JPH0760100A - Radiant adiabatic pressure medium for high temperature and ultra-high pressure - Google Patents

Radiant adiabatic pressure medium for high temperature and ultra-high pressure

Info

Publication number
JPH0760100A
JPH0760100A JP21261493A JP21261493A JPH0760100A JP H0760100 A JPH0760100 A JP H0760100A JP 21261493 A JP21261493 A JP 21261493A JP 21261493 A JP21261493 A JP 21261493A JP H0760100 A JPH0760100 A JP H0760100A
Authority
JP
Japan
Prior art keywords
pressure medium
sodium chloride
adiabatic
pressure
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21261493A
Other languages
Japanese (ja)
Inventor
Shuhei Kuge
修平 久下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Priority to JP21261493A priority Critical patent/JPH0760100A/en
Publication of JPH0760100A publication Critical patent/JPH0760100A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the excellent article yield of diamond, to conserve power consumption and to extend the life of a cylinder by enhancing heat insulating effect without damaging the flowability of a pressure medium. CONSTITUTION:A radiant adiabatic pressure medium contains 0.1-25wt.% of sodium chloride or a pressure medium containing sodium chloride and a heat insulating material whose heat conductivity is lower than that of sodium chloride and a radiant adiabatic absorbent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はダイヤモンドや立方晶窒
化ほう素などの製造に際して用いられる高温超高圧用輻
射断熱圧力媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation adiabatic pressure medium for high temperature and ultra high pressure used in the production of diamond, cubic boron nitride and the like.

【0002】[0002]

【従来の技術】ダイヤモンドや立方晶窒化ほう素製造用
の最も一般的な圧力媒体は塩化ナトリウムである(特公
昭43ー28690号公報)。塩化ナトリウムは剪断強
度が低いため冷間圧縮しても流動性があり、系の温度が
低い段階でも均一な圧力分布を得ること出来るため、圧
力媒体として特に好ましい。しかしながら高温での断熱
効果は殆ど期待できない。これを改良する目的で、塩化
ナトリウムに熱伝導率の低い断熱セラミックを配合して
断熱効果を持たせる試みがされている(特公昭63ー1
9207号公報)。しかしこの方法は熱伝導を低減させ
ているのみであって断熱効果は配合比に大きく依存し、
十分な断熱効果を得ようとすると、作業性が低下して実
用上問題がある。
2. Description of the Related Art The most common pressure medium for producing diamond and cubic boron nitride is sodium chloride (Japanese Patent Publication No. 43-28690). Since sodium chloride has low shear strength, it has fluidity even when cold-compressed, and a uniform pressure distribution can be obtained even when the system temperature is low. Therefore, sodium chloride is particularly preferable as a pressure medium. However, the heat insulating effect at high temperature can hardly be expected. For the purpose of improving this, an attempt has been made to add a heat insulating ceramic having a low thermal conductivity to sodium chloride to have a heat insulating effect (Japanese Patent Publication No. 63-1).
9207). However, this method only reduces the heat conduction, and the heat insulation effect greatly depends on the compounding ratio,
If an attempt is made to obtain a sufficient heat insulating effect, the workability is lowered and there is a practical problem.

【0003】[0003]

【発明が解決しようとする課題】本発明は塩化ナトリウ
ムの有する圧力媒体としての優れた特性、特に流動性を
損なうことなく、圧力媒体の断熱性を一層向上させ、系
の温度分布を均一にし、ダイヤモンド等の良品収率を向
上させ、使用電力の節減およびダイヤモンド等合成用も
しくは高温超高圧用の金型部材の寿命を延ばすことを目
的とする。
DISCLOSURE OF THE INVENTION The present invention further improves the heat insulating property of the pressure medium and makes the temperature distribution of the system uniform, without impairing the excellent properties of sodium chloride as a pressure medium, especially the fluidity. The object of the present invention is to improve the yield of non-defective products such as diamond, reduce the power consumption, and extend the life of the mold member for synthesizing diamond or for high temperature and ultra high pressure.

【課題を解決するための手段】[Means for Solving the Problems]

【0004】本発明は塩化ナトリウムまたは塩化ナトリ
ウムと塩化ナトリウムより熱伝導率の低い断熱材を含む
圧力媒体と輻射断熱吸収体0.1−25重量%とを含む
高温超高圧用輻射断熱圧力媒体に関する。本発明に用い
る圧力媒体は塩化ナトリウム単独、塩化ナトリウムと塩
化ナトリウムより熱伝導率の低い断熱材の組合わせであ
る。
The present invention relates to a radiant adiabatic pressure medium for high temperature ultrahigh pressure containing a pressure medium containing sodium chloride or sodium chloride and a heat insulating material having a thermal conductivity lower than that of sodium chloride, and a radiation adiabatic absorber of 0.1 to 25% by weight. . The pressure medium used in the present invention is sodium chloride alone or a combination of sodium chloride and a heat insulating material having a lower thermal conductivity than sodium chloride.

【0005】塩化ナトリウムより熱伝導率の低い断熱材
としては塩化ナトリウム以外のハロゲン化アルカリ金
属、例えば臭化カリウムなどのほか、セラミック、ジル
コニア(ZrO2)、フォステライト(Mg2SiO4)などが例
示される。
Insulating materials having a lower thermal conductivity than sodium chloride include alkali metal halides other than sodium chloride, such as potassium bromide, as well as ceramics, zirconia (ZrO 2 ) and fosterite (Mg 2 SiO 4 ). It is illustrated.

【0006】塩化ナトリウムの熱伝導率は約0.10W
・cm-1・K-1(比重:2.16)であり、上記塩化ナトリ
ウムより熱伝導率の低い、一般的によく使用される断熱
材の熱伝導率は約0.02(ZrO2)から0.06(KB
r)K・cm-1・K-1であるから、これらの成分を多く配合
するほど圧力媒体の断熱性は向上するが流動性(静水圧
性)の低下あるいは相転移に伴なう体積減少などの現象
を生ずるのでその量には自ずと限界がある。一般的には
所望の性質に基づいて配合量をきめればよいが、ハロゲ
ン化アルカリ金属、例えば臭化カリウムの場合は成型性
は良好であるが、低圧(約18、000気圧)で、体積減
少を伴う相移転を生ずるため、ストロークに制限のある
ベルト型、キュービック型などの工業生産用大形プレス
ではせいぜい50重量%が限度である。またセラミッ
ク、ジルコニア、フォステライトなどでは剪断強度が高
すぎるため、多量の配合は流動性を著しく損なう。従っ
て、その使用量はせいぜい10重量%である。
The thermal conductivity of sodium chloride is about 0.10 W.
・ Cm -1 · K -1 (specific gravity: 2.16), which has a thermal conductivity lower than that of sodium chloride and is generally used, has a thermal conductivity of about 0.02 (ZrO 2 ). To 0.06 (KB
r) Since it is K · cm −1 · K −1 , the more the amount of these components is blended, the more the heat insulation of the pressure medium is improved, but the fluidity (hydrostatic pressure) is decreased or the volume is decreased due to the phase transition. Since such phenomena occur, the amount is naturally limited. Generally, the compounding amount may be determined based on the desired properties, but in the case of an alkali metal halide such as potassium bromide, the moldability is good, but at low pressure (about 18,000 atm), the volume is Since large-scale presses for industrial production such as belt type and cubic type, which have a limited stroke, have a limit of 50% by weight at most, because they cause phase transfer accompanied by reduction. Further, ceramics, zirconia, fosterite, etc. have too high a shear strength, and therefore a large amount of the compound markedly impairs the fluidity. Therefore, the amount used is at most 10% by weight.

【0007】本発明においては圧力媒体に輻射断熱吸収
体を配合し、輻射熱を吸収して断熱させる。塩化ナトリ
ウム自体はダイヤモンド合成時の高温高圧条件下で溶融
無色透明になるため本質的に輻射断熱効果を持っていな
い。本発明では従来全く無視されていたこの輻射熱の吸
収による断熱を試みたものである。圧力媒体に配合され
る輻射断熱吸収体としては黒色であって、圧力媒体、特
に塩化ナトリウムに容易に均一分散した形で成形出来る
こと、圧力媒体、特に塩化ナトリウム溶融時に分離偏析
せず(溶融物の比重差が少なく、ぬれ性が良好であるこ
と)、高温、超高圧で分解しないこと、圧力媒体と反応
しないことが必要である。これらの特性を満足するもの
として人造黒鉛、天然黒鉛、カーボンブラック、非晶質
炭素、木炭タール、ピッチなどの炭素系のものが特に好
ましい。特に炭素系の輻射断熱吸収体はそれ自体が優れ
た流動性を示すので好ましい物である。
In the present invention, the pressure medium is mixed with a radiation adiabatic absorber to absorb the radiant heat and insulate it. Sodium chloride itself has essentially no radiation adiabatic effect because it becomes transparent and colorless under melting at high temperature and high pressure during diamond synthesis. In the present invention, an attempt is made to perform heat insulation by absorbing this radiant heat, which has been completely ignored in the past. The radiation adiabatic absorber blended in the pressure medium is black and can be easily formed into a uniform dispersion in the pressure medium, especially sodium chloride, and does not segregate or separate when the pressure medium, especially sodium chloride is melted (melt It has to have a small difference in specific gravity and good wettability), must not decompose at high temperature and ultra high pressure, and must not react with the pressure medium. As those satisfying these characteristics, carbon-based ones such as artificial graphite, natural graphite, carbon black, amorphous carbon, charcoal tar and pitch are particularly preferable. Particularly, the carbon-based radiation adiabatic absorber is preferable because it exhibits excellent fluidity.

【0008】これらの輻射断熱吸収体の配合量は高温超
高圧用輻射断熱圧力媒体全量の0.1重量%から25重
量%、特に0.3重量%から5重量%が適当である。輻
射断熱吸収効果は0.1重量%から明瞭に観察され(例
えば図2)、0.3重量%以上でほぼ一定になる。25
重量%以上では成型性に悪影響が出、また導電性が生じ
てくる。成型性から言えば天然黒鉛、カーボンブラック
が優れており、熱的安定性では天然黒鉛、人造黒鉛が特
に優れている。
The amount of these radiation adiabatic absorbers to be blended is preferably 0.1% by weight to 25% by weight, and more preferably 0.3% by weight to 5% by weight, based on the total amount of the radiation adiabatic pressure medium for high temperature and high pressure. The radiation adiabatic absorption effect is clearly observed from 0.1% by weight (for example, FIG. 2), and becomes substantially constant at 0.3% by weight or more. 25
If it is more than 10% by weight, moldability is adversely affected and conductivity is generated. Speaking of moldability, natural graphite and carbon black are excellent, and natural graphite and artificial graphite are particularly excellent in thermal stability.

【0009】配合すべき輻射断熱吸収体の粒度は特に限
定的では無いが、人造黒鉛では分散性の点で#100以
下が好ましい。天然黒鉛やカーボンブラックは成型時に
容易に粉砕流動するため粒度はあまり重要ではない。通
常入手し得るグレード品を適宜使用すればよい。
The particle size of the radiation adiabatic absorber to be blended is not particularly limited, but artificial graphite is preferably # 100 or less from the viewpoint of dispersibility. The particle size is not so important because natural graphite and carbon black easily crush and flow during molding. A normally available grade product may be appropriately used.

【0010】本発明高温超高圧用輻射断熱圧力媒体は所
定の原料を均一に混合し、所定形状の成形金型に入れて
圧力1,000kgf/cm2〜3,000kgf/cm2
常温で圧縮成型する。この条件は目安であって固定され
たものではなく、金型材質、圧力媒体の成形性などによ
り適宜きめればよい。通常、シリンダー状またはペレッ
ト状のごとき形状に成型する。
The radiation adiabatic pressure medium for high temperature ultra high pressure of the present invention uniformly mixes predetermined raw materials, puts it in a molding die having a predetermined shape, and pressurizes it at 1,000 kgf / cm 2 to 3,000 kgf / cm 2.
Compress at room temperature. This condition is a guideline and is not fixed, and may be appropriately determined depending on the mold material, the formability of the pressure medium, and the like. Usually, it is molded into a shape such as a cylinder or a pellet.

【0011】以下、本発明を実施例により説明する。 実施例1、2および比較例1および2 高温超高圧用輻射断熱圧力媒体の処方を以下に示す。処方1 (比較例1) 塩化ナトリウム単独処方2 (比較例2) 重量部 塩化ナトリウム 90 臭化カリウム 10処方3 (実施例1) 重量部 塩化ナトリウム 99 人造黒鉛(#400) 1処方4 (実施例2) 重量部 塩化ナトリウム 89 臭化カリウム 10 人造黒煙(#400) 1The present invention will be described below with reference to examples. Examples 1 and 2 and Comparative Examples 1 and 2 The formulations of the radiation adiabatic pressure medium for high temperature ultrahigh pressure are shown below. Formulation 1 (Comparative Example 1) Sodium chloride alone Formulation 2 (Comparative Example 2) Parts by weight Sodium chloride 90 Potassium bromide 10 Formulation 3 (Example 1) Parts by weight Sodium chloride 99 Artificial graphite (# 400) 1 Formulation 4 (Example 2) Parts by weight Sodium chloride 89 Potassium bromide 10 Artificial black smoke (# 400) 1

【0012】上記処方の均一混合物を所定形状の成形金
型中に入れ、圧力2,000kgf/cm2、常温で圧縮
し、シリンダー状高温超高圧用輻射断熱圧力媒体(外周
40mm、内周34mm、高さ40mm)を得た。
A uniform mixture of the above formulation is placed in a molding die of a predetermined shape, compressed at a pressure of 2,000 kgf / cm 2 at room temperature, and radiated adiabatic pressure medium for cylindrical high temperature ultrahigh pressure (outer circumference 40 mm, inner circumference 34 mm, A height of 40 mm) was obtained.

【0013】上で得た本発明シリンダー状高温超高圧用
輻射断熱圧力媒体(5)の中にダイヤモンド製造用の材料
(6)として、人造黒鉛とNi−Fe合金触媒(直径34m
m、厚さ0.5mm)とを交互に40層縦に積層した。高温
超高圧用輻射断熱圧力媒体を図1に示すダイヤモンド製
造機のガスケット(4)付きシリンダー(3)内に挿入し、
電極板(11、12)にはさみ、更にその上下を通電リン
グ(7、8)および断熱材(9、10)ではさんで、アンビ
ル(1、2)で約5万気圧の超高圧を付与し、通電して約
1500℃に約15分間加熱した。圧力は予め定点物質
(Bi, Tl,Ba)の電気抵抗変化とそれに対する油圧の
較正曲線を作成し、これに基づいて制御した。反応温度
は原料中心部にPt−PtRh13%熱電対を挿入して測
定した。
The material for diamond production in the radiant heat insulating pressure medium (5) for cylindrical high temperature ultra high pressure according to the present invention obtained above.
As (6), artificial graphite and Ni-Fe alloy catalyst (diameter 34 m
m, thickness 0.5 mm) were alternately laminated vertically in 40 layers. Insert the radiant adiabatic pressure medium for high temperature ultra high pressure into the cylinder (3) with the gasket (4) of the diamond manufacturing machine shown in FIG.
The electrode plates (11, 12) are sandwiched between the energizing rings (7, 8) and the heat insulating materials (9, 10) above and below, and an ultrahigh pressure of about 50,000 atm is applied by the anvils (1, 2). Then, it was energized and heated to about 1500 ° C for about 15 minutes. Pressure is a fixed point substance in advance
A calibration curve of the electric resistance change of (Bi, Tl, Ba) and its corresponding hydraulic pressure was prepared, and the control was performed based on this curve. The reaction temperature was measured by inserting a Pt-PtRh 13% thermocouple in the center of the raw material.

【0014】上記操作を繰り返してダイヤモンドを製造
し、良品ダイヤモンドの収率および金型寿命を調べた。
ダイヤモンドの良品基準は、平らな低指数面に囲まれた
自形結晶(六ー八面体形を呈する)を有する未反応黒鉛、
触媒などの含有物の少ない明るい透明感のある黄色結晶
を言う。結果を表1に示す。
The above operation was repeated to produce diamond, and the yield of good diamond and the life of the mold were examined.
Good quality criteria for diamond is unreacted graphite with automorphic crystals (having a hexa-octahedral shape) surrounded by flat low index planes,
It is a bright and transparent yellow crystal containing little catalyst. The results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】また、反応温度を1500℃に上昇させる
のに必要な投入電力を比較例1および2について測定
し、さらに実施例1および2について輻射断熱吸収体の
量を増加させた時の投入電力の量を測定した。なお実施
例2においては臭化カリウムの量は10重量部で一定に
し、人造黒鉛の増加量だけ塩化ナトリウムの量を減らし
た。結果を図2に示す。図中、(13)、(14)、(15)
および(16)はそれぞれ比較例1、2、および実施例1
および2に対応する結果を示す。
The input power required to raise the reaction temperature to 1500 ° C. was measured for Comparative Examples 1 and 2, and for Example 1 and 2, the input power when the amount of radiation adiabatic absorber was increased. Was measured. In Example 2, the amount of potassium bromide was kept constant at 10 parts by weight, and the amount of sodium chloride was reduced by the increased amount of artificial graphite. The results are shown in Figure 2. In the figure, (13), (14), (15)
And (16) are Comparative Examples 1 and 2 and Example 1, respectively.
Results corresponding to and are shown.

【0017】[0017]

【発明の効果】本発明高温超高圧用輻射断熱圧力媒体を
用いることにより圧力媒体の流動性を損なうことなく断
熱効果を向上することができるため、ダイヤモンドの良
品収率が向上し、消費電力が節減でき、シリンダー寿命
が延びる。
EFFECTS OF THE INVENTION By using the radiation adiabatic pressure medium for high temperature and ultrahigh pressure of the present invention, the adiabatic effect can be improved without impairing the fluidity of the pressure medium, so that the yield of good diamond products is improved and the power consumption is reduced. Saves money and extends cylinder life.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ダイヤモンド製造用装置の概要図。FIG. 1 is a schematic diagram of a diamond manufacturing apparatus.

【図2】 本発明高温超高圧用輻射断熱圧力媒体を用い
た時の配合量と消費電力との関係を示す図。
FIG. 2 is a diagram showing the relationship between the blending amount and power consumption when the radiation adiabatic pressure medium for high temperature and ultrahigh pressure of the present invention is used.

【符号の説明】[Explanation of symbols]

1、2:アンビル、 3:シリンダー、 4:ガスケッ
ト、 5:圧力媒体、6:ダイヤモンド製造用材料、
7、8:通電リング、 9、10:断熱材、11、1
2:電極板、 13:比較例1、 14:比較例2、1
5:実施例1、 16:実施例2
1, 2: Anvil, 3: Cylinder, 4: Gasket, 5: Pressure medium, 6: Diamond manufacturing material,
7, 8: energizing ring, 9, 10: heat insulating material, 11, 1
2: electrode plate, 13: comparative example 1, 14: comparative example 2, 1
5: Example 1, 16: Example 2

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塩化ナトリウムまたは塩化ナトリウムと
塩化ナトリウムより熱伝導率の低い断熱材を含む圧力媒
体と輻射断熱吸収体0.1−25重量%とを含む高温超
高圧用輻射断熱圧力媒体。
1. A radiation adiabatic pressure medium for high temperature ultrahigh pressure, comprising a pressure medium containing sodium chloride or sodium chloride and a heat insulating material having a lower thermal conductivity than sodium chloride, and a radiation adiabatic absorber of 0.1 to 25% by weight.
【請求項2】 輻射断熱吸収体が人造黒鉛、天然黒鉛、
非晶質炭素、木炭、タール、およびピッチから選ばれる
請求項1記載の高温超高圧用輻射断熱圧力媒体。
2. The radiation adiabatic absorber is artificial graphite, natural graphite,
The radiant adiabatic pressure medium for high temperature ultra high pressure according to claim 1, which is selected from amorphous carbon, charcoal, tar and pitch.
【請求項3】 輻射断熱吸収体の粒度が#10−#40
0である請求項1に記載の高温超高圧用輻射断熱圧力媒
体。
3. The particle size of the radiation adiabatic absorber is # 10- # 40.
The radiant adiabatic pressure medium for high temperature ultrahigh pressure according to claim 1, which is 0.
【請求項4】 塩化ナトリウムより熱伝導率の低い断熱
材が塩化ナトリウム以外のハロゲン化アルカリ金属、セ
ラミック、ジルコニアおよびフォルステライトから選ば
れる請求項1記載の高温超高圧用輻射断熱圧力媒体。
4. The radiant heat insulating pressure medium for high temperature ultrahigh pressure according to claim 1, wherein the heat insulating material having a lower thermal conductivity than sodium chloride is selected from alkali metal halides other than sodium chloride, ceramics, zirconia and forsterite.
JP21261493A 1993-08-27 1993-08-27 Radiant adiabatic pressure medium for high temperature and ultra-high pressure Pending JPH0760100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21261493A JPH0760100A (en) 1993-08-27 1993-08-27 Radiant adiabatic pressure medium for high temperature and ultra-high pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21261493A JPH0760100A (en) 1993-08-27 1993-08-27 Radiant adiabatic pressure medium for high temperature and ultra-high pressure

Publications (1)

Publication Number Publication Date
JPH0760100A true JPH0760100A (en) 1995-03-07

Family

ID=16625604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21261493A Pending JPH0760100A (en) 1993-08-27 1993-08-27 Radiant adiabatic pressure medium for high temperature and ultra-high pressure

Country Status (1)

Country Link
JP (1) JPH0760100A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515373A (en) * 2012-04-09 2015-05-28 スミス インターナショナル インコーポレイテッド High pressure high temperature cell
CN110152559A (en) * 2019-06-10 2019-08-23 鸡西浩市新能源材料有限公司 Insulation casing and preparation method thereof for high pressure cubic hinge press diamond growth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515373A (en) * 2012-04-09 2015-05-28 スミス インターナショナル インコーポレイテッド High pressure high temperature cell
CN110152559A (en) * 2019-06-10 2019-08-23 鸡西浩市新能源材料有限公司 Insulation casing and preparation method thereof for high pressure cubic hinge press diamond growth

Similar Documents

Publication Publication Date Title
US3001237A (en) Method of making carbon articles
US4891338A (en) Production of metal carbide articles
JPH09510950A (en) Microwave sintering method
MA22861A1 (en) CARBON BLACK PRODUCTION.
CN109079145A (en) A kind of composite polycrystal-diamond Synthetic block and its method for synthesizing composite polycrystal-diamond
US3431326A (en) Method of making infrared transmitting element
US5401694A (en) Production of metal carbide articles
US3647331A (en) Ultrahigh pressure-temperature apparatus
JPH0760100A (en) Radiant adiabatic pressure medium for high temperature and ultra-high pressure
TW200830351A (en) Mercury releasing method
CN102963879A (en) Formed coke produced by ball pressing technology and production method thereof
CN101343582A (en) Method for preparing moulded coke with ball press technique
US2598796A (en) Methods for the reduction and sintering of bodies containing reducible metal compounds
EP1789598B1 (en) Siloxane composition, agglomerate, and method of preparing agglomerate
CN102417999A (en) Method for preparing magnesium alloy
US5254509A (en) Production of metal carbide articles
CN106498196A (en) The vanadium oxide particle that smelts for vananum and preparation method and purposes
US5082807A (en) Production of metal carbide articles
CN201288058Y (en) High pure graphite section bar
CN1091473A (en) Autoreaction-fusion technology prepares metal-base composites
CN1135457A (en) Method for preparation of titanium carbide micropowder by using self-spreading high-temp. synthesizing chemical-reacting furnace
JPS6325274A (en) Silicon carbide powder mixture and sintered ceramic product
CN217392315U (en) Pressure-equalizing and heat-insulating assembly structure for synthesis of superhard material composite sheet
JP3491092B2 (en) Manufacturing method of molded coke
JPH0780275A (en) Hydrostatic heater for high temperature and high pressure