JPH0760048B2 - Cooling control device for refrigerator - Google Patents
Cooling control device for refrigeratorInfo
- Publication number
- JPH0760048B2 JPH0760048B2 JP31909190A JP31909190A JPH0760048B2 JP H0760048 B2 JPH0760048 B2 JP H0760048B2 JP 31909190 A JP31909190 A JP 31909190A JP 31909190 A JP31909190 A JP 31909190A JP H0760048 B2 JPH0760048 B2 JP H0760048B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- damper
- quenching
- food
- fan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/11—Fan speed control
- F25B2600/112—Fan speed control of evaporator fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/06—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
- F25D2317/061—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/06—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
- F25D2317/066—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
- F25D2317/0665—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/06—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
- F25D2317/068—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
- F25D2317/0682—Two or more fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2331/00—Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
- F25D2331/80—Type of cooled receptacles
- F25D2331/803—Bottles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/28—Quick cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/16—Sensors measuring the temperature of products
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は食品などを短時間で適温まで冷やすために経験
則を基にした急冷制御装置の制御ルールと、それを構成
するファジィ変数のメンバーシップ関数とによって最適
な急冷ファンとダンパーと圧縮機との操作量を推論し
て、その結果を出力するようにした冷蔵庫の急冷制御装
置に関するものである。TECHNICAL FIELD The present invention relates to a control rule of a rapid cooling control device based on an empirical rule for cooling foods and the like to an appropriate temperature in a short time, and a membership function of fuzzy variables constituting the control rule. The present invention relates to a quenching control device for a refrigerator in which the optimum operation amounts of a quenching fan, a damper, and a compressor are deduced by and the result is output.
従来の技術 冷蔵庫(冷凍冷蔵庫も含む)は食品などの貯蔵を基本機
能とするものであるが、近年では更に付加機能を持たせ
たものが現われ始めた。その付加機能の一つが急速冷蔵
(以下急冷と省略する)である。この急冷機能は必要に
応じて食品を適温になるまで冷やすもので例えば「急な
お客さんでビールを大至急冷やしたい」や「サラダを早
く冷やして食事したい」などの時に利用でき、また生鮮
食料品などの新鮮さをそのままスピード保存ができるな
どの利点が有る。2. Description of the Related Art Refrigerators (including refrigerators / freezers) have a basic function of storing foods and the like, but in recent years, those with additional functions have begun to appear. One of the additional functions is rapid refrigeration (hereinafter abbreviated as rapid cooling). This rapid cooling function cools the food until it reaches an appropriate temperature as needed.For example, you can use it when you want to quickly cool beer with a sudden customer or want to eat a quick salad and eat fresh food. It has the advantage of being able to preserve the freshness of products as they are at speed.
従来の冷蔵庫の急冷制御装置では、例えば特開昭63−11
8584号公報に示されるような方法がある。ここでは急冷
指令(たとえばスイッチオンなど)によって急冷を開始
すると、あらかじめ設定された時間の間、常にダンパー
を開放にし、ファンで急冷室に冷気を送り続けるもので
あった。しかしこのように急冷動作を時間にのみ依存し
て制御する方法では、過冷却が生じるために例えばビー
ル瓶が破裂したり、他の食品では凍結して品質が劣化す
るなどの問題が有った。この過冷却を解決するために
は、例えば特開昭63−189760号公報に示されるような方
法がある。即ち急冷状態においてはダンパーを用いて急
冷室を通常より低い温度に設定し、なおかつファンを用
いて内部の冷気を強制循環させ食品を冷却すると共に、
その食品の表面温度を非接触(例えば赤外線センサー)
で測定し、その表面温度がある一定温度に冷えると、急
冷動作を停止させるものであった。In a conventional refrigerator quenching control device, for example, Japanese Patent Laid-Open No. 63-11
There is a method shown in Japanese Patent No. 8584. Here, when the rapid cooling is started by a rapid cooling command (for example, switch-on), the damper is always opened for a preset time, and the fan continuously sends the cool air to the rapid cooling chamber. However, in such a method of controlling the rapid cooling operation only depending on time, there is a problem that, for example, a beer bottle bursts due to supercooling, or other foods freeze and their quality deteriorates. In order to solve this supercooling, there is a method as disclosed in, for example, JP-A-63-189760. That is, in the rapid cooling state, the damper is used to set the temperature of the quenching chamber to a temperature lower than usual, and the internal cool air is forcedly circulated using the fan to cool the food,
Non-contact the surface temperature of the food (eg infrared sensor)
The rapid cooling operation was stopped when the surface temperature cooled to a certain temperature.
発明が解決しようとする課題 しかしこのような構成では、急冷中は常に一定の冷却能
力で冷却しているため、例えば目標とする表面温度で急
冷動作を中止したとしてもその余韻で更に冷却が進み目
標とする温度より低い温度となってしまう(一般に言う
オーバーシュートの状態となる)。しかも急冷終了後は
一般の温度制御しかしないために、一度低下した温度は
なかなかもとの温度には戻らない。この場合、ビール瓶
が破裂するなどの最悪状態は避けられるが、やはり過冷
却を生じ、なおかつその低温状態がしばらく続くため
に、食品が凍結するなどして品質が劣化する恐れが十分
にある。また食品としては最適な温度より低くなってい
るためにその食品の持つ風味や味を損ねることとなる。
これを防止するには例えば、目標とする表面温度を高め
に設定するなどが考えられるが、この場合は逆に冷却不
足が生じ、表面のみ冷えて中身が冷えていないために同
じくその食品の持つ風味や味を損ねることとなるという
課題を有していた。However, in such a configuration, since the cooling is always performed with a constant cooling capacity during the rapid cooling, for example, even if the rapid cooling operation is stopped at the target surface temperature, the cooling proceeds further with the aftereffect. The temperature will be lower than the target temperature (generally called overshoot). Moreover, since the temperature control is only performed after the completion of the rapid cooling, the temperature once lowered does not return to the normal temperature. In this case, the worst condition such as bursting of the beer bottle can be avoided, but since the supercooling still occurs and the low temperature condition continues for a while, there is a risk that the food is frozen and the quality is deteriorated. Further, since the temperature of the food is lower than the optimum temperature, the flavor and taste of the food are impaired.
To prevent this, for example, the target surface temperature may be set higher, but in this case, insufficient cooling will occur, and only the surface will be cold and the contents will not be cold. There was a problem that the flavor and taste would be impaired.
本発明は上記課題に鑑み、食品が凍結するなどして品質
が劣化したり、食品の持つ風味や味を損ねることが無
く、しかも短時間で目標温度に到達できる冷蔵庫の急冷
制御装置を提供することを目的とする。In view of the above problems, the present invention provides a quenching control device for a refrigerator that does not deteriorate the quality such as freezing of food, does not impair the flavor and taste of food, and can reach a target temperature in a short time. The purpose is to
課題を解決するための手段 上記目的を達成するために本発明の冷蔵庫の急冷制御装
置は、冷蔵庫の一部に設けられた急冷室と、前記急冷室
に風を送るための急冷ファンと、前記急冷室に低温の空
気を送るためのダンパーと、前記急冷室に入れられた食
品などの温度を検出する食品温度検出手段と、前記食品
温度検出手段の出力の変化量を出力する微分手段と、前
記食品温度検出手段の出力と前記微分手段の出力の情報
に対し、前記急冷ファンと前記ダンパーと圧縮機との操
作量を求めるための経験則に基づく制御ルールを記憶す
るメモリ装置と、前記食品温度検出手段の出力と前記微
分手段の出力の情報と前記メモリ装置から取り出された
制御ルールに基づいて、ファジィ論理演算を行ない前記
急冷ファンと前記ダンパーと圧縮機との操作量を演算す
るファジィ推論手段と、前記ファジィ推論手段の出力に
より、前記急冷ファンを制御する急冷ファン制御手段
と、前記ダンパーを制御するダンパー制御手段と、前記
圧縮機の回転数を制御する回転数制御手段とを備えたこ
とを特徴としている。Means for Solving the Problems In order to achieve the above object, the quenching control device for a refrigerator of the present invention is a quenching chamber provided in a part of the refrigerator, a quenching fan for sending air to the quenching chamber, and A damper for sending low-temperature air to the quenching chamber, a food temperature detecting means for detecting the temperature of the food or the like placed in the quenching chamber, and a differentiating means for outputting the amount of change in the output of the food temperature detecting means, A memory device that stores a control rule based on an empirical rule for determining the operation amounts of the quenching fan, the damper, and the compressor, with respect to the information of the output of the food temperature detecting means and the output of the differentiating means, and the food. Based on the information of the output of the temperature detecting means, the output of the differentiating means, and the control rule extracted from the memory device, fuzzy logic operation is performed to operate the quenching fan, the damper, and the compressor. A fuzzy inference means for calculating, a quenching fan control means for controlling the quenching fan by the output of the fuzzy inference means, a damper control means for controlling the damper, and a rotation speed control for controlling the rotation speed of the compressor. And means are provided.
作用 本発明は上記構成により、食品温度検出手段によって検
知された食品温度とその変化量に対する急冷ファンとダ
ンパーと圧縮機の操作量を、経験則から求めた制御ルー
ルに基づいて演算しているので、急冷している食品の状
態、例えば急冷し始めた頃や急冷終了直前の場合などで
その時に応じた最適な冷却を急冷ファンとダンパーと圧
縮機で行なうため常に最適な冷却能力で食品を冷却する
ことができ、過冷却や冷却不足を防ぐことができる。ま
た、圧縮機の回転数を制御することにより、蒸発器から
の冷却空気温度を制御できるため、非常に短時間で食品
の冷却が可能となる。Action The present invention, by the above configuration, calculates the operation amount of the quenching fan, the damper and the compressor with respect to the food temperature detected by the food temperature detecting means and the change amount thereof, based on the control rule obtained from the empirical rule. , The state of the food being rapidly cooled, for example, when it begins to cool or just before the end of the rapid cooling is optimized by the cooling fan, damper and compressor, so that the food is always cooled with the optimum cooling capacity. It is possible to prevent overcooling and undercooling. Further, since the temperature of the cooling air from the evaporator can be controlled by controlling the rotation speed of the compressor, the food can be cooled in a very short time.
実施例 以下本発明の一実施例の冷蔵庫の急冷制御装置について
図面を参照しながら説明する。Embodiment A quenching control device for a refrigerator according to an embodiment of the present invention will be described below with reference to the drawings.
まず本発明の概略構成について第2図を用いて説明す
る。第2図は本発明の冷蔵庫の断面図である。第2図に
おいて、1は冷蔵庫本体で、外箱2と内箱3と両者の空
隙に形成されたウレタン発泡断熱材4により構成され、
前面開口部に3つのドア5、6、7が配設されている。
ドア5、6、7はそれぞれ冷蔵庫本体1の冷凍室8、冷
蔵室9、野菜室10の開口部に対応して配設されている。
冷凍室8の底板11と冷蔵室9の天板12に囲まれた区画壁
内には蒸発器13とその背後に庫内ファン14を有してい
る。また、冷凍室8、冷蔵室9の背部には、蒸発器13か
らの冷却空気を各室に導入するための通風路15、16が形
成されている。17は圧縮機である。18は冷蔵室9の下部
に設けた急冷室である。急冷室18は壁19で冷蔵室9と仕
切られており、その開口部にはドア20が配設されてい
る。また急冷室18の背面には蒸発器13からの冷気を急冷
室18に導入するための通風路21が形成されている。First, the schematic structure of the present invention will be described with reference to FIG. FIG. 2 is a sectional view of the refrigerator of the present invention. In FIG. 2, reference numeral 1 denotes a refrigerator main body, which is composed of an outer box 2, an inner box 3 and a urethane foam heat insulating material 4 formed in a space between them.
Three doors 5, 6, 7 are arranged in the front opening.
The doors 5, 6, and 7 are arranged corresponding to the openings of the freezer compartment 8, the refrigerator compartment 9, and the vegetable compartment 10 of the refrigerator body 1, respectively.
Inside the partition wall surrounded by the bottom plate 11 of the freezer compartment 8 and the top plate 12 of the refrigerating compartment 9, there is an evaporator 13 and an internal fan 14 behind it. Further, ventilation paths 15 and 16 for introducing cooling air from the evaporator 13 into the respective compartments are formed at the backs of the freezing compartment 8 and the refrigerating compartment 9. 17 is a compressor. Reference numeral 18 is a quenching room provided below the refrigerating room 9. The quenching chamber 18 is separated from the refrigerating chamber 9 by a wall 19, and a door 20 is arranged at the opening thereof. An air passage 21 for introducing cold air from the evaporator 13 into the quench chamber 18 is formed on the back surface of the quench chamber 18.
このように構成された冷蔵庫において、その急冷装置の
構成について第1図を用いて更に詳しく説明する。第1
図は本発明の冷蔵庫の急冷制御装置のブロック図であ
る。第1図において、22は通風路21からの冷気を導入ま
たは遮断するためのダンパーである。23は急冷室18内に
冷気を導入するための急冷ファンである。ここで言う冷
気には、通風路21とダンパー22とを介して供給される第
1の冷気と、壁19の天面後部に設けた通風孔24を介して
供給される第2の冷気とがあり、第1の冷気は前記圧縮
機17の回転数により温度が変化する冷気であり、第2の
冷気は5℃程度の冷気である。25は食品26の表面温度を
検出するための食品温度センサーである。27は食品温度
センサー25の出力から食品26の表面温度Tを検出する食
品温度検出手段である。28は食品温度検出手段27の出力
を微分し食品26の表面温度の変化量ΔT(即ちΔT=T
(t+Δt)−T(t))を演算する微分手段である。
また29はマイクロプロセッサで、ファジィ推論手段30と
制御ルールを記憶するメモリ装置31とから構成されて
る。32は、ファジィ推論手段30で得た操作量の指示に従
って、急冷ファン23の能力(即ち回転数)を制御する急
冷ファン制御手段である。33は、ファジィ推論手段30で
得た操作量の指示に従って、ダンパー22の開閉制御をす
るダンパー制御手段である。34は、ファジィ推論手段30
で得た操作量の指示に従って、圧縮機17の能力(即ち回
転数)を制御する回転数制御手段である。The configuration of the quenching device in the refrigerator thus configured will be described in more detail with reference to FIG. First
FIG. 1 is a block diagram of a quenching control device for a refrigerator according to the present invention. In FIG. 1, reference numeral 22 is a damper for introducing or blocking cold air from the ventilation passage 21. Reference numeral 23 is a quenching fan for introducing cold air into the quenching chamber 18. The cool air referred to here includes the first cool air supplied through the ventilation passage 21 and the damper 22, and the second cool air supplied through the ventilation hole 24 provided at the rear portion of the top surface of the wall 19. The first cold air is cold air whose temperature changes depending on the rotation speed of the compressor 17, and the second cold air is cold air of about 5 ° C. Reference numeral 25 is a food temperature sensor for detecting the surface temperature of the food 26. 27 is a food temperature detecting means for detecting the surface temperature T of the food 26 from the output of the food temperature sensor 25. 28 differentiates the output of the food temperature detecting means 27 and changes the surface temperature of the food 26 by ΔT (that is, ΔT = T).
It is a differentiating means for calculating (t + Δt) −T (t)).
Further, 29 is a microprocessor, which comprises a fuzzy inference means 30 and a memory device 31 for storing control rules. Reference numeral 32 is a quenching fan control means for controlling the capacity (that is, the number of revolutions) of the quenching fan 23 according to the instruction of the operation amount obtained by the fuzzy inference means 30. Reference numeral 33 is a damper control means for controlling the opening / closing of the damper 22 in accordance with the instruction of the operation amount obtained by the fuzzy inference means 30. 34 is a fuzzy inference means 30
It is a rotation speed control means for controlling the capacity (that is, the rotation speed) of the compressor 17 according to the instruction of the operation amount obtained in (3).
以上のように構成された冷蔵庫の急冷制御装置について
以下第1図〜第5図を用いてその動作を説明する。The operation of the refrigerator quenching control device configured as described above will be described below with reference to FIGS. 1 to 5.
食品温度検出手段27では食品温度センサー25の出力から
食品26の表面温度Tを検出し、さらに微分手段28で食品
温度検出手段27の出力を微分し食品26の表面温度の変化
量ΔT(即ちΔT=T(t+Δt)−T(t)、ここ
で、tは時間を、Δtは時間変化を表わす。)を演算す
る。以上のように演算された表面温度T及び表面温度の
変化量ΔTはファジィ推論手段30に入力される。メモリ
装置31はファジィ推論手段30で実行されるファジィ推論
に必要な制御ルールを格納している。急冷ファン23の操
作量である能力(即ち回転数)と、ダンパー22の操作量
である開閉度合いと、圧縮機17の操作量である能力(即
ち回転数)を求めるファジィ推論は、下記のような制御
ルールを基にして実行される。The food temperature detecting means 27 detects the surface temperature T of the food 26 from the output of the food temperature sensor 25, and the differentiating means 28 differentiates the output of the food temperature detecting means 27 to change the surface temperature of the food 26 ΔT (that is, ΔT). = T (t + Δt) −T (t), where t represents time and Δt represents time change. The surface temperature T and the variation ΔT of the surface temperature calculated as described above are input to the fuzzy inference means 30. The memory device 31 stores the control rules necessary for the fuzzy inference executed by the fuzzy inference means 30. The fuzzy inference for obtaining the capacity (that is, the rotation speed) that is the operation amount of the quenching fan 23, the opening and closing degree that is the operation amount of the damper 22, and the capacity (that is, the rotation speed) that is the operation amount of the compressor 17 are as follows. It is executed based on various control rules.
本実施例で採用した制御ルールは次のような9ルールで
ある。例えば ルールR1:もし温度が高く、温度変化量が正大であれ
ば、急冷ファンを非常に強めかつダンパーを開け かつ圧縮機の回転数を非常に大きくせよ ルールR2:もし温度が低く、温度変化量が正大であれ
ば、急冷ファンを弱め かつダンパーを閉じ かつ圧縮機の回転数を標準にせよ ・ ・ 等である。前記言語ルールは、発明者が数多くの実験デ
ータから得た経験則から求めた、急速に冷却したい食品
に最適な急冷ファン、ダンパー及び圧縮機の制御に対す
る制御ルールであり、これを温度と温度変化量の関係で
表に示すと表1、表2、表3の通りになる。表1、表
2、表3はおのおの実施例に使用する急冷ファン、ダン
パー、圧縮機に対する制御ルールの関係を示している。The control rules adopted in this embodiment are the following nine rules. For example, Rule R1: If the temperature is high and the amount of temperature change is large, increase the quench fan strongly, open the damper, and increase the rotation speed of the compressor very much Rule R2: If the temperature is low and the amount of temperature change is large If is positive, weaken the quenching fan, close the damper, and set the compressor speed to standard. The language rule is a control rule for the control of the quenching fan, the damper and the compressor most suitable for the food to be rapidly cooled, which is obtained from the empirical rule obtained by the inventor from a large number of experimental data. Tables 1 and 2 and 3 show the amounts in relation to each other. Tables 1, 2 and 3 show the relationship of the control rules for the quenching fan, damper and compressor used in each embodiment.
表1、表2、表3は横方向に温度Tを強度によって3段
階(LT=低温、MT=適温、HT=高温)に分け、縦方向に
温度変化量ΔTの強度によって3段階(NB=負大、ZO=
ゼロ、PB=正大)に分けて配置し、上記区分された温度
T、温度変化量ΔTとのおのおの交わった位置にはその
温度T、温度変化量ΔTの強度に対する最適な急冷ファ
ンの能力を表1に設定し、ダンパーの開度を表2に設定
し、圧縮機の回転数を表3に設定している。ここで表1
においては急冷ファンの能力を強度に応じて5段階(VS
=非常に強、S=強、M=中、W=弱、VW=非常に弱)
に分けており、表2においてはダンパーの開度を強度に
応じて3段階(C=閉、H=半開、O=開)に分けてお
り、表3においては圧縮機の回転数を3段階(N=標
準、F=大、VF=非常に大)に分けている。即ち前記制
御ルールRi(i=1、2、…9)は表1、表2、表3に
おける升目(Ri)で示されている。本発明の発明者は表
1、表2、表3にしたがって急冷ファンの能力、ダンパ
ーの開度、圧縮機の回転数を制御した時、最適な急冷制
御が実現できることを実験的に確認している。 In Table 1, Table 2 and Table 3, the temperature T is divided into three levels (LT = low temperature, MT = suitable temperature, HT = high temperature) in the horizontal direction, and three levels (NB = temperature) in the vertical direction according to the strength of the temperature change ΔT. Negative, ZO =
Zero, PB = positive size), and the optimum quenching fan capacity for the strength of the temperature T and the amount of temperature change ΔT is displayed at the position where each of the temperature T and the amount of temperature change ΔT intersects. 1, the opening of the damper is set in Table 2, and the rotation speed of the compressor is set in Table 3. Table 1 here
In the case of the quenching fan, there are 5 levels (VS
== very strong, S = strong, M = medium, W = weak, VW = very weak)
In Table 2, the opening of the damper is divided into three stages (C = closed, H = half open, O = open) according to the strength. In Table 3, the rotation speed of the compressor is divided into three stages. (N = standard, F = large, VF = very large). That is, the control rules Ri (i = 1, 2, ... 9) are shown by the squares (Ri) in Tables 1, 2, and 3. The inventor of the present invention experimentally confirmed according to Table 1, Table 2 and Table 3 that when the capacity of the quenching fan, the opening of the damper, and the rotation speed of the compressor were controlled, optimum quenching control could be realized. There is.
また前記言語ルールは第1図のメモリ装置31の内に記憶
する場合に下記のようなルール則で記憶されている。本
発明で使用した制御ルール数は9個である。When the language rules are stored in the memory device 31 shown in FIG. 1, they are stored according to the following rule rules. The number of control rules used in the present invention is nine.
ルールR1:IF T is HT and ΔT is PB THEN F=VS and D=O and C=VF ルールR2:IF T is LT and ΔT is PB THEN F=W and D=C and C=N ・ ・ つぎにファジィ推論手段30では予めメモリ装置31に記憶
されている前記制御ルールを取り出してファジィ推論に
よって急冷ファン23の操作量である能力、ダンパー22の
操作量である開度及び圧縮機17の操作量である回転数を
算出し、急冷ファン制御手段32、ダンパー制御手段33、
回転数制御手段34に出力する。急冷ファン制御手段32は
決められた操作量に応じて急冷ファン23の能力を制御
し、ダンパー制御手段33は決められた操作量に応じてダ
ンパー22の開度を制御し、回転数制御手段34は決められ
た操作量に応じて圧縮機17の回転数を制御する。Rule R1: IF T is HT and ΔT is PB THEN F = VS and D = O and C = VF Rule R2: IF T is LT and ΔT is PB THEN F = W and D = C and C = N ・ ・ Next The fuzzy inference means 30 takes out the control rule stored in advance in the memory device 31 and uses fuzzy inference to determine the operation amount of the quenching fan 23, the operation amount of the damper 22 and the operation amount of the compressor 17. Calculate a certain rotation speed, quenching fan control means 32, damper control means 33,
Output to the rotation speed control means 34. The quenching fan control means 32 controls the capacity of the quenching fan 23 according to the determined operation amount, the damper control means 33 controls the opening degree of the damper 22 according to the determined operation amount, and the rotation speed control means 34. Controls the number of revolutions of the compressor 17 according to the determined operation amount.
前記制御ルールR1、ルールR2……ルールR9のルールは温
度T,温度変化量ΔTに対する急冷ファン23の能力、ダン
パー22の開度、圧縮機17の回転数を段階的に決めている
ので、きめ細かな制御を行なう場合には、前記制御ルー
ルの前件部(IF部)をどの程度満たしているかの度合い
を算出して、その度合いに応じた急冷ファン23の能力、
ダンパー22の開度、圧縮機17の回転数を推定する必要が
ある。そのため、本実施例では前記度合いを算出するの
にファジィ変数のメンバーシップ関数を利用している。The rules of the control rules R1, R2 ... R9 set the temperature T, the amount of temperature change ΔT, the capacity of the quenching fan 23, the opening of the damper 22, and the rotation speed of the compressor 17 in a stepwise manner. When performing such control, the degree of how much the antecedent part (IF part) of the control rule is satisfied is calculated, and the capacity of the quenching fan 23 according to the degree is calculated,
It is necessary to estimate the opening degree of the damper 22 and the rotation speed of the compressor 17. Therefore, in this embodiment, a membership function of fuzzy variables is used to calculate the degree.
第3図(a)は温度Tに対するファジィ変数LT、MT、HT
のメンバーシップ関数μLT(T)、μMT(T)、μHT
(T)を示したものであり、第3図(b)は温度変化量
ΔTに対するファジィ変数PB、ZO、NBのメンバーシップ
関数μPB(ΔT)、μZO(ΔT)、μNB(ΔT)を示し
たものである。FIG. 3 (a) shows fuzzy variables LT, MT, HT with respect to temperature T.
Membership functions of μLT (T), μMT (T), μHT
FIG. 3B shows the membership functions μPB (ΔT), μZO (ΔT), μNB (ΔT) of the fuzzy variables PB, ZO, and NB with respect to the temperature change amount ΔT. It is a thing.
ファジィ推論手段30で実行するファジィ推論は前記制御
ルール、ルール2……ルール9と第3図(a)、(b)
のメンバーシップ関数とを用いてファジィ論理演算を行
なって操作量の演算を行なう。推論形式としては合成法
にmax−min法、−点化法に高さ法を用いた。以下第4図
をもとに推論の手順を説明する。第4図は推論手順を示
す流れ図である。STEP1では食品温度検出手段27、微分
手段28で温度Toと温度変化量ΔToを算出する。STEP2で
ファジィ推論手段30によって温度Toと温度変化量ΔToに
対するファジィ変数のメンバーシップ関数を用いて、前
記温度Toと温度変化量ΔToにおけるメンバーシップ値の
算出を行なう。STEP3で、得られたメンバーシップ値が
前記9個の各ルールの前件部をどの程度の度合いかを合
成法で算出する(第4図においては温度に対するファジ
ィ変数をA、温度変化量に対するファジィ変数をBで示
している)。The fuzzy inference executed by the fuzzy inference means 30 is the control rule, rule 2 ... Rule 9 and FIGS. 3 (a) and 3 (b).
The fuzzy logic operation is performed using the membership function of and the operation amount is calculated. As the inference method, the max-min method was used for the synthesis method, and the height method was used for the-pointing method. The inference procedure will be described below with reference to FIG. FIG. 4 is a flow chart showing the inference procedure. In STEP 1, the food temperature detecting means 27 and the differentiating means 28 calculate the temperature To and the temperature change amount ΔTo. In STEP 2, the fuzzy inference means 30 calculates the membership value at the temperature To and the temperature change amount ΔTo by using the membership function of the fuzzy variable for the temperature To and the temperature change amount ΔTo. In STEP3, the degree to which the obtained membership value is the antecedent part of each of the nine rules is calculated by the synthesis method (in FIG. 4, the fuzzy variable for temperature is A, and the fuzzy variable for temperature change is fuzzy). Variables are indicated by B).
ルールR1: h1=μHT(To)∩μPB(ΔTo) =MIN{μHT(To). μPB(ΔTo)}−−(1) ルールR2: h2=μLT(To)∩μPB(ΔTo) =MIN{μLT(To). μPB(ΔTo)}−−(2) ・ ・ (1)式は、前記Toが前記温度Tに対する領域HTに入
り、かつ前記ΔToが前記温度変化量ΔTに対する領域PB
に入るという命題は、ToがHTに入る割合とΔToがPBに入
る割合のうち小さい値としての割合で成立すること、故
にルール1の場合の前件部はh1の割合で成立することを
表わしている。同様に(2)式であるルール2の場合、
前件部はh2の割合で成立することを表わしている。STEP
4で制御ルールの実行部のメンバーシップ関数によっ
て、温度Toと温度変化量ΔTにおける急冷ファンとダン
パーと圧縮機との操作量を下記のようにして求める。急
冷ファンの操作量Foとダンパーの操作量Doと圧縮機の操
作量C0とを求めるためには、結論部での定数はh1、h2…
…h9による加重平均として与えられるから Fo=(VS×h1+W×h2+…×h9)/(h1+h2+…+h9) Do=(O×h1+C×h2+…×h9)/(h1+h2+…+h9) Co=(VF×h1+N×h2+…×h9)/(h1+h2+…+h9) の−点化法の1つである高さ法により急冷ファンの操作
量Fo、ダンパーの操作量Do、圧縮機の操作量C0がもとま
り急冷ファン制御手段32とダンパー制御手段33と回転数
制御手段34に出力される。Rule R1: h1 = μHT (To) ∩μPB (ΔTo) = MIN {μHT (To). μPB (ΔTo)}-(1) Rule R2: h2 = μLT (To) ∩μPB (ΔTo) = MIN {μLT (To). μPB (ΔTo)} −− (2) ··· (1) In the equation (1), the To falls within the region HT corresponding to the temperature T, and the ΔTo falls within the region PB corresponding to the temperature variation ΔT.
The proposition of entering is to be satisfied at the ratio of To entering HT and ΔTo entering PB as a smaller value, and therefore the antecedent in the case of rule 1 is satisfied at the ratio of h1. ing. Similarly, in the case of rule 2 which is the expression (2),
It means that the antecedent part holds at the rate of h2. STEP
In 4, the operation amount of the quenching fan, damper and compressor at the temperature To and the temperature change amount ΔT is calculated by the membership function of the execution part of the control rule as follows. In order to obtain the operation amount Fo of the quenching fan, the operation amount Do of the damper, and the operation amount C0 of the compressor, the constants in the conclusion section are h1, h2 ...
Since it is given as a weighted average by h9, Fo = (VS × h1 + W × h2 + ... × h9) / (h1 + h2 + ... + h9) Do = (O × h1 + C × h2 + ... × h9) / (h1 + h2 + ... + h9) Co = (VF × h1 + N × h2 + ... × h9) / (h1 + h2 + ... + h9) -The height method, which is one of the-pointing methods, provides the quenching fan operation amount Fo, the damper operation amount Do, and the compressor operation amount C0. It is output to the fan control means 32, the damper control means 33, and the rotation speed control means 34.
次に本実施例を適応した時の急冷動作の一例について第
5図を用いて説明する。第5図は本実施例の急冷動作の
一例を示すタイミングチャートである。第5図(a)は
急冷ファン23、第5図(b)はダンパー22、第5図
(c)は圧縮機17、第5図(d)は食品26の表面温度の
おのおのの時間に対する変化を示しており、実線は本実
施例の場合であり、破線は従来例の場合を示している。
従来の急冷制御においては食品表面温度が目標温度(こ
の場合は5℃)に達するまで(イ点)急冷ファン23をオ
ン、ダンパーを開けているので、急冷停止後も表面温度
はその余韻で下がり続け目標温度以下にオーバーシュー
トする(ロ点)。その後温度は徐々に回復し、しばらく
時間がかかった後、目標温度に達する(ハ点)。本実施
例の急冷制御の場合、初期の表面温度が高い場合(ニ
点)は急冷ファン23を非常に強くし、ダンパー22を開放
にし、圧縮機17の回転数を非常に大きくする事により従
来と比べて急速に食品を冷やすことができる。あとは食
品の表面温度と表面温度の変化量で最適な急冷ファン2
3、ダンパー22、圧縮機17の制御を行なうことにより
(ホ点)、従来より早く目標温度に到達すると共に(ヘ
点)、温度のオーバーシュートも少なく抑えられること
となる(ト点)。また万が一食品表面温度が冷え過ぎた
場合においても表1、表2に示すようにダンパー22を閉
めたまま、急冷ファン23を制御するので、通風孔24より
冷蔵室の冷気(5℃程度)を取り込むことができるので
過冷却が生じてもいち早く目標温度に到達させることが
できることとなる。Next, an example of the rapid cooling operation when this embodiment is applied will be described with reference to FIG. FIG. 5 is a timing chart showing an example of the rapid cooling operation of this embodiment. 5 (a) is a quench fan 23, FIG. 5 (b) is a damper 22, FIG. 5 (c) is a compressor 17, and FIG. 5 (d) is a change in the surface temperature of the food 26 with respect to time. The solid line shows the case of the present embodiment, and the broken line shows the case of the conventional example.
In the conventional rapid cooling control, the rapid cooling fan 23 is turned on and the damper is opened until the food surface temperature reaches the target temperature (5 ° C in this case) (point A), so the surface temperature drops after that even after the rapid cooling is stopped. Continue to overshoot below the target temperature (point B). After that, the temperature gradually recovers, and after a while, reaches the target temperature (point C). In the case of the rapid cooling control of the present embodiment, when the initial surface temperature is high (dual point), the rapid cooling fan 23 is made very strong, the damper 22 is opened, and the rotation speed of the compressor 17 is made extremely large. Can cool food rapidly compared to. After that, the quenching fan 2 is optimal for the surface temperature of food and the amount of change in surface temperature 2
3. By controlling the damper 22 and the compressor 17 (point E), the target temperature can be reached earlier than before (point F), and temperature overshoot can be suppressed (point G). In addition, even if the food surface temperature becomes too cold, as shown in Table 1 and Table 2, the cooling fan 23 is controlled with the damper 22 closed, so that the cool air (about 5 ° C) in the refrigerating room is discharged from the ventilation hole 24. Since it can be taken in, the target temperature can be quickly reached even if supercooling occurs.
従ってこの実施例では制御パラメータとして食品26の表
面温度、及び表面温度の変化量を使用しているため急速
に冷却したい食品に対してきめ細かい制御が可能であ
る。また、制御ルールが人間の経験則から成り立ってい
るため、急冷制御装置に対して最適な急冷ファン23の能
力、ダンパー22の開度、圧縮機17の回転数で制御ができ
る。そのため常に最適な冷却能力で食品を冷却できるの
で、いち早く目標とする温度に到達できると共に、過冷
却や冷却不足を防ぐことができ、食品の品質の劣化を防
ぐことができる。また通風孔24を設けることにより、万
が一過冷却をしてしまった場合や、温度の低い食品が入
れられた場合においても冷蔵室の冷気を循環させること
ができるため、過冷却に対してもいち早く目標温度に達
することができる。また食品26の表面温度を検出して自
動的に制御を行なうので、急冷のスイッチ等を設ける必
要がなく自動的に急冷運転を行なうので、人為的なミス
による急冷不足(スイッチの入れ忘れ、重量設定ミスな
ど)などが発生することはなく、なおかつコストダウン
にもつながることとなる。Therefore, in this embodiment, since the surface temperature of the food 26 and the amount of change in the surface temperature are used as the control parameters, fine control can be performed on the food that is desired to be cooled rapidly. In addition, since the control rule is based on the empirical rule of human beings, it is possible to control the quenching control device by the optimum capability of the quenching fan 23, the opening degree of the damper 22, and the rotation speed of the compressor 17. Therefore, the food can always be cooled with the optimum cooling capacity, so that the target temperature can be reached quickly, overcooling and undercooling can be prevented, and deterioration of food quality can be prevented. In addition, by providing the ventilation hole 24, even in the unlikely event of overcooling, or even if food with a low temperature is put in, it is possible to circulate the cold air in the refrigerating room, so it is also quick against overcooling. The target temperature can be reached. In addition, because the surface temperature of the food 26 is detected and automatically controlled, there is no need to provide a rapid cooling switch, etc., so the rapid cooling operation is performed automatically, so insufficient rapid cooling due to human error (forgot to switch on, weight setting There will be no mistakes, etc., and it will also lead to cost reduction.
尚、実施例では食品温度を検出するために、赤外線セン
サーを用いたが、これに限定するものではなく例えば急
冷室の雰囲気温度や冷気の戻りダクトの温度など食品の
表面温度と相関のとれる情報を用いてもよい。Incidentally, in the embodiment, in order to detect the food temperature, an infrared sensor was used, but it is not limited to this, for example, information that can be correlated with the surface temperature of the food such as the ambient temperature of the quenching room or the temperature of the return duct of cold air. May be used.
発明の効果 以上のように本発明の冷蔵庫の急冷制御装置は、冷蔵庫
の一部に設けられた急冷室と、前記急冷室に風を送るた
めの急冷ファンと、前記急冷室に低温の空気を送るため
のダンパーと、前記急冷室に入れられた食品などの温度
を検出する食品温度検出手段と、前記食品温度検出手段
の出力の変化量を出力する微分手段と、前記食品温度検
出手段の出力と前記微分手段の出力の情報に対し、前記
急冷ファンと前記ダンパーと圧縮機との操作量を求める
ための経験則に基づく制御ルールを記憶するメモリ装置
と、前記食品温度検出手段の出力と前記微分手段の出力
の情報と前記メモリ装置から取り出された制御ルールに
基づいて、ファジィ論理演算を行ない前記急冷ファンと
前記ダンパーと前記圧縮機との操作量を演算するファジ
ィ推論手段と、前記ファジィ推論手段の出力により、前
記急冷ファンを制御する急冷ファン制御手段と、前記ダ
ンパーを制御するダンパー制御手段と、圧縮機の回転数
を制御する回転数制御手段とを備えることにより、食品
温度検出手段によって検知された食品温度とその変化量
に対する急冷ファンとダンパーと圧縮機の操作量を、経
験則から求めた制御ルールに基づいて演算し、急冷して
いる食品の状態、例えば急冷し始めた頃や急冷終了直前
の場合などでその時に応じた最適な冷却を急冷ファンと
ダンパーと圧縮機で行なうため、常に最適な冷却能力で
食品を冷却することができるので、過冷却や冷却不足を
防ぐことができると共に、非常に短時間で食品の冷却が
可能である。EFFECTS OF THE INVENTION As described above, the quenching control device for a refrigerator of the present invention includes a quenching chamber provided in a part of the refrigerator, a quenching fan for sending air to the quenching chamber, and low-temperature air to the quenching chamber. A damper for sending, a food temperature detecting means for detecting the temperature of food or the like placed in the quenching chamber, a differentiating means for outputting a change amount of the output of the food temperature detecting means, and an output of the food temperature detecting means. With respect to the information of the output of the differentiating means, a memory device that stores a control rule based on an empirical rule for obtaining the operation amounts of the quenching fan, the damper, and the compressor, the output of the food temperature detecting means, and the Fuzzy inference for performing fuzzy logic operation based on the information of the output of the differentiating means and the control rule extracted from the memory device to calculate the operation amounts of the quenching fan, the damper and the compressor. Means, a quenching fan control means for controlling the quenching fan by the output of the fuzzy inference means, a damper control means for controlling the damper, and a rotation speed control means for controlling the rotation speed of the compressor. , The operation amount of the quenching fan, the damper and the compressor for the food temperature and its change amount detected by the food temperature detecting means, is calculated based on the control rule obtained from the empirical rule, and the state of the food being rapidly cooled, for example, When the cooling starts, or immediately before the end of cooling, the cooling fan, damper, and compressor perform the optimal cooling according to the time, so it is possible to always cool food with the optimal cooling capacity, so it is possible to overcool or Insufficient cooling can be prevented and food can be cooled in a very short time.
第1図は本発明の一実施例の冷蔵庫の急冷制御装置のブ
ロック図、第2図は本発明の一実施例の冷蔵庫の断面
図、第3図(a)は温度Tに対するファジィ変数LT、M
T、HTのメンバーシップ関数を示した特性図、第3図
(b)は温度変化量△Tに対するファジィ変数PB、ZO、
NBのメンバーシップ関数を示した特性図、第4図は推論
手順を示す流れ図、第5図は本実施例の急冷動作の一例
を示すタイミングチャートであり、第5図(a)は急冷
ファンを示すタイミングチャート、第5図(b)はダン
パーを示すタイミングチャート、第5図(c)は圧縮機
を示すタイミングチャート、第5図(d)は食品表面温
度のタイミングチャートである。 18……急冷室、22……ダンパー、23……急冷ファン、27
……食品温度検出手段、28……微分手段、30……ファジ
ィ推論手段、31……メモリ装置、32……急冷ファン制御
手段、33……ダンパー制御手段、34……回転数制御手
段。FIG. 1 is a block diagram of a refrigerator quenching control apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view of a refrigerator according to an embodiment of the present invention, and FIG. 3 (a) is a fuzzy variable LT with respect to temperature T, M
A characteristic diagram showing the membership functions of T and HT, and FIG. 3 (b) is a fuzzy variable PB, ZO for temperature variation ΔT,
A characteristic diagram showing the membership function of the NB, FIG. 4 is a flow chart showing the inference procedure, FIG. 5 is a timing chart showing an example of the quenching operation of this embodiment, and FIG. 5 (b) is a timing chart showing a damper, FIG. 5 (c) is a timing chart showing a compressor, and FIG. 5 (d) is a timing chart of food surface temperature. 18 …… quenching room, 22 …… damper, 23 …… quenching fan, 27
...... Food temperature detecting means, 28 ...... differentiating means, 30 ...... fuzzy inference means, 31 ...... memory device, 32 ...... quenching fan control means, 33 ...... damper control means, 34 ...... rotation speed control means.
Claims (1)
急冷室に風を送るための急冷ファンと、前記急冷室に低
温の空気を送るためのダンパーと、前記急冷室に入れら
れた食品などの温度を検出する食品温度検出手段と、前
記食品温度検出手段の出力の変化量を出力する微分手段
と、前記食品温度検出手段の出力と前記微分手段の出力
の情報に対し、前記急冷ファンと前記ダンパーと圧縮機
との操作量を求めるための経験則に基づく制御ルールを
記憶するメモリ装置と、前記食品温度検出手段の出力と
前記微分手段の出力の情報と前記メモリ装置から取り出
された制御ルールに基づいて、ファジィ論理演算を行な
い前記急冷ファンと前記ダンパーと前記圧縮機との操作
量を演算するファジィ推論手段と、前記ファジィ推論手
段の出力により、前記急冷ファンを制御する急冷ファン
制御手段と、前記ダンパーを制御するダンパー制御手段
と、前記圧縮機の回転数を制御する回転数制御手段とを
備えることを特徴とする冷蔵庫の急冷制御装置。1. A quenching chamber provided in a part of a refrigerator, a quenching fan for sending air to the quenching chamber, a damper for sending low temperature air to the quenching chamber, and a quenching chamber placed in the quenching chamber. Food temperature detecting means for detecting the temperature of food, etc., differentiating means for outputting the amount of change in the output of the food temperature detecting means, and for the information of the output of the food temperature detecting means and the output of the differentiating means, A memory device that stores a control rule based on an empirical rule for obtaining the operation amounts of the quenching fan, the damper, and the compressor, information on the output of the food temperature detecting means and the output of the differentiating means, and the information extracted from the memory device. Based on the control rule, the fuzzy inference means for performing the fuzzy logic operation to calculate the operation amount of the quenching fan, the damper, and the compressor, and the output of the fuzzy inference means, Serial and quench fan control means for controlling the rapid cooling fan, and a damper control means for controlling the damper, refrigerator quench control device, characterized in that it comprises a rotational speed control means for controlling the rotational speed of the compressor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31909190A JPH0760048B2 (en) | 1990-11-21 | 1990-11-21 | Cooling control device for refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31909190A JPH0760048B2 (en) | 1990-11-21 | 1990-11-21 | Cooling control device for refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04187970A JPH04187970A (en) | 1992-07-06 |
JPH0760048B2 true JPH0760048B2 (en) | 1995-06-28 |
Family
ID=18106385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31909190A Expired - Lifetime JPH0760048B2 (en) | 1990-11-21 | 1990-11-21 | Cooling control device for refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0760048B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5907953A (en) * | 1996-04-29 | 1999-06-01 | Samsung Electronics Co., Ltd. | Temperature controlling method and apparatus for refrigerator using velocity control of rotary blade |
IT1286409B1 (en) * | 1996-11-27 | 1998-07-08 | Candy Spa | REFRIGERATOR STRUCTURE WITH VARIABLE FORCED VENTILATION |
US6782706B2 (en) | 2000-12-22 | 2004-08-31 | General Electric Company | Refrigerator—electronics architecture |
EP1564513A1 (en) * | 2004-02-12 | 2005-08-17 | Whirlpool Corporation | A refrigerator with a variable speed compressor and a method for controlling variable cooling capacity thereof |
EP1564514A1 (en) * | 2004-02-12 | 2005-08-17 | Whirlpool Corporation | A refrigerator and a method for controlling variable cooling capacity thereof |
JP5405009B2 (en) | 2007-09-06 | 2014-02-05 | ホシザキ電機株式会社 | Internal temperature controller for cooling storage |
DE102015003632A1 (en) * | 2015-03-19 | 2016-09-22 | Weber Maschinenbau Gmbh Breidenbach | Food slicer with precooling device |
CN113137797A (en) * | 2020-01-20 | 2021-07-20 | 佛山市云米电器科技有限公司 | Refrigerator control method, refrigerator and computer-readable storage medium |
-
1990
- 1990-11-21 JP JP31909190A patent/JPH0760048B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04187970A (en) | 1992-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2662496B2 (en) | refrigerator | |
JP3110471B2 (en) | Refrigeration quenching control device | |
JPH0760048B2 (en) | Cooling control device for refrigerator | |
JPH0682141A (en) | Controller of refrigerator-freezer | |
JPH0758149B2 (en) | Cooling control device for refrigerator | |
JPH06137738A (en) | Control device for freezer and refrigerator | |
JPH0760047B2 (en) | Cooling control device for refrigerator | |
JPH0518650A (en) | Controlling device for refrigerated-cold storage cabinet | |
JPH0443276A (en) | Rapid cooling controller for refrigerator | |
JP3197589B2 (en) | Refrigerator refrigerator temperature control device | |
JP2998848B2 (en) | Refrigerator refrigerator control device | |
JP3197593B2 (en) | Refrigerator temperature controller | |
KR20060111274A (en) | Refrigerator | |
JP3135302B2 (en) | Refrigerator refrigerator control device | |
JPH08261624A (en) | Control device for freezing refrigerator | |
JP2584342B2 (en) | Refrigeration / refrigerator cooling control device | |
JP3110479B2 (en) | Refrigerator refrigerator control device | |
JPH07229668A (en) | Controller for deep freezing refrigerator | |
JPH0518649A (en) | Controlling device for refrigerated-cold storage cabinet | |
JPH06300416A (en) | Controller of freezer-refrigerator | |
JP3193923B2 (en) | Refrigerator refrigerator control device | |
JPH05288449A (en) | Controller for freezing refrigerator | |
WO2023030186A1 (en) | Refrigerator | |
JP3164869B2 (en) | Refrigerator refrigerator control device | |
JPH0427475B2 (en) |