JPH0760281A - Marine denitrifying bacterium immobilized material - Google Patents

Marine denitrifying bacterium immobilized material

Info

Publication number
JPH0760281A
JPH0760281A JP21406893A JP21406893A JPH0760281A JP H0760281 A JPH0760281 A JP H0760281A JP 21406893 A JP21406893 A JP 21406893A JP 21406893 A JP21406893 A JP 21406893A JP H0760281 A JPH0760281 A JP H0760281A
Authority
JP
Japan
Prior art keywords
marine
pva
gel
nitrogen
denitrifying bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21406893A
Other languages
Japanese (ja)
Inventor
Akira Kawai
章 河合
Hiroaki Fujii
弘明 藤井
Toshihiro Hamada
敏裕 浜田
Takeshi Matsuda
武 松田
Tadao Shiotani
唯夫 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP21406893A priority Critical patent/JPH0760281A/en
Publication of JPH0760281A publication Critical patent/JPH0760281A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To prevent marine denitrifying bacteria from flowing out and to secure a stable denitrification function through a long period of time by immobilizing microorganisms having a function to reduce nitrate or nitrite into gaseous nitrogen in sea water in a water vessel for culture, etc., on polymer. CONSTITUTION:A marine denitrifying bacteria immobilizing material for removing nitrogen in sea water which causes eutrophication is made by immobilizing microorganisms having a function to reduce nitrate or nitrite into gaseous nitrogen in natural or artificial sea water (hereafter called as marine denitrification bacteria) on polymer gel. As a polymer material used for the inclusively immobilized material is selected preferably from polyvinyl alcohol, polyethylene glycol, and polyacrylamide. The shape of the polymer gel is selected from sphere, cube, fiber, sheet, and tube; the gel is molded according to the purpose of application.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、富栄養化の原因である
海水中の窒素を除去することが可能な海洋性脱窒細菌固
定化物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immobilized product of marine denitrifying bacteria capable of removing nitrogen in seawater which causes eutrophication.

【0002】[0002]

【従来の技術】鑑賞魚用水槽、魚介類養殖用水槽、生け
簀、水族館、養殖場および活魚輸送などの海水中で魚介
類を飼育する系においては、残餌や排泄物などが原因で
アンモニア性窒素が発生し、魚介類に悪影響を与える。
このアンモニア性窒素を除去するために、硝化細菌を含
む水を投入する方法、海水中に存在する硝化細菌の増殖
を待つ方法、硝化細菌を包括固定した担体を利用する方
法(特開平3−72996号)などが知られている。し
かしながら、アンモニア性窒素は、亜硝酸性窒素または
硝酸性窒素に変換されるだけであり、これだけでは窒素
除去にはならないことから、この亜硝酸性窒素または硝
酸性窒素を除去するために、海水中に存在する脱窒細菌
の増殖を待つ方法が知られている。一方、淡水について
は、脱窒細菌を包括固定化した担体を使用する方法が知
られている(第23回水質汚濁学会講演集、67ページ
(1989年))。
2. Description of the Related Art In a system for raising seafood in seawater such as an aquarium for appreciating fish, an aquarium for aquaculture, fish cages, aquariums, aquaculture farms and transportation of live fish, due to residual feed and excrement, ammoniacal Nitrogen is generated, which adversely affects seafood.
In order to remove this ammoniacal nitrogen, a method of adding water containing nitrifying bacteria, a method of waiting for the growth of nitrifying bacteria present in seawater, and a method of using a carrier on which nitrifying bacteria are entrapped and immobilized (JP-A-3-72996). No.) is known. However, ammoniacal nitrogen is only converted to nitrite nitrogen or nitrate nitrogen, and this alone does not result in nitrogen removal. Therefore, in order to remove this nitrite nitrogen or nitrate nitrogen, It is known to wait for the growth of the denitrifying bacteria present in. On the other hand, with respect to fresh water, a method using a carrier in which denitrifying bacteria are entrapped and immobilized is known (23rd Annual Meeting of Japan Society for Water Pollution, page 67 (1989)).

【0003】[0003]

【発明が解決しようとする課題】脱窒細菌の増殖を待つ
方法は、窒素除去能力の発現が遅いうえ、脱窒細菌数を
高めることができないために効果は不十分である。ま
た、生物膜の形で増殖した脱窒細菌は、環境の変化によ
って脱落することがあり、窒素除去能力は非常に不安定
である。一方、淡水で用いられる脱窒細菌は海水中にお
いては増殖して活性が発現しないことから、海水の窒素
除去には使用することはできない。
The method of waiting for the growth of denitrifying bacteria is not effective because the nitrogen removing ability is slow to develop and the number of denitrifying bacteria cannot be increased. In addition, the denitrifying bacteria that have grown in the form of biofilms may drop out due to changes in the environment, and the nitrogen removal capacity is extremely unstable. On the other hand, denitrifying bacteria used in fresh water cannot be used for nitrogen removal in seawater because they grow in seawater and show no activity.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めに鋭意検討した結果、海水中(天然海水または人工海
水)において硝酸塩または亜硝酸塩を窒素ガスに還元す
る能力のある微生物(以下、海洋性脱窒細菌と略記す
る)を高分子ゲルに固定化されてなる海洋性脱窒細菌固
定化物を見出し本発明を完成させるに至った。海洋性脱
窒細菌を高分子ゲルに固定化することにより、海洋性脱
窒細菌の数を高いレベルに維持することが可能になるこ
とから高い窒素除去能力が初期から発現し、かつ海洋性
脱窒細菌が流出せず安定した窒素除去能力が得られる。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, as a result, microorganisms capable of reducing nitrates or nitrites to nitrogen gas in seawater (natural seawater or artificial seawater) The present invention has been completed by discovering a marine denitrifying bacterium immobilization product obtained by immobilizing (in abbreviated form of denitrifying bacterium) on a polymer gel. By immobilizing marine denitrifying bacteria on polymer gel, it becomes possible to maintain the number of marine denitrifying bacteria at a high level. Nitrogen bacteria do not flow out and a stable nitrogen removal capacity can be obtained.

【0005】以下、本発明を詳細に説明する。海洋性脱
窒細菌は、海水から採取、分離することが可能である。
また、海水に浸漬したコンクリート、プラスチック、繊
維、金属、セラミックス、岩石、泥底および動植物など
から採取することができる。採取、分離した海洋性脱窒
細菌はそのまま使用することもできるが、その能力を高
めるために培養することもできる。培養は天然海水また
は公知の人工海水を用いる。培養時の硝酸塩または亜硝
酸塩の濃度は0.1ppm以上10重量%以下が好まし
く、特に1ppm以上1重量%以下が好ましい。また、
海洋性脱窒細菌は従属栄養細菌であるので、培養にあた
っては水素供与体、たとえばグルコースや酢酸ナトリウ
ムのような有機炭素を添加しなければならない。培養時
の硝酸塩または亜硝酸塩濃度を変化させることは差し支
えなく、培養初期には低濃度とし、徐々に濃度を上げて
いくことも効果的である。培養は閉鎖系でもよいし、水
が徐々に入れ替わってもよい。また公知の栄養塩を添加
してもよい。培養時の水温は10〜40℃が好ましく、
特に15〜35℃が好ましい。培養は静置培養でもよい
が、空気を巻き込まない程度に撹拌してもよい。また、
培養の際、海洋性脱窒細菌を入れなくても、海水中に常
在する少数の海洋性脱窒細菌が増殖してくるが、培養開
始時から種菌として海洋性脱窒細菌を入れておいた方が
増殖がはやく培養時間を短縮することができる。
The present invention will be described in detail below. Marine denitrifying bacteria can be collected and separated from seawater.
It can also be collected from concrete, plastics, fibers, metals, ceramics, rocks, mud floors, animals and plants, etc., which have been immersed in seawater. The collected and separated marine denitrifying bacteria can be used as they are, or they can be cultured to enhance their ability. For the culture, natural seawater or known artificial seawater is used. The concentration of nitrate or nitrite during culture is preferably 0.1 ppm or more and 10% by weight or less, and particularly preferably 1 ppm or more and 1% by weight or less. Also,
Since marine denitrifying bacteria are heterotrophic bacteria, hydrogen donors such as organic carbons such as glucose and sodium acetate must be added during cultivation. There is no problem in changing the concentration of nitrate or nitrite during the culture, and it is also effective to make the concentration low at the beginning of the culture and gradually increase the concentration. The culture may be a closed system, or the water may be gradually replaced. Known nutrient salts may be added. The water temperature during culture is preferably 10 to 40 ° C,
Particularly, 15 to 35 ° C is preferable. The culture may be static culture, or may be agitated to the extent that air is not entrained. Also,
Even when the marine denitrifying bacteria are not added during the culture, a small number of the marine denitrifying bacteria that are resident in seawater grow. Propagation is faster and the culture time can be shortened.

【0006】次に、海洋性脱窒細菌の固定化について説
明する。包括固定化によく用いられる高分子素材として
は、寒天、アルギン酸塩、カラギーナン、ポリアクリル
アミド、ポリビニルアルコール、ポリエチレングリコー
ル、光硬化性樹脂等がある。このうち、ポリビニルアル
コール(以下、PVAと略記する)、ポリエチレングリ
コール(以下、PEGと略記する)、ポリアクリルアミ
ド(以下、PAAと略記する)は微生物分解を受けず、
微生物の生息性に優れているために、固定化担体として
好ましい。高分子ゲルの形状については特に制限はない
が、球状、サイコロ状、繊維状、シート状、管状などが
挙げられ、それぞれの使用状態に適した形状を選択すれ
ばよい。次に、本発明の高分子ゲルに使用する高分子に
ついて説明する。
Next, the immobilization of marine denitrifying bacteria will be described. Polymer materials often used for entrapping immobilization include agar, alginate, carrageenan, polyacrylamide, polyvinyl alcohol, polyethylene glycol, and photocurable resin. Of these, polyvinyl alcohol (hereinafter abbreviated as PVA), polyethylene glycol (hereinafter abbreviated as PEG), polyacrylamide (hereinafter abbreviated as PAA) do not undergo microbial degradation,
It is preferable as an immobilization carrier because it has excellent habitability for microorganisms. The shape of the polymer gel is not particularly limited, but may be spherical, dice-shaped, fibrous, sheet-shaped, tubular, or the like, and the shape suitable for each use condition may be selected. Next, the polymer used in the polymer gel of the present invention will be described.

【0007】(1)PVAの場合 PVAの平均重合度は1000以上、好ましくは170
0以上で、より好ましくは1700〜25000であ
り、ケン化度は98.5モル%以上、好ましくは99.
85モル%以上の完全ケン化PVAがPVAゲルの形成
上から好ましい。また本発明におけるPVAとしては、
本発明の効果を阻害しない範囲において、公知の種々の
変性PVAを用いることができる。PVA水溶液の濃度
はPVAゲル形成の観点から、0.1〜40wt%まで
が可能であり、PVA濃度が高いほど、より強固なゲル
が生成するが、必要なゲル強度が得られれば、PVA濃
度が低い方が原料コスト面から有利である。PVAゲル
を球状などの形に成形するために、アルギン酸ナトリウ
ムのような水溶性高分子多糖類を用いてもよい。また、
このPVA水溶液には、PVAのゲル化を阻害しない範
囲で、微生物の培地、固定化担体の強度を上げるための
補強剤、生成ゲルの比重を調整する充填材等を添加して
もよい。このPVA水溶液に、海洋性脱窒細菌を混合す
る。海洋性脱窒細菌は遠心分離などの濃縮操作を施した
ものを混合したほうが、微生物濃度を高めることができ
ることから好ましい。
(1) In the case of PVA The average degree of polymerization of PVA is 1000 or more, preferably 170.
It is 0 or more, more preferably 1700 to 25,000, and the saponification degree is 98.5 mol% or more, preferably 99.
A fully saponified PVA of 85 mol% or more is preferable from the viewpoint of forming a PVA gel. Further, as the PVA in the present invention,
Various known modified PVA can be used as long as the effects of the present invention are not impaired. The concentration of the PVA aqueous solution can be from 0.1 to 40 wt% from the viewpoint of PVA gel formation. The higher the PVA concentration is, the stronger the gel is produced, but if the required gel strength is obtained, the PVA concentration is increased. A lower value is advantageous in terms of raw material cost. A water-soluble polymeric polysaccharide such as sodium alginate may be used to shape the PVA gel into a spherical shape. Also,
To the PVA aqueous solution, a microbial medium, a reinforcing agent for increasing the strength of the immobilization carrier, a filler for adjusting the specific gravity of the produced gel, and the like may be added within a range that does not inhibit the gelation of PVA. Marine denitrifying bacteria are mixed with this PVA aqueous solution. It is preferable to mix marine denitrifying bacteria that have been subjected to a concentration operation such as centrifugation because the concentration of microorganisms can be increased.

【0008】PVAのゲル化方法としては、種々の方法
が知られているが、以下の2つの方法がよく用いられ
る。 PVA水溶液を−5℃以下、好ましくは−10℃以下
に凍結し、少なくとも1時間以上、好ましくは10時間
以上保持後、解凍する凍結−解凍操作を少なくとも1回
以上、好ましくは2回以上行なう。 PVA水溶液をPVAの離液作用のある物質を含む水
溶液、たとえば硫酸ナトリウム水溶液に接触させる。硫
酸ナトリウム水溶液の濃度は100mg/リットル以上
が好ましく、特に飽和水溶液が好ましい。浸漬時間は1
0分間以上が好ましく、30分間以上がより好ましい。 また、およびの方法を併用してもよいし、乾燥操
作、ホルムアルデヒドやグルタルアルデヒドによる架橋
操作を行なってもよい。
Various methods are known as gelation methods for PVA, but the following two methods are often used. The PVA aqueous solution is frozen at −5 ° C. or lower, preferably −10 ° C. or lower, and kept for at least 1 hour or longer, preferably 10 hours or longer, and then thawed. Freezing-thawing operation is performed at least once, preferably twice or more. The PVA aqueous solution is brought into contact with an aqueous solution containing a substance having a synergic action of PVA, for example, an aqueous sodium sulfate solution. The concentration of the sodium sulfate aqueous solution is preferably 100 mg / liter or more, and a saturated aqueous solution is particularly preferable. Immersion time is 1
0 minutes or more is preferable, and 30 minutes or more is more preferable. Further, the methods of and may be used in combination, or a drying operation and a crosslinking operation with formaldehyde or glutaraldehyde may be performed.

【0009】(2)PEGの場合 ポリエチレングリコールのプレポリマーを1〜40重量
%含有する水溶液に、海洋性脱窒細菌を混合し、これに
重合開始剤と重合促進剤を添加しゲル化させる。ポリエ
チレングリコールのプレポリマーとしては、たとえば、
ポリエチレングリコールジメタクリレートのようなポリ
エチレングリコールのジエステル、メトキシポリエチレ
ングリコールメタクリレートのようなメトキシポリエチ
レングリコールのモノエステルなどが挙げられる。重合
開始剤としては、β−ジメチルアミノプロピオニトリ
ル、NNN′N′−テトラメチルエチレンジアミンなど
が挙げられる。重合促進剤としては、過硫酸カリウム、
過硫酸アンモニウムなどが挙げられる。
(2) In the case of PEG Marine denitrifying bacteria are mixed with an aqueous solution containing a polyethylene glycol prepolymer in an amount of 1 to 40% by weight, and a polymerization initiator and a polymerization accelerator are added thereto to cause gelation. As a prepolymer of polyethylene glycol, for example,
Examples thereof include polyethylene glycol diesters such as polyethylene glycol dimethacrylate, and methoxy polyethylene glycol monoesters such as methoxy polyethylene glycol methacrylate. Examples of the polymerization initiator include β-dimethylaminopropionitrile and NNN′N′-tetramethylethylenediamine. As the polymerization accelerator, potassium persulfate,
Examples thereof include ammonium persulfate.

【0010】(3)PAAの場合 アクリルアミド、メチレンビスアクリルアミドを含有す
る水溶液に海洋性脱窒細菌を混合し、これに重合開始剤
と重合促進剤を添加しゲル化させる。重合開始剤として
は、β−ジメチルアミノプロピオニトリル、NNN′
N′−テトラメチルエチレンジアミンなどが挙げられ
る。重合促進剤としては、過硫酸カリウム、過硫酸アン
モニウムなどが挙げられる。
(3) In the case of PAA Marine denitrifying bacteria are mixed with an aqueous solution containing acrylamide and methylenebisacrylamide, and a polymerization initiator and a polymerization accelerator are added thereto to cause gelation. As the polymerization initiator, β-dimethylaminopropionitrile, NNN ′
Examples thereof include N'-tetramethylethylenediamine. Examples of the polymerization accelerator include potassium persulfate and ammonium persulfate.

【0011】以上の方法により得られた海洋性脱窒細菌
固定化物を用いて、海水中の窒素を除去することが可能
である。窒素の除去方法としては、窒素を除去すべき海
水を海洋性脱窒細菌固定化ゲルと接触させればよい。た
だし、アンモニア性窒素を除去する場合には、アンモニ
ア性窒素を直接窒素ガスに変換することは困難であるの
で、硝化細菌を含む海水を投入する方法、海水中にわず
かに存在する硝化細菌の増殖を待つ方法、硝化細菌を包
括固定した担体を利用する方法などを用いる。なかでも
硝化細菌を包括固定化したものを用いることが好まし
い。あるいは、上記の方法を2つ以上併用してもよい。
このように、海洋性脱窒細菌を高分子ゲル中に固定化す
ることにより従来困難であった海水中の窒素除去が可能
となった。
Nitrogen in seawater can be removed by using the immobilized product of marine denitrifying bacteria obtained by the above method. As a method for removing nitrogen, seawater from which nitrogen should be removed may be contacted with a gel for immobilizing marine denitrifying bacteria. However, when removing ammoniacal nitrogen, it is difficult to convert the ammoniacal nitrogen directly into nitrogen gas.Therefore, a method of introducing seawater containing nitrifying bacteria, a method of multiplying nitrifying bacteria slightly present in seawater The method of using the carrier which entraps and fixes the nitrifying bacteria is used. Among them, it is preferable to use the one in which nitrifying bacteria are entrapped and immobilized. Alternatively, two or more of the above methods may be used in combination.
Thus, by immobilizing marine denitrifying bacteria in a polymer gel, it has become possible to remove nitrogen in seawater, which was difficult in the past.

【0012】[0012]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例により限定されるもので
はない。 実施例1 大阪府泉佐野港の岸壁に垂下したポーラスコンクリート
の付着物0.1g(乾燥重量換算)を採取し、これから
純粋分離した海洋性脱窒細菌を使用した。これを表1に
示す培地10リットルに接種し、約20℃で2日間培養
した。これを9000rpmで遠心分離し、約1gの培
養菌体(乾燥重量換算)を得た。別に、(株)クラレ製
のPVA(平均重合度4000、ケン化度99.85モ
ル%)を40℃の温水で約1時間洗浄後、PVA濃度1
0重量%になるようにPVAに水を加えて全量を500
gとし110℃で2時間処理しPVAを溶解した後、6
0℃まで冷却した。このPVA水溶液に4重量%のアル
ギン酸ナトリウム水溶液250gを加えて混合し、室温
まで冷却した後、先の培養菌体を加えて、全量を1リッ
トルとし、十分に撹拌した。これらの混合液を内径4m
mφのビニル管1本を使用したローラーポンプで1ml
/分で送液し、スターラーで撹拌した0.1モル/リッ
トルの塩化カルシウム(CaCl2)水溶液に、水表面
30cmの高さより滴下した。滴下した液滴はCaCl
2水溶液中で直ちに球状化して沈降した。これらの球状
化したPVA混合成形物をCaCl2水溶液と分離し、
蒸留水で軽く洗浄した後、−20℃の冷凍庫で12時間
凍結させた後、解凍させた。これにより、不透明な褐色
の柔軟性に富んだ球状のPVAゲルが得られた。このP
VAゲルは球状に成形化され、粘着性もなく、粒径は3
〜3.5mmφであった。表2に示す脱窒活性測定用培
地5リットルに、得られた球状のPVAゲル500gを
加え、20℃で12時間放置した。表3に示すように、
硝酸性窒素濃度が大幅に減少し、脱窒活性が発現した
(1回目)。また、このPVAゲルを海水で洗浄した
後、脱窒活性を測定したが、同様の活性が得られた(2
回目)。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. Example 1 0.1 g (dry weight conversion) of a deposit of porous concrete hanging on the quay of Izumisano Port in Osaka Prefecture was collected, and marine denitrifying bacteria purely separated therefrom were used. This was inoculated into 10 liters of the medium shown in Table 1 and cultured at about 20 ° C for 2 days. This was centrifuged at 9000 rpm to obtain about 1 g of cultured bacterial cells (dry weight conversion). Separately, PVA manufactured by Kuraray Co., Ltd. (average polymerization degree: 4000, saponification degree: 99.85 mol%) was washed with warm water at 40 ° C. for about 1 hour, and then the PVA concentration was 1
Add water to PVA so that the total amount becomes 500%.
g and treat at 110 ° C. for 2 hours to dissolve PVA, then
Cooled to 0 ° C. To this PVA aqueous solution, 250 g of a 4% by weight sodium alginate aqueous solution was added and mixed, and after cooling to room temperature, the above-mentioned cultured bacterial cells were added to bring the total amount to 1 liter, followed by sufficient stirring. Inner diameter of 4m
1 ml with a roller pump that uses one mφ vinyl tube
The solution was delivered at a flow rate of 1 / min, and was added dropwise to a 0.1 mol / liter calcium chloride (CaCl 2 ) aqueous solution stirred with a stirrer from a height of 30 cm of the water surface. The dropped droplet is CaCl
2 Immediately spheroidized and settled in aqueous solution. These spheroidized PVA mixed moldings were separated from the CaCl 2 aqueous solution,
It was lightly washed with distilled water, frozen in a freezer at −20 ° C. for 12 hours, and then thawed. This gave an opaque brown flexible spherical PVA gel. This P
VA gel is formed into a spherical shape, has no tackiness, and has a particle size of 3
It was ~ 3.5 mmφ. To 5 liters of the medium for measuring denitrification activity shown in Table 2, 500 g of the obtained spherical PVA gel was added and left at 20 ° C. for 12 hours. As shown in Table 3,
The nitrate nitrogen concentration was significantly reduced, and denitrification activity was expressed (first time). Further, the PVA gel was washed with seawater and then the denitrification activity was measured, and the same activity was obtained (2
Second time).

【0013】実施例2 ポリエチレングリコールジメタクリレートの40重量%
水溶液500gに、実施例1と同様にして得られた培養
汚泥1g(乾燥重量換算)を加え十分に撹拌した。これ
に、重合促進剤としてNNN′N′−テトラメチルエチ
レンジアミン5g、重合開始剤として過硫酸カリウムを
2.5g添加し、全量1リットルとなるように水を加
え、撹拌後、平面上に流延し、室温で重合させ、厚さ
3.0〜3.2mmのシート状に成形した。これを1辺
3.0〜3.2mmに切断し、サイコロ状のゲルを得
た。表2に示す脱窒活性測定用溶液5リットルに、得ら
れたサイコロ状のゲル500gを加え、20℃で12時
間静置した。表3に示すように、硝酸性窒素濃度が大幅
に減少し、脱窒活性が発現した(1回目)。また、この
ゲルを海水で洗浄した後、脱窒活性を測定したが、同様
の活性が得られた(2回目)。
Example 2 40% by weight of polyethylene glycol dimethacrylate
To 500 g of the aqueous solution, 1 g of the culture sludge (as dried weight) obtained in the same manner as in Example 1 was added and sufficiently stirred. To this, 5 g of NNN'N'-tetramethylethylenediamine as a polymerization accelerator and 2.5 g of potassium persulfate as a polymerization initiator were added, water was added so that the total amount was 1 liter, and the mixture was cast on a flat surface after stirring. Then, the mixture was polymerized at room temperature and formed into a sheet having a thickness of 3.0 to 3.2 mm. This was cut into 3.0 to 3.2 mm on a side to obtain a dice-like gel. To 5 liters of the solution for measuring denitrification activity shown in Table 2, 500 g of the obtained dice-shaped gel was added, and the mixture was allowed to stand at 20 ° C. for 12 hours. As shown in Table 3, the concentration of nitrate nitrogen was significantly decreased and the denitrification activity was expressed (first time). Further, the gel was washed with seawater and then the denitrification activity was measured, and the same activity was obtained (second time).

【0014】実施例3 アクリルアミドモノマー200g、メチレンビスアクリ
ルアミド10gに水を加えて500gとした。これに、
実施例1と同様にして得られた培養菌体1g(乾燥重量
換算)を加え十分に撹拌した。これに、重合促進剤とし
てNNN′N′−テトラメチルエチレンジアミン5g、
重合開始剤として過硫酸カリウムを2.5g添加し、全
量1リットルとなるように水を加え、撹拌後、平面上に
流延し、室温で重合させ、厚さ2.9〜3.1mmのシ
ート状に成形した。これを1辺2.9〜3.1mmに切
断し、サイコロ状のゲルを得た。表2に示す脱窒活性測
定用培地5リットルに、得られたサイコロ状のゲル50
0gを加え、20℃で12時間放置した。表3に示すよ
うに、硝酸性窒素濃度が大幅に減少し、脱窒活性が発現
した(1回目)。また、このゲルを海水で洗浄した後、
脱窒活性を測定したが、同様の活性が得られた(2回
目)。
Example 3 Water was added to 200 g of acrylamide monomer and 10 g of methylenebisacrylamide to make 500 g. to this,
1 g of the cultured bacterial cell obtained in the same manner as in Example 1 (on a dry weight basis) was added and sufficiently stirred. To this, 5 g of NNN'N'-tetramethylethylenediamine as a polymerization accelerator,
Add 2.5 g of potassium persulfate as a polymerization initiator, add water so that the total amount becomes 1 liter, stir, cast on a flat surface and polymerize at room temperature to give a thickness of 2.9 to 3.1 mm. It was formed into a sheet. This was cut into a side of 2.9 to 3.1 mm to obtain a dice-like gel. The resulting dice-like gel 50 was added to 5 liters of the medium for measuring denitrification activity shown in Table 2.
0 g was added and the mixture was left at 20 ° C. for 12 hours. As shown in Table 3, the concentration of nitrate nitrogen was significantly decreased and the denitrification activity was expressed (first time). Also, after washing this gel with seawater,
When the denitrification activity was measured, similar activity was obtained (second time).

【0015】比較例1 大阪府泉佐野港の岸壁に垂下したポーラスコンクリート
の小片500gを、表1に示す培地に10リットルに入
れ、約20℃で2日間放置した。表2に示す脱窒活性測
定用溶液5リットルに、このポーラスコンクリート50
0gを加え、20℃で12時間静置した。表3に示すよ
うに、硝酸性窒素濃度が減少し、脱窒活性が発現した
(1回目)。しかし、これを海水で洗浄した後、脱窒活
性を測定したところ、脱窒活性が見られなくなった(2
回目)。
Comparative Example 1 500 g of a small piece of porous concrete suspended on the quay of Izumisano Port, Osaka Prefecture was placed in 10 liters of the medium shown in Table 1 and left at about 20 ° C. for 2 days. This porous concrete 50 was added to 5 liters of the solution for measuring denitrification activity shown in Table 2.
0 g was added and the mixture was allowed to stand at 20 ° C. for 12 hours. As shown in Table 3, the concentration of nitrate nitrogen decreased and the denitrification activity was expressed (first time). However, when the denitrification activity was measured after washing it with seawater, the denitrification activity was not observed (2
Second time).

【0016】比較例2 実施例1と同様のPVAを40℃の温水で約1時間洗浄
後、PVA濃度10重量%になるようにPVAに水を加
えて全量を500gとし110℃で2時間処理しPVA
を溶解した後、60℃まで冷却した。このPVA水溶液
に4重量%のアルギン酸ナトリウム水溶液250gを加
えて混合し、室温まで冷却した後、淡水中で脱窒活性の
ある脱窒汚泥1g(乾燥重量換算)を加え、全量を1リ
ットルとし、十分に撹拌した。これらの混合液を内径4
mmφのビニル管1本を使用したローラーポンプで1m
l/分で送液し、スターラーで撹拌した0.1モル/リ
ットルの塩化カルシウム(CaCl2)水溶液に、水表
面30cmの高さより滴下した。滴下した液滴はCaC
2水溶液中で直ちに球状化して沈降した。これらの球
状化したPVA混合成形物を全量CaCl2水溶液と分
離し、蒸留水で軽く洗浄した後、−20℃の冷凍庫で1
2時間凍結させた後、解凍させた。これにより、不透明
な褐色の柔軟性に富んだ球状のPVAゲルが得られた。
このPVAゲルは球状に成形化され、粘着性もなく、粒
径3〜3.5mmφであった。このPVAゲルは淡水中
では脱窒活性が存在したが、表2に示す脱窒活性測定用
溶液5リットルに、球状のPVAゲル500gを加え、
20℃で12時間静置したところ、表3に示すように、
硝酸性窒素濃度は変化せず(1回目)、海水中では脱窒
活性が発現しないことが判明した(2回目)。
Comparative Example 2 The same PVA as in Example 1 was washed with warm water at 40 ° C. for about 1 hour, and then water was added to PVA so that the concentration of PVA was 10% by weight to make the total amount 500 g, and the treatment was performed at 110 ° C. for 2 hours. PVA
Was dissolved and then cooled to 60 ° C. To this PVA aqueous solution, 250 g of a 4% by weight sodium alginate aqueous solution was added and mixed, and after cooling to room temperature, 1 g of denitrifying sludge having a denitrification activity in fresh water (on a dry weight basis) was added to bring the total amount to 1 liter, Stir well. Internal diameter 4 of these mixed liquids
1m with a roller pump that uses one mmφ vinyl tube
The solution was fed at a rate of 1 / min and added dropwise to a 0.1 mol / liter calcium chloride (CaCl 2 ) aqueous solution stirred with a stirrer from a height of 30 cm of the water surface. The dropped droplet is CaC
Immediately spheroidized and settled in the 12 aqueous solution. After separating all the spherical PVA-mixed molded products from the CaCl 2 aqueous solution and lightly washing with distilled water, 1
It was frozen for 2 hours and then thawed. This gave an opaque brown flexible spherical PVA gel.
This PVA gel was formed into a spherical shape, had no tackiness, and had a particle size of 3 to 3.5 mmφ. Although this PVA gel had denitrification activity in fresh water, 500 g of spherical PVA gel was added to 5 liters of the solution for measuring denitrification activity shown in Table 2,
After standing at 20 ° C. for 12 hours, as shown in Table 3,
It was found that the concentration of nitrate nitrogen did not change (first time), and denitrification activity was not expressed in seawater (second time).

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】本発明によると、従来は困難であった海
水の脱窒が可能になる。これにより、海水魚の養魚水系
の窒素除去、さらには、海洋の富栄養化防止にも有用で
ある。
According to the present invention, it is possible to denitrify seawater, which was difficult in the past. This is useful for removing nitrogen from the saltwater fish culture system and for preventing eutrophication of the ocean.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 武 岡山市海岸通1丁目2番1号 株式会社ク ラレ内 (72)発明者 塩谷 唯夫 大阪市北区梅田1丁目12番39号 株式会社 クラレ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takeshi Matsuda 1-2-1, Kaigan-dori, Okayama-shi Kuraray Co., Ltd. (72) Yuio Shiotani 1-2-12-39, Umeda, Kita-ku, Osaka Kuraray Co., Ltd. Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 海水中において硝酸塩または亜硝酸塩を
窒素ガスに還元する能力のある微生物が高分子ゲルに固
定化されてなる海洋性脱窒細菌固定化物。
1. A marine denitrifying bacterium immobilization product in which a microorganism capable of reducing nitrate or nitrite to nitrogen gas in seawater is immobilized on a polymer gel.
JP21406893A 1993-08-30 1993-08-30 Marine denitrifying bacterium immobilized material Pending JPH0760281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21406893A JPH0760281A (en) 1993-08-30 1993-08-30 Marine denitrifying bacterium immobilized material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21406893A JPH0760281A (en) 1993-08-30 1993-08-30 Marine denitrifying bacterium immobilized material

Publications (1)

Publication Number Publication Date
JPH0760281A true JPH0760281A (en) 1995-03-07

Family

ID=16649720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21406893A Pending JPH0760281A (en) 1993-08-30 1993-08-30 Marine denitrifying bacterium immobilized material

Country Status (1)

Country Link
JP (1) JPH0760281A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346592A (en) * 2001-05-28 2002-12-03 Nippon Steel Chem Co Ltd Low temperature denitrification material and denitrification method using the same
JP2010201423A (en) * 1999-06-10 2010-09-16 Bicom:Kk High-concentration culture method of denitrifying bacterium contained in activated sludge
CN102976484A (en) * 2012-11-05 2013-03-20 沈阳建筑大学 Method for removing nitrates in underground water through utilizing rice straws and entrapping denitrifying bacteria
JP2015512771A (en) * 2012-07-10 2015-04-30 ソリュックス ライティング フィクスチャSolux Lighting Fixture Method for removing nitrates from solutions containing salt components
CN105981637A (en) * 2015-02-13 2016-10-05 上海太和水环境科技发展有限公司 Method of adding microorganisms for promoting growth of common andrographis herbs

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201423A (en) * 1999-06-10 2010-09-16 Bicom:Kk High-concentration culture method of denitrifying bacterium contained in activated sludge
JP2002346592A (en) * 2001-05-28 2002-12-03 Nippon Steel Chem Co Ltd Low temperature denitrification material and denitrification method using the same
JP2015512771A (en) * 2012-07-10 2015-04-30 ソリュックス ライティング フィクスチャSolux Lighting Fixture Method for removing nitrates from solutions containing salt components
CN102976484A (en) * 2012-11-05 2013-03-20 沈阳建筑大学 Method for removing nitrates in underground water through utilizing rice straws and entrapping denitrifying bacteria
CN105981637A (en) * 2015-02-13 2016-10-05 上海太和水环境科技发展有限公司 Method of adding microorganisms for promoting growth of common andrographis herbs

Similar Documents

Publication Publication Date Title
CN103998499B (en) Porous aqueous gel article shaped, its manufacture method and application thereof
Seo et al. Nitrification performance of nitrifiers immobilized in PVA (polyvinyl alcohol) for a marine recirculating aquarium system
US4791061A (en) Immobilization of microorganisms by entrapment
CN101319212A (en) Immobilization method for anaerobic fermentation bacterial active sludge
EP0836644B1 (en) Means and process for nitrate removal
JP3298562B2 (en) Denitrification accelerator and water treatment method using this denitrification accelerator
Furukawa et al. Nitrification of NH4-N polluted sea water by immobilized acclimated marine nitrifying sludge (AMNS)
US6133004A (en) Bioreactor carrier gel prepared from a crosslinked N-vinylcarboxamide resin
Hochheimer et al. Biological filters: trickling and RBC design
JPH0760281A (en) Marine denitrifying bacterium immobilized material
JP2588571B2 (en) Substrate for microbial membrane and method for producing the same
CN214781034U (en) Device for quickly film-forming artificial aquatic weeds
JP3203026B2 (en) Biocatalyst immobilized gel
JPH10314782A (en) Water treatment carrier, its manufacture and method for nitrification and denitrification using that
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
JP4161124B2 (en) Biological nitrification equipment
JPH0137987B2 (en)
JPH0857494A (en) High polymer gel containing water and method for purifying water
JPWO2002046104A1 (en) Bacterial high-density adsorbent, closed-circulation aquaculture and seedling production system incorporating the same, and fish and shellfish grown by the system
JP2021070821A (en) Nitrous bacterium-immobilized polymer gel, method for producing nitrous bacterium-immobilized polymer gel and water treatment method
JP2001212594A (en) Method for removing nitrate nitrogen in wastewater
JPH10296284A (en) Carrier for immobilizing microbe and manufacture thereof
JPH0760285A (en) Polymer hydrous gel and method for purifying water
JPH0763284B2 (en) Method for controlling infectious diseases of aquatic animals in ponds and method for controlling pond water pollution
JP2003000237A (en) Inclusively immobilized microbe carrier and method for manufacturing the same