A (en) X-ray tube
JPH04262348A (en) Structure of fixed anode of x-ray tube
Kurkuchekov et al. Soft X-ray radiography for measurements of a dense metal plasma created by intense relativistic electron beam on a tantalum target
Graf et al. Shine Bright Like a Diamond: Microfocus X-ray Sources with Diamond Hybrid Anode Technology
JP7185694B2 (en) Radiation source target, radiation source producing invasive electromagnetic radiation, use of radiation source, and method of manufacturing radiation source target
Tan et al. Design and optimization of thin‐film tungsten (W)‐diamond target for multi‐pixel X‐ray sources
TW201101363A (en) A compound anode target material for X-ray tubes with micro-generation of X-rays without utilizing the micro-focused e-beam to achieve micro X-ray focal emissions
JPS5981847A (en) High power x-ray rotary anode
Fujioka et al. Energy spectra and charge state of debris emitted from laser-produced minimum mass tin plasmas
JPH07169422A (en) X-ray tube
Livingood et al. Search for Radioactivity Induced by 800-Kilovolt Electrons

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term