JPH0758806B2 - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH0758806B2
JPH0758806B2 JP29277588A JP29277588A JPH0758806B2 JP H0758806 B2 JPH0758806 B2 JP H0758806B2 JP 29277588 A JP29277588 A JP 29277588A JP 29277588 A JP29277588 A JP 29277588A JP H0758806 B2 JPH0758806 B2 JP H0758806B2
Authority
JP
Japan
Prior art keywords
light receiving
light
light emitting
layer
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29277588A
Other languages
Japanese (ja)
Other versions
JPH02138778A (en
Inventor
秀幸 杉浦
茂 長尾
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP29277588A priority Critical patent/JPH0758806B2/en
Publication of JPH02138778A publication Critical patent/JPH02138778A/en
Publication of JPH0758806B2 publication Critical patent/JPH0758806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体で形成された受光素子と発光素子とを合
わせ持つ光半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device having a light receiving element and a light emitting element formed of a semiconductor.

従来の技術 従来、光通信用半導体受光素子、及び発光素子は、それ
ぞれ単体で受光装置、及び発光装置として構成されてい
る。例えば、受光素子の場合、短波長ではSi−PINフォ
トダイオード、長波長ではGeまたはInGaAs−PINフォト
ダイオードが使用され、発光素子の場合、短波長ではGa
AlAs発光ダイオード(LED)、長波長ではInGaAsP−LED
が主に用いられる。データ伝送を行う場合、発光素子か
ら入射された変調光を光ファイバで伝搬させ、受光素子
で受信している。このため送信,受信を行う双方向デー
タ伝送では、上記のシステムが二組、すなわち、発光素
子,受光素子,光ファイバがそれぞれ二組ずつ最低必要
である。また、一本の光ファイバで双方向データ伝送を
行う場合、分波器の設置とこれにともなう入出力の減衰
が存在する。
2. Description of the Related Art Conventionally, a semiconductor light-receiving element for optical communication and a light-emitting element are individually configured as a light-receiving device and a light-emitting device. For example, in the case of light receiving elements, Si-PIN photodiodes are used for short wavelengths, and Ge or InGaAs-PIN photodiodes are used for long wavelengths.
AlAs light emitting diode (LED), InGaAsP-LED for long wavelength
Is mainly used. In the case of data transmission, the modulated light incident from the light emitting element is propagated through the optical fiber and is received by the light receiving element. Therefore, in bidirectional data transmission in which transmission and reception are performed, at least two sets of the above system, that is, two sets each including a light emitting element, a light receiving element, and an optical fiber are required. Further, when bidirectional data transmission is performed with one optical fiber, there is a demultiplexer installation and attendant input / output attenuation.

そのため、受光素子と発光素子が一つのパッケージ内に
存在し、受光素子の受光面中心軸と発光素子の発光径中
心軸とが一致する構造の光半導体装置が実現されてい
る。これは、受光領域と発光領域とが近接しているの
で、ファイバ端最大出力の位置に素子を設置すれば最大
受光感度が得られ、光軸を合わせ直すことなく同位置で
ファイバ端最大出力、最大受光感度を得ることができ
る。このため、一本の光ファイバで分波器を使用せず
に、双方向データ伝送が可能となる。
Therefore, an optical semiconductor device having a structure in which the light receiving element and the light emitting element are present in one package and the center axis of the light receiving surface of the light receiving element and the center axis of the light emitting diameter of the light emitting element coincide with each other has been realized. This is because the light receiving area and the light emitting area are close to each other, so that if the element is installed at the position of the maximum output of the fiber end, the maximum light receiving sensitivity can be obtained, and the maximum output of the fiber end can be obtained at the same position without realigning the optical axis. Maximum light receiving sensitivity can be obtained. Therefore, bidirectional data transmission becomes possible without using a demultiplexer with a single optical fiber.

この光半導体装置の発光素子部は、対抗設置したファイ
バからの光を効率よく下部の受光素子部の受光面に導く
ために、表面および接着面の金属電極の一部が、受光素
子部の受光面中心軸と一致する中心軸近傍で、除去され
ており、その径はファイバ径よりも大とされる。
In the light emitting element section of this optical semiconductor device, in order to efficiently guide the light from the counter-installed fiber to the light receiving surface of the lower light receiving element section, a part of the metal electrode on the front surface and the adhesive surface is received by the light receiving element section. It is removed near the central axis that coincides with the central axis of the surface, and its diameter is made larger than the fiber diameter.

一方、発光素子部の発光領域は、その発光径の中心軸
を、発光素子部受光面の中心軸とほぼ一致させ、ファイ
バとの結合を効率良くするため、ファイバのコア径より
小さくなければならない。このため一本の光ファイバで
分波器を使用せずに、双方向データ伝送が可能となる。
On the other hand, the light emitting area of the light emitting element section must be smaller than the core diameter of the fiber in order to make the center axis of the light emitting diameter substantially coincide with the center axis of the light receiving surface of the light emitting element section and to efficiently couple with the fiber. . For this reason, bidirectional data transmission is possible without using a demultiplexer with a single optical fiber.

この光半導体装置の発光素子部は、対抗設置したファイ
バからの光を効率よく下部の受光素子部の受光面に導び
くために、表面および接着面の金属電極の一部が、受光
素子部の受光面中心軸と一致する中心軸近傍で、除去さ
れており、その径はファイバ径よりも大とされる。
In the light emitting element section of this optical semiconductor device, in order to efficiently guide the light from the oppositely installed fiber to the light receiving surface of the lower light receiving element section, a part of the metal electrode on the surface and the adhesive surface is It is removed near the central axis that coincides with the central axis of the light-receiving surface, and its diameter is made larger than the fiber diameter.

一方、発光素子部の発光領域は、その発光径の中心軸
を、発光素子部受光面の中心軸とほぼ一致させ、ファイ
バとの結合を効率良くするため、ファイバのコア径より
小さくなければならない。このため、逆バイアスの電流
狭窄構造を用いた上で、前記金属電極から発光領域へ電
流を導びく径路が必要となる。この方法として、亜鉛な
どの元素での熱拡散法,イオン注入法,その他の方法が
用いられる。
On the other hand, the light emitting area of the light emitting element section must be smaller than the core diameter of the fiber in order to make the center axis of the light emitting diameter substantially coincide with the center axis of the light receiving surface of the light emitting element section and to efficiently couple with the fiber. . Therefore, it is necessary to use a reverse bias current confinement structure and to provide a path for conducting a current from the metal electrode to the light emitting region. As this method, a thermal diffusion method using an element such as zinc, an ion implantation method, or another method is used.

発明が解決しようとする課題 しかしながら上記従来の構成では、光ファイバからの入
射光は発光素子内部を透過し、下部に設置された受光素
子の受光面に達するため、発光素子を構成する各層内で
多くが吸収され、受光に寄与する入射光の減衰が著し
い。この入射光の吸収を減少させるため、特に吸収の著
しい部分である活性層を薄くすることによって、受光感
度が向上することが実験によって確かめられたが、現
在、商品化されているダブルへテロ構造GaAlAs−LEDの
膜厚(1〜1.5μm)に比べて、光出力の経時変化が認
められるものがあり、信頼性低下をもたらす。
However, in the above conventional configuration, the incident light from the optical fiber is transmitted through the inside of the light emitting element and reaches the light receiving surface of the light receiving element installed in the lower portion, so that in each layer forming the light emitting element. Most of the light is absorbed, and the incident light that contributes to the reception of light is significantly attenuated. In order to reduce the absorption of this incident light, it has been confirmed by experiments that the light receiving sensitivity is improved by thinning the active layer, which is the part where the absorption is remarkable. However, the double hetero structure currently commercialized As compared with the film thickness (1-1.5 μm) of GaAlAs-LED, there are some in which the change in light output with time is observed, which causes a decrease in reliability.

この様な理由から、活性層の厚さを変えることなく、発
光素子内部で吸収される入射光の割合を減少させる必要
がある。
For this reason, it is necessary to reduce the proportion of incident light absorbed inside the light emitting element without changing the thickness of the active layer.

本発明の目的は信頼性を損なうことなく、発光素子内で
の入射光の吸収を減少させ、これによって発光感度の向
上をはかることにある。
An object of the present invention is to reduce absorption of incident light in a light emitting device without impairing reliability, and thereby improve light emission sensitivity.

課題を解決するための手段 本発明の光半導体装置は、半導体受光素子の受光面中心
軸上に、半導体発光素子を発光径の中心軸が一致するよ
うに接着された半導体発光素子の主面に形成したn型領
域上部にp型反転領域(以下p+層と記す)を形成し、か
つ、前記受光素子の受光面の少くとも一部分には、同p
型反転領域を形成しない選択領域をそなえた構造であ
る。
Means for Solving the Problems The optical semiconductor device of the present invention has a semiconductor light-emitting element on the main surface of the semiconductor light-receiving element, which is attached to the main surface of the semiconductor light-receiving element such that the central axes of the light-emitting diameters are aligned. A p-type inversion region (hereinafter referred to as a p + layer) is formed on the formed n-type region, and the p-type inversion region is formed on at least a part of the light receiving surface of the light receiving element.
This structure has a selection region in which the type inversion region is not formed.

作用 ファイバ端からの入射光は、従来の発光素子の場合、活
性層の吸収以外にも、高濃度となっているp+層も入射光
の吸収の大きな要因となっている。本発明の主な作用
は、このp+層を選択的に形成することにより、入射光の
p+層での吸収を防ぎ、受光素子の受光面に到達させるこ
とで、受光感度の向上に寄与するものである。
In the case of the conventional light emitting device, the incident light from the fiber end is not only the absorption of the active layer, but also the high concentration p + layer is a major factor of the absorption of the incident light. The main function of the present invention is to selectively form this p + layer and
By preventing the absorption in the p + layer and reaching the light receiving surface of the light receiving element, it contributes to the improvement of the light receiving sensitivity.

実施例 本発明の光半導体素子の実施例を第1図に示した断面図
を参照して説明する。
EXAMPLE An example of the optical semiconductor device of the present invention will be described with reference to the sectional view shown in FIG.

第1図は、半導体受光素子Bの上に絶縁膜9を形成し、
半導体受光素子Aを接着した構造の一実施例の要部断面
図を示す。この絶縁膜9を設けることにより、受光素子
Bと発光素子Aが電気的に分離され受光・発光の両機能
を独立して使用することができる。本発明の実施例では
Si受光素子とGaAlAs/GaAs発光素子の組合せによる受光
発光一体型の半導体装置を例として用いている。
In FIG. 1, an insulating film 9 is formed on the semiconductor light receiving element B,
The principal part sectional drawing of one Example of the structure which bonded the semiconductor light receiving element A is shown. By providing this insulating film 9, the light receiving element B and the light emitting element A are electrically separated, and both the light receiving and light emitting functions can be used independently. In the embodiment of the present invention,
As an example, a semiconductor device integrated with light receiving and emitting by using a combination of a Si light receiving element and a GaAlAs / GaAs light emitting element is used.

半導体受光素子BとしてPINフォトダイオードの構造
は、n型Si基板1上に高抵抗のi(n)層2を形成(ド
ーピングには燐を用いている。)し、その中にp層3を
拡散に依って形成している。受光領域周辺にはボロン拡
散によるガードリング5を設けている。受光面は0.15mm
φで、ガードリング5の周辺には燐(P)拡散でチャネ
ルストッパ領域4を形成した構造となっている。
In the structure of the PIN photodiode as the semiconductor light receiving element B, a high resistance i (n) layer 2 is formed (phosphorus is used for doping) on an n-type Si substrate 1, and a p layer 3 is formed therein. It is formed by diffusion. A guard ring 5 is provided around the light receiving region by boron diffusion. Light receiving surface is 0.15 mm
With φ, the structure is such that the channel stopper region 4 is formed around the guard ring 5 by phosphorus (P) diffusion.

半導体発光素子AとしてGaAlAs−LEDの構造はSiドープ
のn型GaAs基板上にn0−GaAlAs基板層12,n1−GaAlAs閉
じ込め層13,p1−GaAs活性層14,p2−GaAlAs閉じ込め層1
5,n2−GaAlAs電流狭窄層16を通常の液相エピタキシャル
成長法により連続的に形成し、その後n型GaAs基板を選
択エッチングにより除去した。
The structure of the GaAlAs-LED as the semiconductor light emitting device A is as follows: n 0 -GaAlAs substrate layer 12, n 1 -GaAlAs confinement layer 13, p 1 -GaAs active layer 14, p 2 -GaAlAs confinement layer 1
The 5, n 2 -GaAlAs current confinement layer 16 was continuously formed by a normal liquid phase epitaxial growth method, and then the n-type GaAs substrate was removed by selective etching.

この後、電流狭窄層n2−GaAlAs16に直径40μmの凹部
(使用ファイバのコア径は110μm)を選択エッチング
により形成した。n2−GaAlAs層16の表面をSiO2のマスク
により、p型電極を蒸着する部分、凹部と電流導入部分
に選択的にZn拡散を行い、p型に変えるとともに凹部の
p2−GaAlAs層15にp+領域17を形成し、この上部にファイ
バから発光素子上部に照射されるファイバ光の直径より
大きい直径のp型電極18を蒸着した構造となっている。
n側電極10には、上部の発光素子の光取り出し窓に合わ
せて凹部分を形成し、下部の受光径より大きい径の窓を
開けている。チップ上部には発光ビーム、入射光を細く
絞り込むために、微小球レンズを搭載している。
After that, a recess having a diameter of 40 μm (the core diameter of the fiber used is 110 μm) was formed in the current confinement layer n 2 —GaAlAs 16 by selective etching. The surface of the n 2 -GaAlAs layer 16 is selectively diffused with a mask of SiO 2 into a portion where a p-type electrode is vapor-deposited, a concave portion, and a current introduction portion to change to a p-type and a concave portion.
A p + region 17 is formed in the p 2 -GaAlAs layer 15, and a p-type electrode 18 having a diameter larger than the diameter of the fiber light emitted from the fiber to the upper portion of the light emitting element is vapor-deposited on the p + region 17.
A recess is formed in the n-side electrode 10 so as to match the light extraction window of the upper light emitting element, and a window having a diameter larger than the light receiving diameter of the lower portion is opened. A microsphere lens is mounted on the top of the chip to narrow down the emission beam and incident light.

このような構造により、p型電極と凹部間に入射する光
がp+層17に吸収されることなく受光面に到達し、受光感
度の向上に寄与する。このためp+層17を選択拡散したGa
AlAs−LEDを上部に接着したSi−PINフォトダイオードの
受光感度は、選択拡散しない場合の0.16A/Wより、一割
以上高い約0.18A/Wが得られた。
With such a structure, the light incident between the p-type electrode and the recess reaches the light receiving surface without being absorbed by the p + layer 17, and contributes to the improvement of the light receiving sensitivity. Therefore selected diffused p + layer 17 Ga
The photosensitivity of the Si-PIN photodiode with AlAs-LED bonded on top was about 0.18A / W, which is more than 10% higher than 0.16A / W without selective diffusion.

本発明の実施例では、Si受光素子とGaAlAs/GaAs発光素
子を例として示しているが、InGaAs受光素子とIsP発光
素子等の他材料を用いた場合でも同様の効果が得られる
ことは言うまでもなく、また、p型反転領域の形成にお
いて、熱拡散のかわりにイオン注入等の他の手段を用い
た場合でも全く同様の効果が得られる。
In the embodiments of the present invention, the Si light receiving element and the GaAlAs / GaAs light emitting element are shown as examples, but it goes without saying that the same effect can be obtained even when other materials such as the InGaAs light receiving element and the IsP light emitting element are used. Further, in forming the p-type inversion region, the same effect can be obtained even when other means such as ion implantation is used instead of thermal diffusion.

発明の効果 本発明の光半導体装置によれば従来、p+拡散層に吸収さ
れていた入射光がp+拡散層を選択的に拡散することによ
り、p+拡散層の吸収されることなく、受光素子の受光面
に達し、受光感度の向上に寄与する。
According to the optical semiconductor device of the effects The present invention conventionally by p + incident light which has been absorbed in the diffusion layer is selectively diffused p + diffusion layer, without being absorbed in the p + diffusion layer, It reaches the light receiving surface of the light receiving element and contributes to the improvement of the light receiving sensitivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の光半導体装置の一実施例を示した半導
体受光装置の断面図である。 A……半導体発光素子、B……半導体受光素子、1……
n型Si基板、2……高抵抗i(n-)層、3……p+拡散
層、4……チャネルストッパ、5……ボロン拡散による
ガードリング、6……p側電極(PD)、7……酸化膜、
8……n側電極(PD)、9……絶縁膜、10……n側電極
(LED)、11……反射防止膜、12……n0−GaAlAs基板
層、13……n1−GaAlAs閉じ込め層、14……p1−GaAs活性
層、15……p2−GaAlAs閉じ込め層、16……n2−GaAlAs電
流狭窄層、17……p+選択拡散層、18……p側電極(LE
D)、19……非拡散部分、20……電流導入部分。
FIG. 1 is a sectional view of a semiconductor light receiving device showing an embodiment of an optical semiconductor device of the present invention. A: semiconductor light emitting element, B: semiconductor light receiving element, 1 ...
n-type Si substrate, 2 ...... high-resistance i (n -) layer, 3 ...... p + diffusion layer, 4 ...... channel stopper, a guard ring with 5 ...... boron diffusion, 6 ...... p-side electrode (PD), 7 ... oxide film,
8 ... n-side electrode (PD), 9 ... insulating film, 10 ... n-side electrode (LED), 11 ... antireflection film, 12 ... n 0 -GaAlAs substrate layer, 13 ... n 1 -GaAlAs Confinement layer, 14 …… p 1 -GaAs active layer, 15 …… p 2 −GaAlAs confinement layer, 16 …… n 2 −GaAlAs current confinement layer, 17 …… p + selective diffusion layer, 18 …… p side electrode ( LE
D), 19 ... Non-diffused part, 20 ... Current introduction part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体受光素子の受光面中心軸上に、半導
体発光素子の発光径中心軸が一致するように接着した光
半導体装置において、前記受光素子上に接着した前記発
光素子の、主面に形成したn型領域にp型不純物を添加
して、p型反転領域を形成し、かつ、前記受光素子の受
光面上に位置する領域の少なくとも一部分には同p型反
転領域を形成しない選択領域をそなえたことを特徴とす
る光半導体装置。
1. In an optical semiconductor device bonded to the center axis of the light receiving surface of a semiconductor light receiving element such that the center axes of the light emitting diameters of the semiconductor light emitting elements coincide with each other, the main surface of the light emitting element bonded to the light receiving element. A p-type inversion region is formed by adding a p-type impurity to the n-type region formed in the above, and the p-type inversion region is not formed in at least a part of the region located on the light receiving surface of the light receiving element. An optical semiconductor device having a region.
JP29277588A 1988-11-18 1988-11-18 Optical semiconductor device Expired - Fee Related JPH0758806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29277588A JPH0758806B2 (en) 1988-11-18 1988-11-18 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29277588A JPH0758806B2 (en) 1988-11-18 1988-11-18 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPH02138778A JPH02138778A (en) 1990-05-28
JPH0758806B2 true JPH0758806B2 (en) 1995-06-21

Family

ID=17786178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29277588A Expired - Fee Related JPH0758806B2 (en) 1988-11-18 1988-11-18 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH0758806B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892775B2 (en) * 2000-08-23 2012-03-07 大日本印刷株式会社 Unauthorized use prevention label
KR100698350B1 (en) 2000-09-29 2007-03-23 산요덴키가부시키가이샤 Receiving optics and photosemiconductor device having the same

Also Published As

Publication number Publication date
JPH02138778A (en) 1990-05-28

Similar Documents

Publication Publication Date Title
US6392256B1 (en) Closely-spaced VCSEL and photodetector for applications requiring their independent operation
US6340831B1 (en) Photodiode and photodiode module
US4989051A (en) Bi-directional, feed through emitter-detector for optical fiber transmission lines
US6909083B2 (en) Photodetector and unit mounted with photodetector
JP3734939B2 (en) Light receiving element and light receiving element module
JP2002050785A (en) Semiconductor light-receiving element
US6399967B1 (en) Device for selectively detecting light by wavelengths
US5652813A (en) Line bi-directional link
US7807954B2 (en) Light receiving element with upper and side light receiving faces and an optical semiconductor module with the light receiving element and a light emitting element mounted on the same mounting unit
KR100464333B1 (en) Photo detector and method for fabricating thereof
JPH0758806B2 (en) Optical semiconductor device
JP2002344002A (en) Light-receiving element and mounting body thereof
JPH09269440A (en) Light transmitting and receiving module
JP3386011B2 (en) Semiconductor light receiving element
US6989554B2 (en) Carrier plate for opto-electronic elements having a photodiode with a thickness that absorbs a portion of incident light
JPH02151084A (en) Photo semiconductor device
CN219286423U (en) Semiconductor photoelectric detector
JP2733933B2 (en) Semiconductor light emitting and receiving device
JP2658358B2 (en) Light emitting semiconductor device
Kito et al. High-speed flip-chip InP/InGaAs avalanche photodiodes with ultralow capacitance and large gain-bandwidth products
JP2767877B2 (en) Manufacturing method of semiconductor light receiving element
JPH09191125A (en) Optical transmitting/receiving module
JPH0555619A (en) Semiconductor photodetector
JPS62199072A (en) Light emitting and deceiving semiconductor element
JP2004241681A (en) Semiconductor light receiver and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees