JPH075979B2 - Prediction method of fuel consumption of heating furnace - Google Patents

Prediction method of fuel consumption of heating furnace

Info

Publication number
JPH075979B2
JPH075979B2 JP18239687A JP18239687A JPH075979B2 JP H075979 B2 JPH075979 B2 JP H075979B2 JP 18239687 A JP18239687 A JP 18239687A JP 18239687 A JP18239687 A JP 18239687A JP H075979 B2 JPH075979 B2 JP H075979B2
Authority
JP
Japan
Prior art keywords
heating furnace
slab
furnace
amount
fuel consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18239687A
Other languages
Japanese (ja)
Other versions
JPS6428327A (en
Inventor
俊彰 後藤
洋一 判治
健 多田
俊一 秋山
信一郎 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP18239687A priority Critical patent/JPH075979B2/en
Publication of JPS6428327A publication Critical patent/JPS6428327A/en
Publication of JPH075979B2 publication Critical patent/JPH075979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、例えば製鉄所で発生したガスを自家発電
所、加熱炉の燃料として使用している場合の加熱炉の燃
料使用量の予測方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for predicting the amount of fuel used in a heating furnace when, for example, gas generated in a steel mill is used as fuel for a private power plant or a heating furnace. It is about.

[従来の技術] 製鉄所では、高炉からBガス、コークス炉からCガスま
た転炉からLDガス等が発生する。そこで、これらの副生
ガスを所定の割合いで混合したMガスを圧延工場加熱炉
の燃料として使用している。一方所内の電力を、電力会
社から購入する購入電力と、自家発電による電力とで賄
っている。そして、自家発電所の燃料として上記副生ガ
スを使用すると共に、必要により燃料油の追焚をしてい
る。
[Prior Art] In a steel mill, B gas is generated from a blast furnace, C gas is generated from a coke oven, and LD gas is generated from a converter. Therefore, M gas, which is a mixture of these by-product gases in a predetermined ratio, is used as fuel for the rolling mill heating furnace. On the other hand, the electric power in the office is covered by the purchased electric power purchased from the electric power company and the electric power generated by private power generation. The by-product gas is used as fuel for the private power plant, and fuel oil is added if necessary.

ところで、所内でのエネルギーの発生と使用には変動が
あるので、これらのアンバランスから例えば電力の電力
会社への逆送とか、ガスの放散等の需給ロスを少なくす
る運用をする必要がある。この需給ロスを軽減する為に
は、エネルギーの変動を予め予測し、それに対応した変
動吸収設備例えばガスホルダーの運用を図ることが必要
となる。
By the way, since the generation and use of energy in the plant are fluctuated, it is necessary to carry out operations to reduce the supply and demand loss such as the reverse transmission of electric power to the electric power company or the emission of gas from these imbalances. In order to reduce this supply and demand loss, it is necessary to predict energy fluctuations in advance and operate fluctuation absorbing equipment, such as a gas holder, corresponding to the fluctuations.

エネルギーの変動は主に使用側に起因するものが多く、
その中でも圧延工場のガス使用量の変動が大きい。この
場合のガス使用量の予測は、従来は実績をベースにする
ものであった。
Energy fluctuations are mainly due to the use side,
Among them, the amount of gas used in rolling mills fluctuates greatly. In this case, the prediction of the amount of gas used has conventionally been based on actual results.

[発明の解決しようとする問題点] しかし、従来の上記予測方法では、これから加熱される
スラブ等の情報が入っていないので、予測の精度は悪い
ものであった。
[Problems to be Solved by the Invention] However, in the above-described conventional prediction method, since the information such as the slab to be heated is not included, the prediction accuracy is poor.

この発明は、上記のような問題点を解消できるようにし
た加熱炉の燃料使用量の予測方法を提供することを目的
とするものである。
It is an object of the present invention to provide a method for predicting the amount of fuel used in a heating furnace that can solve the above problems.

[問題点を解決するための手段] この発明の加熱炉の燃料使用量の予測方法は、加熱炉へ
の装入予定及び装入スラブデータ、加熱炉能率の予測値
とにより所定時間後の各スラブの炉内位置を予測し、そ
の時のヒートバランスから所定時間の燃料使用量を予測
するものである。
[Means for Solving Problems] The method for predicting the fuel consumption of the heating furnace according to the present invention is based on the charging schedule and charging slab data into the heating furnace, and the predicted value of the heating furnace efficiency. The position of the slab in the furnace is predicted, and the amount of fuel used for a predetermined time is predicted from the heat balance at that time.

[作用] 加熱炉への装入予定例えば熱片、冷片の区分及び装入ス
ラブデータ例えばスラブサイズ、サイクルの種別等を計
算機にインプットしておく。一方、実績能率を考慮した
加熱炉能率の予測値から装入されたスラブの所定時間後
の炉内での位置を予測する。そして、その時点でのスラ
ブ加熱に要する熱量と放熱量のヒートバランスから所定
時間での燃料使用量を予測する。こうして、所定時間内
での加熱炉での燃料使用量を、実態に則して精度良く予
測することができる。
[Operation] The charging schedule of the heating furnace, for example, classification of hot and cold pieces, and charging slab data such as slab size and cycle type are input to the computer. On the other hand, the position of the charged slab in the furnace after a predetermined time is predicted from the predicted value of the heating furnace efficiency in consideration of the actual efficiency. Then, the amount of fuel used in a predetermined time is predicted from the heat balance between the amount of heat required for slab heating and the amount of heat radiation at that time. In this way, the amount of fuel used in the heating furnace within a predetermined time can be accurately predicted in accordance with the actual situation.

[実施例] 本発明方法を実施するためのデータの伝送フローの1例
を第1図に示す。
[Embodiment] An example of a data transmission flow for carrying out the method of the present invention is shown in FIG.

データは一般的にヤードの計算機からセンターの計算機
を介してエネルギーセンターの計算機に伝送されるよう
になっている。
Data is generally transmitted from the yard computer to the energy center computer via the center computer.

スラブの装入予定がヤードの計算機からセンター計算機
に送られ、ここでデータを付与して、スラブサイズ、熱
冷片区分、サイクルの種別等がエネルギーセンターに伝
送される。また、センター計算機からスラブ装入に関
し、装入時刻、装入配列状態、装入温度等及び圧延実績
がエネルギーセンターに伝送される。さらに、抽出休
止、装入休止及び異常操業等の情報がエネルギーセンタ
ーに伝送されるようになっている。
The slab charging schedule is sent from the yard computer to the center computer, where data is given and the slab size, hot and cold pieces classification, cycle type, etc. are transmitted to the energy center. Further, regarding the slab charging, the charging time, the charging arrangement state, the charging temperature, etc. and the rolling record are transmitted from the center computer to the energy center. In addition, information such as extraction suspension, charging suspension and abnormal operation is transmitted to the energy center.

そして、先ず、装入予定及び装入スラブデータ、実績を
考慮して加熱炉能率の予測とにより、予測しようとする
時間例えばt分後の炉内の各スラブの位置を予測する。
Then, first, the position of each slab in the furnace after the time to be predicted, for example, t minutes, is predicted by predicting the heating furnace efficiency in consideration of the charging schedule, the charging slab data, and the actual result.

こうして、例えば第2図に示すようにt分後の炉内での
スラブ位置を予測することができる。
Thus, for example, as shown in FIG. 2, the slab position in the furnace after t minutes can be predicted.

次に、その時のヒートバランスからt分間の燃料使用量
を予測する。燃料使用量V(炉・時間)は次式で求めら
れる。
Next, the fuel usage amount for t minutes is predicted from the heat balance at that time. The fuel consumption amount V (furnace / time) is calculated by the following equation.

Qloss:炉体放散等の固定損失熱(時間当り一定) Qslab:炉内スラブ入熱量(加熱炉能率及び熱冷片区分等
で変わる) H、G :発熱量及び排ガス量(燃料種別にほぼ一定) C、t :排ガス比熱及びレキュペレータ出口排ガス温度
(レキュペレータ出口温度でみると余り大きく変わらな
い) 上記式の内、特に大きく変わるものはQslabであり、そ
の他は一定値と仮定する。
Qloss: Fixed heat loss due to furnace body emission (constant per hour) Qslab: Heat input to the slab in the furnace (changes depending on heating furnace efficiency and heating / cooling piece classification) H, G: Calorific value and exhaust gas amount (almost constant for each fuel type) ) C, t: Exhaust gas specific heat and recuperator outlet exhaust gas temperature (not much different in terms of recuperator outlet temperature) Of the above equations, the one that changes significantly is Qslab, and the others are assumed to be constant values.

ここで、Qslabの求め方を、例えば第2図に示すよう
に、冷片と熱片とが混合して炉内に装入されている場合
について説明する。この場合、スラブ1本毎でなく、例
えば鋼種毎、熱冷片毎、装入温度毎にグルーピングして
考える。
Here, the method of obtaining Qslab will be described, for example, in the case where cold pieces and hot pieces are mixed and charged in the furnace as shown in FIG. In this case, it is considered that the slabs are not grouped, but are grouped for each steel type, each hot / cold piece, and each charging temperature.

Qslab=(++)×加熱炉能率 ここでは、装入冷片を鋼種等に応じて予め定められて
いるスラブ昇熱曲線に沿って加熱するのに要する熱量で
ある。は、その前に装入されている熱片を鋼種、装入
温度等により予め定められているスラブ昇熱曲線に沿っ
て加熱するのに要する熱量である。また、は、その前
に装入されている冷片を昇熱曲線にに沿って加熱するに
要する熱量である。ここで、上記、及びは、それ
ぞれのグループ内の個々のスラブについての昇熱に要す
る熱量の総和をグループ内のスラブの重量で除した値と
して求める。
Qslab = (++) × heating furnace efficiency Here, it is the amount of heat required to heat the charged cold piece along the slab heating curve that is predetermined according to the steel type and the like. Is the amount of heat required to heat the heat piece charged before that along the slab heating curve predetermined by the steel type, the charging temperature, and the like. Further, is the amount of heat required to heat the cold piece charged before that along the heating curve. Here, the above and are obtained as a value obtained by dividing the total amount of heat required for heating for each slab in each group by the weight of the slab in the group.

また、加熱炉能率は、第2加熱帯以降の代表ピッチ即ち
スラブ種別標準能率を実績圧延能率で補正したものであ
る。
Further, the heating furnace efficiency is obtained by correcting the representative pitch after the second heating zone, that is, the standard efficiency of each slab, with the actual rolling efficiency.

こうして、炉内のスラブ状況に対応して燃料使用量を予
測することにより、精度の良い予測をすることができ
る。この場合、操業変更、故障等を考慮することは勿論
である。
In this way, by predicting the fuel usage amount according to the slab condition in the furnace, it is possible to perform accurate prediction. In this case, it goes without saying that operation changes, breakdowns, etc. are taken into consideration.

[発明の効果] この発明の加熱炉の燃料使用量の予測方法は上記のよう
なもので、実態に則したきめ細かい予測をすることによ
り、従来に比べ予測精度を格段と向上することができ
る。
[Advantages of the Invention] The method of predicting the fuel consumption of the heating furnace according to the present invention is as described above, and by performing a detailed prediction according to the actual situation, the prediction accuracy can be significantly improved compared to the conventional case.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を実施するためのデータ伝送フロー
の1例を示す説明図、第2図はスラブの昇熱曲線とスラ
ブの加熱熱量との関係を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a data transmission flow for carrying out the method of the present invention, and FIG. 2 is an explanatory diagram showing the relationship between the heating curve of the slab and the heating amount of heat of the slab.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋山 俊一 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 福嶋 信一郎 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Shunichi Akiyama 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Shinichiro Fukushima 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Date Main Steel Pipe Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】加熱炉への装入予定及び装入スラブデー
タ、加熱炉能率の予測値とにより所定時間後の各スラブ
の炉内位置を予測し、その時のヒートバランスから所定
時間の燃料使用量を予測することを特徴とする加熱炉の
燃料使用量の予測方法。
1. A furnace position of each slab after a predetermined time is predicted based on a charging schedule into the heating furnace, charging slab data, and a predicted value of the heating furnace efficiency, and fuel is used for a predetermined time from the heat balance at that time. A method for predicting fuel consumption of a heating furnace, characterized by predicting fuel consumption.
JP18239687A 1987-07-23 1987-07-23 Prediction method of fuel consumption of heating furnace Expired - Fee Related JPH075979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18239687A JPH075979B2 (en) 1987-07-23 1987-07-23 Prediction method of fuel consumption of heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18239687A JPH075979B2 (en) 1987-07-23 1987-07-23 Prediction method of fuel consumption of heating furnace

Publications (2)

Publication Number Publication Date
JPS6428327A JPS6428327A (en) 1989-01-30
JPH075979B2 true JPH075979B2 (en) 1995-01-25

Family

ID=16117581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18239687A Expired - Fee Related JPH075979B2 (en) 1987-07-23 1987-07-23 Prediction method of fuel consumption of heating furnace

Country Status (1)

Country Link
JP (1) JPH075979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004585A1 (en) * 2022-06-28 2024-01-04 Jfeスチール株式会社 Heating-furnace combustion-gas usage estimation device, energy implementation optimization system, energy implementation optimization device, display terminal device, heating-furnace combustion-gas usage estimation method, and energy implementation optimization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004585A1 (en) * 2022-06-28 2024-01-04 Jfeスチール株式会社 Heating-furnace combustion-gas usage estimation device, energy implementation optimization system, energy implementation optimization device, display terminal device, heating-furnace combustion-gas usage estimation method, and energy implementation optimization method

Also Published As

Publication number Publication date
JPS6428327A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
Sakamoto et al. Estimation of energy consumption for each process in the Japanese steel industry: a process analysis
WO2021200118A1 (en) Optimum calculation method for energy management condition at iron mill, optimum calculation device for energy management condition at iron mill, and operational method of iron mill
Noro et al. Energy audit experiences in foundries
Kilinç et al. An energy efficiency analysis of an industrial reheating furnace and an implementation of efficiency enhancements methods
Zhang et al. Energy and exergy analyses of an integrated iron and steel making process
Kurunov Ways of improving blast furnace smelting efficiency with injection of coal-dust fuel and natural gas
Buttiens et al. The carbon cost of slag production in the blast furnace: A scientific approach
Pfeifer et al. Thermodynamic analysis of EAF electrical energy demand
JPH075979B2 (en) Prediction method of fuel consumption of heating furnace
Onorin et al. About a possibility of using blast furnace heat balance to control heat losses
KR102231347B1 (en) Apparatus and method for controlling power generation output based on prediction of supply of by-product gas
CN115438488B (en) Heating furnace energy-saving benefit calculation method based on comprehensive ton steel burnup
Chizhikova Best available techniques in the blast-furnace production
Swanljung et al. Development of coke-oven battery process management system at Rautaruukki Oy steelworks
Rudyka et al. Innovations in coke production, market trends: insights from the Eurocoke 2019 Summit
Sprecher et al. in Anlagen integrierter Hütten werke der Stahlindustrie
Bao et al. Mechanism and application of an online intelligent evaluation model for energy consumption of a reheating furnace
Dutta Energy Audits in Metal Industries
Lupton Regenerative burners in bloom reheating furnace
Lisienko et al. Analysis of Energy Content and CO 2 Emissions in Different Combinations of Coke-Using and Coke-Less Processes for Steel Production
Van Niekerk Improving energy cost performance of steel production mills
Essenhigh Energy use, efficiency, and conservation in industry
Wood et al. A survey of the industrial potential for thermal energy storage systems
Andreev et al. Study of heat losses in a blast furnace with the injection of pulverized-coal fuel into the hearth
JPH0844403A (en) Method for adjusting energy demand and supply

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees