JPH0759756B2 - Hydrogen oxygen generator - Google Patents

Hydrogen oxygen generator

Info

Publication number
JPH0759756B2
JPH0759756B2 JP62084829A JP8482987A JPH0759756B2 JP H0759756 B2 JPH0759756 B2 JP H0759756B2 JP 62084829 A JP62084829 A JP 62084829A JP 8482987 A JP8482987 A JP 8482987A JP H0759756 B2 JPH0759756 B2 JP H0759756B2
Authority
JP
Japan
Prior art keywords
gas
liquid separator
bubble column
hydrogen
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62084829A
Other languages
Japanese (ja)
Other versions
JPS63250481A (en
Inventor
幸一 佐々木
文人 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62084829A priority Critical patent/JPH0759756B2/en
Publication of JPS63250481A publication Critical patent/JPS63250481A/en
Publication of JPH0759756B2 publication Critical patent/JPH0759756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電解槽を利用した水素酸素発生装置に係り、
特に、製造ガス中にアルカリ分を含むことを極力避ける
必要のある場合に好適であり、しかも水素酸素発生装置
を長期にわたり、連続運転しても電解質の減耗が少ない
ように改良した水素酸素発生装置に関するものである。
The present invention relates to a hydrogen-oxygen generator using an electrolytic cell,
In particular, it is suitable when it is necessary to avoid the production gas from containing an alkali component as much as possible, and further, the hydrogen-oxygen generator is improved so that the wear of the electrolyte is small even when the hydrogen-oxygen generator is continuously operated for a long time. It is about.

〔従来の技術〕[Conventional technology]

従来、水素酸素発生装置アルカリミスト回収装置につい
ては、ノース・ハイドロ社(Norsk Hydro)の水素注入
設備が挙げられる。
Conventionally, as a hydrogen oxygen generator alkali mist recovery device, a hydrogen injection facility of North Hydro Co. can be mentioned.

ノース・ハイドロ社の水素注入設備のシステムを第2図
に示す。
Figure 2 shows the system of the hydrogen injection facility of North Hydro.

本システムでは、電解槽1(Electrolyser)で発生した
水素ガス及び酸素ガスは、電解液とともにそれぞれ水素
ガス気液分離器2及び酸素ガス気液分離器3へ送られ、
発生ガスは分離される。この時電解槽内の電解液及び発
生ガスは、電気分解時に発生した熱により温度が上昇す
るが、循環液冷却器4により、60〜80℃に制御されてい
る。この気液分離器の構造としては、デミスタ等を設け
たものが多い。
In this system, hydrogen gas and oxygen gas generated in the electrolytic cell 1 (Electrolyser) are sent to the hydrogen gas gas-liquid separator 2 and the oxygen gas gas-liquid separator 3, respectively, together with the electrolytic solution,
The evolved gas is separated. At this time, the temperature of the electrolytic solution and the generated gas in the electrolytic bath rises due to the heat generated during electrolysis, but is controlled to 60 to 80 ° C. by the circulating fluid cooler 4. As the structure of this gas-liquid separator, many are provided with a demister or the like.

しかし、気液分離器内が高温高湿であるため、アルカリ
ミストの除去性能は必ずしも良いとは言えない。したが
つて、気液分離器2のガス出口における発生ガス中に
は、かなりのアルカリミストを含むことになる。このガ
スは、ガス冷却器8,9へ送られ、冷却水等の冷媒によ
り、常温又は常温以下に冷却される。これによりガス中
の水蒸気及びミストが凝縮する。しかし、ガス中の水蒸
気及びミストが凝縮して分離されるのは、伝熱管表面沿
つて流れるガスのみであり、伝熱管壁から離れたところ
を流れるガス中の水蒸気は、冷却によりミスト化し、ガ
ス中に浮遊することになる。またアルカリミストについ
ては、その表面で水蒸気が凝縮するが、ミストの径があ
る程度、拡大するのみであり、どうしても、ガス冷却器
出口のガス中にはアルカリミストが存在していた。
However, since the inside of the gas-liquid separator is hot and humid, the performance of removing alkali mist is not necessarily good. Therefore, the generated gas at the gas outlet of the gas-liquid separator 2 contains a considerable amount of alkali mist. This gas is sent to the gas coolers 8 and 9 and cooled to normal temperature or below normal temperature by a refrigerant such as cooling water. As a result, water vapor and mist in the gas are condensed. However, water vapor and mist in the gas are condensed and separated only in the gas flowing along the surface of the heat transfer tube, and the water vapor in the gas flowing away from the wall of the heat transfer tube becomes a mist by cooling, It will float in the gas. Regarding the alkali mist, water vapor condenses on the surface, but the diameter of the mist only expands to some extent, and inevitably there was alkali mist in the gas at the gas cooler outlet.

このため、従来の技術では、ガス冷却器8の下流側にス
クラバー28を設置しているものもあつた。このスクラバ
ーを設置した場合、該スクラバー28への水の供給設備並
びに、スクラバー28に蓄積されたアルカリ液を排出する
ための設備が必要となり、設備コストが高くなる上に、
構造・システム的にも複雑となる。また、本設備の場
合、電解槽内の電解液(アルカリ液)がミストとなつて
系外へ放出されるため、電解質を補給しないと電解液濃
度が低下して電解効率が低下する。
For this reason, in the conventional technique, the scrubber 28 is installed on the downstream side of the gas cooler 8 in some cases. When this scrubber is installed, a facility for supplying water to the scrubber 28 and a facility for discharging the alkaline liquid accumulated in the scrubber 28 are required, and the facility cost becomes high.
It becomes complicated in terms of structure and system. In addition, in the case of this equipment, the electrolytic solution (alkali solution) in the electrolytic cell becomes mist and is discharged to the outside of the system. Therefore, unless the electrolyte is replenished, the electrolytic solution concentration decreases and the electrolytic efficiency decreases.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、ガス中のアルカリミストを極力減少さ
せるために、何重にもわたるアルカリミストの除去装置
を設けなければならない。このため、構造的にもシステ
ム的にも複雑となつており、コストの増大を招いてい
た。また、電解槽内の電解液がアルカリミストとなつ
て、系外へ放出されるため、電解液の濃度が低下し、こ
れにより電解効率が低下するという問題があつた。
In the above-mentioned conventional technique, in order to reduce the alkali mist in the gas as much as possible, it is necessary to provide a multi-layered device for removing the alkali mist. Therefore, the structure is complicated and the system is complicated, and the cost is increased. Further, since the electrolytic solution in the electrolytic cell becomes alkaline mist and is released to the outside of the system, there is a problem that the concentration of the electrolytic solution is lowered, and thereby the electrolytic efficiency is lowered.

また、最近の動向として、原子炉冷却系配管のSCC(応
力腐食割れ)を防止するために、水素酸素発生装置を用
いて、炉水中に水素ガスを連続注入し、炉水中の溶存酸
素濃度を低下させることにより対策されようといてい
る。この際に問題となるのは、注入水素ガス中にアルカ
リミストを含んでいると、原子炉冷却系内の炉水中の導
電率が増加し、原子炉冷却系配管の腐食の原因となる。
特に、電解液として使用されるのは、数重wt%のNaOH,K
OH等の強塩基であるため、わずかに炉内に入つただけ
で、導電率の大きな上昇をもたらす。また、このよう
に、原子力発電所で使用される設備については、機構が
簡素で、信頼性の高いものであることが絶対条件となつ
てくる。
In addition, as a recent trend, in order to prevent SCC (stress corrosion cracking) of the reactor cooling system piping, hydrogen gas is continuously injected into the reactor water using a hydrogen oxygen generator, and the dissolved oxygen concentration in the reactor water is measured. Measures are being taken by lowering it. A problem at this time is that if the injected hydrogen gas contains an alkaline mist, the conductivity of the reactor water in the reactor cooling system increases, which causes corrosion of the reactor cooling system piping.
In particular, the electrolyte used is a few wt% of NaOH, K.
Since it is a strong base such as OH, even a small amount of it enters the furnace, it causes a large increase in conductivity. Further, as described above, it is an absolute requirement that facilities used in nuclear power plants have a simple mechanism and high reliability.

本発明は上述の事情に鑑みて為されたもので、その目的
とするところは、発生がス中のアルカリミストを完全に
除去することが出来、しかも電解液中の電解質の減耗を
低減し得る、簡単な構成の水素酸素発生装置を提供する
ためにある。
The present invention has been made in view of the above circumstances, and an object thereof is to be able to completely remove the alkaline mist in the generated gas, and reduce the wear of the electrolyte in the electrolytic solution. , To provide a hydrogen-oxygen generator having a simple structure.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、本発明の装置は、上記の気
液分離器からガス冷却器までのガス流路中に直列に多段
に介装した気泡塔と、該気泡塔のガスの流れ方向に対し
て下流側の気泡塔から上流側の気泡塔へ且つ、上記気液
分離器側の気泡塔から気液分離器へオーバーフロー水を
送入する流路と、上記のガス冷却器側の気泡塔に純水を
供給する手段と、上記の純水供給手段の管路中に介装接
続した弁手段と、上記気液分離器内の水位を一定に保た
しめるように上記弁手段を制御する手段と、 を設けたものである。
In order to achieve the above object, the apparatus of the present invention is a bubble column which is interposed in multiple stages in series in the gas flow path from the gas-liquid separator to the gas cooler, and the gas flow direction of the bubble column. With respect to the downstream bubble column to the upstream bubble column, and a flow path for feeding overflow water from the gas-liquid separator side bubble column to the gas-liquid separator, and the gas cooler-side bubbles Means for supplying pure water to the tower, valve means interposed in the conduit of the pure water supply means, and control of the valve means so as to keep the water level in the gas-liquid separator constant And means for doing so.

本発明において気泡塔とは、洗浄液中に被洗浄ガスを吹
きこむ手段をいう。上記の洗浄液は、シヤワー状態であ
つてもよい。
In the present invention, the bubble column means a means for blowing a gas to be cleaned into the cleaning liquid. The cleaning solution may be in a shower state.

〔作用〕[Action]

上記の構成によれば、アルカリミストを含んだ発生ガス
は直列に多段に設けた気泡塔で洗浄され、アルカル分を
除去される。
According to the above configuration, the generated gas containing alkali mist is washed by the bubble column provided in multiple stages in series to remove the alcal component.

気泡塔内の水はアルカル分である電解質を吸収し、気液
分離器内にオーバーフローして回収される。このため、
長期間稼働しても電解質の減耗が少ない。
The water in the bubble column absorbs the electrolyte, which is an alcal component, and overflows into the gas-liquid separator to be collected. For this reason,
Even if it is operated for a long time, there is little loss of electrolyte.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

本実施例では、H2気液分離器2のガス出口からガス冷却
器8までの間に気泡塔6を設置した構造となつている。
本構造では、気泡塔6の中に純水を貯留し、H2気液分離
器2からのガス出口配管を気泡塔6内の液面下に挿入し
た構造となつている(第1図に示した6,7は気泡塔であ
るが、図においてはそれぞれの機能を表わす名称とし
て、“アルカリミスト回収器”と標示してある。第3
図,第4図においても同様)。このため、気液分離器2
から送られてきたアルカリミストを含んだH2ガスは、気
泡塔6内の水面下で泡となつて、液面まで上昇するが、
この際、気泡塔6内の純水と混合しつつ接触し、ガス中
のKOH,NaOH等の水溶性のアルカリミストは純水中に溶解
し、気泡塔6のガス出口でのガス内のミスト中のアルカ
リ度を激減させることができる。
In this embodiment, the bubble column 6 is installed between the gas outlet of the H 2 gas-liquid separator 2 and the gas cooler 8.
In this structure, pure water is stored in the bubble column 6, and the gas outlet pipe from the H 2 gas-liquid separator 2 is inserted below the liquid level in the bubble column 6 (see FIG. 1). 6 and 7 shown are bubble columns, but in the figure, they are labeled as "alkaline mist collectors" as names indicating their respective functions.
The same applies to the figures and FIG. 4). Therefore, the gas-liquid separator 2
The H 2 gas containing the alkali mist sent from the above forms bubbles under the water surface in the bubble column 6 and rises to the liquid level,
At this time, the water-soluble alkaline mist such as KOH and NaOH in the gas comes into contact with the pure water in the bubble column 6 while being mixed, and the mist in the gas at the gas outlet of the bubble column 6 is dissolved in the pure water. The alkalinity inside can be drastically reduced.

一方、気泡塔6には、純水供給配管により純水が供給さ
れる。この純水供給配管には、流量調節弁10が設置され
ており、この調節弁10は、気液分離器2に設置された液
面計16からの信号により、気液分離器2の液面が、ある
一定レベルになるまで、開状態となり、気泡塔6に純水
を注入し続ける。これにより、気泡塔6内の液面が上昇
してゆくが、あるレベルまで上昇すると、オーバーフロ
ー管12の先端に設置したフアンネルまで到達し、オーバ
ーフロー管12に、アルカリを含んだ水が流入し、気液分
離器2の液面下へ流入する。
On the other hand, pure water is supplied to the bubble column 6 through a pure water supply pipe. A flow rate control valve 10 is installed in the pure water supply pipe, and the control valve 10 receives a signal from a liquid level gauge 16 installed in the gas-liquid separator 2 to cause the liquid level of the gas-liquid separator 2 to rise. However, until it reaches a certain level, the open state is maintained and pure water is continuously injected into the bubble column 6. As a result, the liquid level in the bubble column 6 rises, but when it rises to a certain level, it reaches the funnel installed at the tip of the overflow pipe 12, and water containing alkali flows into the overflow pipe 12, It flows below the liquid surface of the gas-liquid separator 2.

以上のような機構により、発生ガスの洗浄と、アルカリ
ミストの回収を行うことができる。
With the mechanism as described above, the generated gas can be washed and the alkali mist can be recovered.

以上は、H2ガス系統の構成と作用とであるが、O2ガス系
統にも上記と同様の構成を設ける。
The above is the configuration and operation of the H 2 gas system, but the O 2 gas system is also provided with the same configuration as above.

ここで問題となるのは、ガス中のアルカリミストが気泡
塔6内の純水に溶解し続けた場合、気泡塔6内の純水中
のアルカリ濃度上昇し、洗浄水としての役割を果さなく
なるのではないかという虞れである。
The problem here is that when the alkaline mist in the gas continues to dissolve in the pure water in the bubble column 6, the alkali concentration in the pure water in the bubble column 6 rises, and it plays a role as cleaning water. There is a fear that it will disappear.

そこで、以下、この問題について確認する。評価の一例
として、電解槽1及び気液分離器2内の電解液並びに発
生ガスの温度を80℃,圧力を5kg/cm2・aとする。
Therefore, hereinafter, this problem will be confirmed. As an example of evaluation, the temperature of the electrolytic solution and the generated gas in the electrolytic cell 1 and the gas-liquid separator 2 is 80 ° C., and the pressure is 5 kg / cm 2 · a.

今、電解槽における水素ガスの発生量を、ANm3/h、電解
槽1における電解液中のアルカリ濃度をBwt%とおけ
ば、1時間当りに、発生ガスとともに気泡塔6へ持ち込
まれる水分量W1は、次の第(1)式により求まる。
Assuming now that the amount of hydrogen gas generated in the electrolytic cell is ANm 3 / h and the alkali concentration in the electrolytic solution in the electrolytic cell 1 is Bwt%, the amount of water brought into the bubble column 6 together with the generated gas per hour. W 1 is obtained by the following equation (1).

すなわち、発生ガス中に、蒸気が飽和状態で存在すると
ともに、アルカリミストが蒸気重量に対して、x〔−〕
の割合で気液分離器2から持ち出されるものとする。
That is, in the generated gas, the vapor is present in a saturated state, and the alkali mist is x [-] with respect to the vapor weight.
It is assumed that the gas is taken out of the gas-liquid separator 2 at a ratio of.

一方、オーバーフローラインを通して気泡塔6から気液
分離器2に持ち込まれる水分量W2は、次の第(2)式に
より求まる。
On the other hand, the amount of water W 2 brought into the gas-liquid separator 2 from the bubble column 6 through the overflow line is obtained by the following equation (2).

ただし、上記第(2)式第2項末尾の「2/3」という値
は、電気分解によつて失われた水分の2/3が、水素側の
純水供給ラインより流入するものとしたものである。
However, the value of "2/3" at the end of the second term of the equation (2) is such that 2/3 of the water lost by electrolysis flows from the pure water supply line on the hydrogen side. It is a thing.

すなわち、オーバーフローラインを通して気液分離器2
へ、持ち込まれる水分量は、気液分離器2において発生
ガスとともに持ち去られる水分量W1と、電気分解により
失われる水分量との和で表わされる。
That is, the gas-liquid separator 2 is passed through the overflow line.
The amount of water brought in is represented by the sum of the amount of water W 1 carried away together with the generated gas in the gas-liquid separator 2 and the amount of water lost by electrolysis.

ここで、気泡塔6から水素ガスとともに持ち出される水
分量をW3とおけば、純水供給ラインを通して気泡塔6に
持ち込まれる純水量W4は、次の式(3)式により求ま
る。
Here, if the amount of water taken out from the bubble column 6 together with the hydrogen gas is W 3 , the amount of pure water W 4 brought into the bubble column 6 through the pure water supply line is obtained by the following equation (3).

W4〔kg/h〕=W2+W3−W1=5.36×10-1A+W3〔kg/h〕 …
(3) 一方、1時間当りに気泡塔6へ持ちまれるアルカリ量w
は、次の第(4)式により求まる。
W 4 [kg / h] = W 2 + W 3 -W 1 = 5.36 x 10 -1 A + W 3 [kg / h] ...
(3) On the other hand, the amount w of alkali carried to the bubble column 6 per hour w
Is obtained by the following equation (4).

そこで気泡塔6へ持ち込まれたアルカリミストが全て、
洗浄水(純水)に溶解するものとすれば、平衡状態にお
ける気泡塔6内に洗浄水中のアルカリ濃度は、次の第
(5)式により求まる。
So, all the alkali mist brought into the bubble tower 6,
Assuming that it dissolves in the washing water (pure water), the alkali concentration in the washing water in the bubble column 6 in the equilibrium state can be obtained by the following equation (5).

この時のアルカリ濃度を激しく評価するために、 W3=0とすれば、 このことは、気泡塔6内での純水(洗浄水)のアルカリ
濃度は、電解槽1及び気液分離器2内の電解液中のアル
カリ濃度に対して約0.14・x倍に希釈されることにな
る。通常、デミスタ14により、アルカリミストのキヤリ
オーバー率を数%以下とすることが可能であるため、洗
浄水中のアルカリ濃度を十分に低く保つことができる。
In order to evaluate the alkali concentration at this time violently, if W 3 = 0, This means that the alkaline concentration of pure water (washing water) in the bubble column 6 is diluted by about 0.14 · x times the alkaline concentration in the electrolytic solution in the electrolytic cell 1 and the gas-liquid separator 2. It will be. Usually, the demister 14 can reduce the carry-over rate of the alkali mist to several percent or less, so that the alkali concentration in the wash water can be kept sufficiently low.

したがつて、気泡塔6内の純水によるアルカリミストの
溶解洗浄は常に高性能をもって洗浄することができ、し
かも第3図のように気泡塔6をシリーズに何段も連ねれ
ば、発生ガス中のアルカリミスト量を指数関数的に下げ
ることができるとともに、気液分離器2へのアルカリの
回収率を高めることができ、本発明の効果が向上する。
Therefore, dissolution cleaning of alkaline mist with pure water in the bubble column 6 can always be performed with high performance, and if the bubble column 6 is connected in series as shown in FIG. The amount of alkali mist in the inside can be reduced exponentially, and the recovery rate of alkali into the gas-liquid separator 2 can be increased, so that the effect of the present invention is improved.

第4図に、本発明の変形例1を示す。FIG. 4 shows a first modification of the present invention.

本変形例では、純水の供給量を、流量調節弁のかわり
に、フロート弁18,19にて調節するものであり、これに
よつても、第1図に示した実施例と同等の効果を得られ
る。これにより、駆動源(電気,計装用空気)が不要と
なつたが、2つのフロート弁が必要となり、構造的に
は、やや複雑となる。
In this modification, the supply amount of pure water is adjusted by the float valves 18 and 19 instead of the flow rate adjusting valve, which also has the same effect as that of the embodiment shown in FIG. Can be obtained. This eliminates the need for a drive source (electricity, instrument air), but requires two float valves, which makes the structure a little complicated.

第5図に、変形例2を示す。A second modification is shown in FIG.

本変形例2は、気泡塔を気液分離器内に収納し、コンパ
クト化を図つたものである。
In the second modification, the bubble column is housed in the gas-liquid separator to make it compact.

電解槽1から気液分離器2へ流入した発生ガスと電解液
とは分離され、発生ガスはデミスタ14を通過した後、案
内板22と23との間に流入する。ここで、案内板23には、
あらかじめ、純水が張つてあり、発生ガスがこの液面を
押し下げる。これにより、発生ガスは案内板22の外側へ
溢れ出すことになり、この際、純水との直接接触により
アルカリミストが除去される。本実施例でも、気液分離
器2の液面を液面計16にて計測し、設定値よりも低い場
合には、流量調節弁10が開となり、オーバーフロー管12
が液面を調節する。
The generated gas that has flowed from the electrolytic cell 1 into the gas-liquid separator 2 is separated from the electrolytic solution, and the generated gas passes through the demister 14 and then flows between the guide plates 22 and 23. Here, the guide plate 23,
Pure water is pretensioned in advance, and the generated gas pushes down this liquid surface. As a result, the generated gas overflows to the outside of the guide plate 22, and at this time, the alkaline mist is removed by direct contact with pure water. Also in this embodiment, the liquid level of the gas-liquid separator 2 is measured by the liquid level gauge 16, and when it is lower than the set value, the flow rate control valve 10 is opened and the overflow pipe 12
Adjusts the liquid level.

〔発明の効果〕〔The invention's effect〕

本発明によれば、水素酸素発生装置で製造される水素及
び酸素ガス中に含まれるアルカリミストを容易かつ簡便
な方法にて、極力低減できるとともに、電解槽内の電解
液濃度を長期にわたり、一定に保ち、電解性能を確保す
ることができるので、コスト低減,信頼性向上及び性能
向上の効果がある。
According to the present invention, the alkali mist contained in hydrogen and oxygen gas produced by the hydrogen-oxygen generator can be reduced as much as possible by an easy and simple method, and the electrolytic solution concentration in the electrolytic cell can be kept constant over a long period of time. Therefore, the electrolytic performance can be ensured, and there are effects of cost reduction, reliability improvement, and performance improvement.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す系統図、第2図は公知
例の系統図、第3図は第1図に示した実施例の応用例の
説明図、第4図及び第5図は本発明の変形例の説明図で
ある。 1……電解槽、2……H2気液分離器、6……気泡塔、8
……H2ガス冷却器、10……流量調節弁、12……オーバー
フロー管、14……デミスタ、16……液面計、18……フロ
ート弁、20……フロート弁、22……案内板、23……案内
板。
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a system diagram of a known example, and FIG. 3 is an explanatory view of an application example of the embodiment shown in FIG. 1, FIGS. The figure is an explanatory view of a modified example of the present invention. 1 ... Electrolyzer, 2 ... H 2 gas-liquid separator, 6 ... Bubble column, 8
…… H 2 gas cooler, 10 …… Flow control valve, 12 …… Overflow pipe, 14 …… Demister, 16 …… Level gauge, 18 …… Float valve, 20 …… Float valve, 22 …… Guide plate , 23 ... Information board.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電気分解によって水素ガス及び酸素ガスを
発生する電解槽と、上記の水素ガス及び酸素ガスをそれ
ぞれ電解液と分離する気液分離器と、上記の気液分離器
で分離されたガスを冷却するガス冷却器と、電解液を冷
却する循環液冷却器と、電解液の循環ポンプとを備えた
水素酸素発生装置において、上記の気液分離器からガス
冷却器までのガス流路中に直列に多段に介装した気泡塔
と、該気泡塔のガスの流れ方向に対して下流側の気泡塔
から上流側の気泡塔へ、且つ、上記気液分離器側の気泡
塔から気液分離器へオーバーフロー水を送入する流路
と、上記気泡塔の上記ガス冷却器側の気泡塔に純水を供
給する手段と、該純水供給手段の管路中に介装接続した
弁手段と、上記気液分離器内の水位を一定に保たしめる
ように上記弁手段を制御する手段と、を設けたことを特
徴とする水素酸素発生装置。
1. An electrolytic cell for generating hydrogen gas and oxygen gas by electrolysis, a gas-liquid separator for separating the hydrogen gas and oxygen gas from an electrolytic solution, and a gas-liquid separator for separating them. In a hydrogen oxygen generator provided with a gas cooler for cooling gas, a circulating liquid cooler for cooling electrolytic solution, and a circulating pump for electrolytic solution, a gas flow path from the gas-liquid separator to the gas cooler A bubble column interposed in series in multiple stages, a bubble column on the downstream side with respect to the gas flow direction of the bubble column to a bubble column on the upstream side, and from the bubble column on the gas-liquid separator side. A flow path for feeding overflow water to the liquid separator, a means for supplying pure water to the bubble tower on the gas cooler side of the bubble tower, and a valve interposed and connected in the conduit of the pure water supply means. Means and the valve means so as to keep the water level in the gas-liquid separator constant. Hydrogen and oxygen generating apparatus is characterized by providing means for Gosuru, the.
JP62084829A 1987-04-08 1987-04-08 Hydrogen oxygen generator Expired - Lifetime JPH0759756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62084829A JPH0759756B2 (en) 1987-04-08 1987-04-08 Hydrogen oxygen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62084829A JPH0759756B2 (en) 1987-04-08 1987-04-08 Hydrogen oxygen generator

Publications (2)

Publication Number Publication Date
JPS63250481A JPS63250481A (en) 1988-10-18
JPH0759756B2 true JPH0759756B2 (en) 1995-06-28

Family

ID=13841658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62084829A Expired - Lifetime JPH0759756B2 (en) 1987-04-08 1987-04-08 Hydrogen oxygen generator

Country Status (1)

Country Link
JP (1) JPH0759756B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20111014A1 (en) * 2011-11-04 2013-05-05 Idroenergy Spa ELECTROLYTIC GENERATOR AND RELATIVE PURIFICATION TOWER
EP3680364A4 (en) * 2017-09-07 2021-04-21 De Nora Permelec Ltd Electrolytic device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044506A1 (en) * 1996-05-20 1997-11-27 World Fusion Co., Ltd. Hydrogen gas generators
KR20020017734A (en) * 2000-08-31 2002-03-07 손정수 Apparatus for generating a hydrogen gas and oxygen gas
JP4605393B2 (en) * 2006-03-29 2011-01-05 栗田工業株式会社 Electrolytic gas treatment device and sulfuric acid recycling type cleaning system
GB201017421D0 (en) * 2010-10-14 2010-12-01 Acal Energy Ltd Cell
CN102677083B (en) * 2012-05-22 2016-01-06 哈密克力穆扩塔尔进出口商贸有限公司 Device for producing combustible gas by electrolyzing water
JP5831720B2 (en) * 2014-03-07 2015-12-09 栗田工業株式会社 Gas-liquid separation solution storage device, persulfuric acid generation system, and gas-liquid separation method of electrolytic solution
JP2016056402A (en) * 2014-09-09 2016-04-21 有限会社ノートイス Hydrogen gas generator, and hydrogen plaza
JP6937096B2 (en) * 2016-03-31 2021-09-22 株式会社東芝 Hydrogen production system
WO2018182005A1 (en) * 2017-03-31 2018-10-04 旭化成株式会社 Water electrolysis system, water electrolysis method, and method for producing hydrogen
CN111364053B (en) * 2020-04-22 2021-06-11 阳光电源股份有限公司 Multichannel alkaline hydrogen production system
CN115364632A (en) * 2022-08-23 2022-11-22 南通安思卓新能源有限公司 Secondary recycling system and method for hydrogen production separation liquid
CN116870594B (en) * 2023-09-06 2023-11-21 广东盛氢制氢设备有限公司 Gas-liquid separator and cleaning equipment thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2460342A1 (en) * 1979-07-05 1981-01-23 Creusot Loire ELECTROLYSIS INSTALLATION FOR GAS PRODUCTION
JPS5677386A (en) * 1979-11-27 1981-06-25 Kanegafuchi Chem Ind Co Ltd Electrolyzing method and electrolytic cell for aqueous solution of alkali metal chloride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20111014A1 (en) * 2011-11-04 2013-05-05 Idroenergy Spa ELECTROLYTIC GENERATOR AND RELATIVE PURIFICATION TOWER
EP3680364A4 (en) * 2017-09-07 2021-04-21 De Nora Permelec Ltd Electrolytic device

Also Published As

Publication number Publication date
JPS63250481A (en) 1988-10-18

Similar Documents

Publication Publication Date Title
JPH0759756B2 (en) Hydrogen oxygen generator
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
JP5440095B2 (en) Method and apparatus for treating fluorine-containing water
JP2685247B2 (en) How to remove ammonia
US3826816A (en) Method for scrubbing hcl from waste gases
US4226683A (en) Method and apparatus for hydrogen production in an absorber liquid by electrochemical of coal and water
CN106362428B (en) A kind of low temperature shifting process lime set gas stripping process
JP2009279535A (en) Method and apparatus for transporting hot spring water or geothermal water causing no carbonate scale trouble
CN207893739U (en) The deep exploitation system of distributed busbar protection boiler blowdown water waste heat
Moore et al. An integrated laboratory-scale experiment on the sulfur-iodine thermochemical cycle for hydrogen production
CN106422672B (en) A method of prevent Regeneration System by Heating for Low-Temperature Methanol Wash Process from corroding
JPS56141822A (en) Method for separating and recovering hydrogen isomer
CN211159192U (en) Processing apparatus of acid water is retrieved to claus sulphur
JP2016078014A (en) Treatment method and treatment device for ammonia-containing waste water
CN105273760A (en) Waste water zero-discharge acetylene production technology
Lang et al. Corrosion in amine gas treating solutions
JPH02267288A (en) Etching liquid regenerator
NO833302L (en) PROCEDURE FOR EXTRACING GAS FROM FLUID
CN112850829A (en) Slag water treatment system
JP7175227B2 (en) Methane production system
JP4735615B2 (en) Steam boiler equipment
JP2012207605A (en) Noncondensable gas processing device
Quan et al. Mass transfer mechanism of a water-sparged aerocyclone reactor
JP6021739B2 (en) Boiler water supply system
CN214528226U (en) Slag water treatment system