JPH0758704A - Optical communication control unit - Google Patents

Optical communication control unit

Info

Publication number
JPH0758704A
JPH0758704A JP5222130A JP22213093A JPH0758704A JP H0758704 A JPH0758704 A JP H0758704A JP 5222130 A JP5222130 A JP 5222130A JP 22213093 A JP22213093 A JP 22213093A JP H0758704 A JPH0758704 A JP H0758704A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
optical
communication control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5222130A
Other languages
Japanese (ja)
Inventor
Kazuo Koike
一男 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5222130A priority Critical patent/JPH0758704A/en
Publication of JPH0758704A publication Critical patent/JPH0758704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a unit, equipped with an optical transmitting means including a light emitting element and an optical receiving means including a light receiving element, from causing a communication error even if the source voltage varies or if the distance between transmission and reception becomes long and to improve the reliability by performing constant-current control over a current for making the light emitting element illuminate at the time of transmission. CONSTITUTION:The optical transmission means consists of a communication control LSI 1, a buffer 2, an operational amplifier 3, a transistor(TR) 4, the light emitting element 5, and a Zener diode 6. Then the operational amplifier 3 is provided between the base and emitter of the TR 4 which drives the light emitting element 5 to constitute a constant-current circuit which makes the photocurrent, flowing to the light emitting element 5, constant by providing negative feedback. Namely, the constant- current control over the current making the light emitting element 5 illuminate is performed at the time of transmission, so even if the source voltage VCC varies, the light output of the light emitting element 5 becomes constant. Further, the output voltage of the light receiving element is compared with a reference voltage which is made constant and data are outputted. Therefore, even if the source voltage VCC varies, the data which are reproduced have no variation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無線通信の一つとしての
光通信機能を備えた各種情報機器の光通信制御装置に係
り、特に電池駆動される携帯情報機器に適した光通信制
御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication control device for various information devices having an optical communication function as one of wireless communication, and more particularly to an optical communication control device suitable for battery-powered portable information devices. .

【0002】[0002]

【従来の技術】近年、情報機器端末装置間で無線通信手
段を介して情報を交信し合う形態の装置が普及しつつあ
る。無線通信は、伝送路を必要としない利便さから、携
帯用情報機器において、最近注目を集めている。特にこ
の無線通信手段の一つとして電磁波を利用するものの他
に、光を利用する光通信が注目されているが、これは光
ファイバを使用した光通信とは異なり、光送信手段を構
成する発光素子から発射する光線を空中を介して受信側
の受光素子に伝達する形態のものである。即ち、上記光
線が他の物体等によってさえぎられない近距離及び条件
下において、交信する二つの情報機器を互いに対向させ
て通信を行うものである。
2. Description of the Related Art In recent years, devices in which information devices communicate with each other via wireless communication means have become widespread. Wireless communication has recently attracted attention as a portable information device because it does not require a transmission path. In particular, as one of the wireless communication means, in addition to the one using electromagnetic waves, attention is paid to optical communication using light. This is different from the optical communication using an optical fiber. The light emitted from the element is transmitted to the light receiving element on the receiving side through the air. That is, under a short distance and under a condition where the light beam is not blocked by another object or the like, two communicating information devices are opposed to each other for communication.

【0003】図5は本発明を適用しようとする従来の光
通信手段を有した上記情報機器の一つであるハンドヘル
ドコンピュータの全体構成図である。同図において、2
2はCPU、23はメモリ、24はキーボード、20は
光通信制御装置、21は光通信以外の通信制御装置、2
5はプリンタ、26は表示装置である。このような構成
のハンドヘルドコンピュータにより、例えばキーボード
24から入力したデータやCPU22で処理されたデー
タを光通信制御装置20へ送り、後述するように光通信
制御装置20内の光送信手段により上記データ等に基づ
いて点滅する光信号を対向する情報機器へ転送する。対
向する情報機器は後述するような光受信手段を備え、転
送されたデータを受信する。また、通信制御装置20は
上記の対向する情報機器と同様の光受信手段を備え、上
記光送信手段と同様の光送信手段を備えた対向する情報
機器から転送されるデータを受信し、受信データはCP
U22により処理されて、表示装置26やプリンタ25
に出力される。即ち、互いに光通信手段を介して情報の
授受を行い、所要データを送受信する。
FIG. 5 is an overall configuration diagram of a handheld computer which is one of the above-mentioned information equipments and which has a conventional optical communication means to which the present invention is applied. In the figure, 2
2 is a CPU, 23 is a memory, 24 is a keyboard, 20 is an optical communication control device, 21 is a communication control device other than optical communication, 2
Reference numeral 5 is a printer, and 26 is a display device. With the handheld computer having such a configuration, for example, the data input from the keyboard 24 or the data processed by the CPU 22 is sent to the optical communication control device 20, and the above-mentioned data and the like are transmitted by the optical transmission means in the optical communication control device 20 as described later. The flashing optical signal is transferred to the opposite information device based on the. The facing information equipment is provided with an optical receiving means as will be described later, and receives the transferred data. Further, the communication control device 20 is provided with the same optical receiving means as the above-mentioned opposite information equipment, receives the data transferred from the opposite information equipment provided with the same optical transmitting means as the above-mentioned optical transmitting means, and receives the received data. Is CP
The display device 26 and the printer 25 are processed by the U22.
Is output to. That is, information is exchanged with each other via the optical communication means, and required data is transmitted and received.

【0004】図6は従来の通信制御装置に内蔵される光
送信手段と光受信手段の一部を示す回路図である。図に
おいて、27は光送信手段で、通信制御LSI31、バ
ッファ32、トランジスタ34及び発光ダイオード等の
発光素子35を備えている。この構成において、通信制
御LSI31からデータに基づいてビット列が出力され
ると、そのビット値に応じてバッファ32には高電位又
は低電位信号が入力される。その入力に応じて、今バッ
ファ32の出力が‘High’レベルになると、トラン
ジスタ34がオンし、Vccから供給される電流が発光
電子35を流れ、光を出力する。
FIG. 6 is a circuit diagram showing a part of an optical transmitting means and an optical receiving means incorporated in a conventional communication control device. In the figure, 27 is an optical transmission means, which includes a communication control LSI 31, a buffer 32, a transistor 34, and a light emitting element 35 such as a light emitting diode. In this configuration, when a bit string is output from the communication control LSI 31 based on the data, a high potential or low potential signal is input to the buffer 32 according to the bit value. In response to the input, when the output of the buffer 32 is now set to the “High” level, the transistor 34 is turned on, the current supplied from Vcc flows through the light emitting electron 35, and outputs light.

【0005】また28は光受信手段で、フォトトランジ
スタ等の受光素子41、コンパレータ42、バッファ4
3及び通信制御LSI31を備えているが、この通信制
御LSIは光送信手段と同一のものである。この構成に
おいて上記フォトトランジスタ等の受光素子が光を受信
すると、そのアノードとカソード間の抵抗値が変化しV
ccから供給される電流が、受信光量に応じて、抵抗R
41、受光素子41を通って流される。そのため、即
ち、発光量が大きいと、受光素子に流れる電流が大きく
なり、コンパレータ42に入力する電圧は低下する。従
って、コンパレータ42の−入力レベルは受信光量に応
じて変動し、上記コンパレータの−入力レベルはVcc
を抵抗R42、R43で分割して得られる基準電圧と比
較され、両者の大小関係に応じて高電圧又は低電圧に波
形整形されてその出力がバッファ43を介して通信制御
LSI31に入力される。
28 is a light receiving means, which is a light receiving element 41 such as a phototransistor, a comparator 42, and a buffer 4.
3 and a communication control LSI 31, the communication control LSI is the same as the optical transmission means. In this structure, when the light receiving element such as the phototransistor receives light, the resistance value between the anode and the cathode changes, and V
The current supplied from cc is the resistance R depending on the amount of received light.
41 and the light receiving element 41. Therefore, that is, when the amount of light emission is large, the current flowing through the light receiving element is large, and the voltage input to the comparator 42 is low. Therefore, the-input level of the comparator 42 changes according to the amount of received light, and the-input level of the comparator is Vcc.
Is compared with a reference voltage obtained by being divided by resistors R42 and R43, the waveform is shaped into a high voltage or a low voltage according to the magnitude relation between the two, and the output is input to the communication control LSI 31 via the buffer 43.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図6に
示す上記従来の光送信手段では光出力が図7のようにV
ccに比較して発光素子に流れる電流(光電流)が変動
する。光出力が減少する方向に変動すると、受信側の光
量が不足し、通信エラーになる場合がある。特にハンド
ヘルドコンピュータのような携帯型情報機器ではVcc
が電池から供給されるため、その消費量に応じてVcc
の低下は大きくなるので通信エラーの発生する割合が大
きくなる。
However, in the above-mentioned conventional optical transmitting means shown in FIG. 6, the optical output is V as shown in FIG.
The current (photocurrent) flowing through the light emitting element fluctuates as compared with cc. If the optical output fluctuates in the direction of decreasing, the amount of light on the receiving side becomes insufficient, which may cause a communication error. Especially for portable information devices such as handheld computers, Vcc
Is supplied from the battery, Vcc
The rate of occurrence of communication error increases because the rate of communication error increases.

【0007】また同様に光受信手段においても、コンパ
レータ42の基準電圧Vccに比較して変動するが、こ
のためコンパレータ出力(受信データ)が図8に示すよ
うに変動し通信エラーを起こすことがある。このように
送信側と受信側の電源電圧が重なると、通信エラーの発
生率は著しく増大する。特に、携帯型情報機器ではその
傾向が著しい。更にまた、上記従来技術においては、送
受信間の距離の長短に関係なく発光素子の光出力が一定
であるので、送受信間の距離が長くなると受信光量が減
少して通信エラーを起こす。
Similarly, in the light receiving means, the voltage fluctuates in comparison with the reference voltage Vcc of the comparator 42. Therefore, the comparator output (received data) fluctuates as shown in FIG. 8 and a communication error may occur. . When the power supply voltages on the transmitting side and the receiving side overlap in this way, the occurrence rate of communication errors increases significantly. This tendency is particularly remarkable in portable information devices. Furthermore, in the above-mentioned conventional technique, since the light output of the light emitting element is constant regardless of the length of the distance between the transmitter and the receiver, if the distance between the transmitter and the receiver becomes long, the amount of received light decreases and a communication error occurs.

【0008】[0008]

【発明の目的】本発明は上記のような従来技術の問題を
解決し、電源電圧Vccの変動によって、送受信間の距
離が長くなっても通信エラーの発生を防止し、信頼性の
高い通信制御装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention solves the problems of the prior art as described above, prevents the occurrence of communication errors due to the fluctuation of the power supply voltage Vcc even if the distance between the transmitting and receiving sides becomes long, and achieves highly reliable communication control. The purpose is to provide a device.

【0009】[0009]

【課題を解決するための手段】この目的を達成するた
め、本発明では、発光素子を含む光送信手段、及び受光
素子を含む光受信手段を備えた通信制御装置において、
送信時、上記発光素子を発光させるための電流を定電流
制御することを特徴とする。また、発光素子を含む光送
信手段、及び受光素子を含む光受信手段を備えた通信制
御装置の受信側において、上記受光素子の出力電圧を、
定電圧化された基準電圧を比較してデータを再生するこ
とを特徴とする。
In order to achieve this object, the present invention provides a communication control device including an optical transmitter including a light emitting element and an optical receiver including a light receiving element,
At the time of transmission, the current for causing the light emitting element to emit light is controlled to a constant current. Further, on the receiving side of the communication control device provided with the light transmitting means including the light emitting element, and the light receiving means including the light receiving element, the output voltage of the light receiving element,
It is characterized in that data is reproduced by comparing the reference voltages that have been made constant.

【0010】更に、発光素子を含む光送信手段、及び受
光素子を含む光受信手段を備えた通信制御装置におい
て、複数の発光素子と、上記発光素子中の任意数の発光
素子を選択駆動する手段を備え、同一の信号源により、
上記任意数の発光素子を選択駆動することを特徴とす
る。更にまた、上記において、通信エラーが発生したと
きまたは通信エラー率が所定の値を越えたとき、複数の
発光素子を駆動する構成にする。更に、発光素子を含む
光送信手段、及び発光素子を含む光受信手段を備えた通
信制御装置において、発光素子を発光させるための電流
を変化させる手段を備え、通信エラーの状況に応じて、
上記電流を変化させることを特徴とする。
Further, in the communication control device provided with the light transmitting means including the light emitting element and the light receiving means including the light receiving element, the plurality of light emitting elements and the means for selectively driving the arbitrary number of the light emitting elements among the light emitting elements. With the same signal source,
It is characterized in that the above-mentioned arbitrary number of light emitting elements are selectively driven. Furthermore, in the above, when a communication error occurs or the communication error rate exceeds a predetermined value, a plurality of light emitting elements are driven. Furthermore, in a communication control device provided with a light transmitting means including a light emitting element, and a light receiving means including a light emitting element, a means for changing a current for causing the light emitting element to emit light is provided, and depending on a situation of a communication error,
It is characterized in that the current is changed.

【0011】[0011]

【作用】送信時、発光素子を発光させるための電流を定
電流制御するので、電源電圧Vccが変動しても発光素
子の光出力は一定になる。また、受光素子の出力電圧
を、定電圧化された基準電圧と比較してデータを再生す
るので、電源電圧Vccが変動しても再生されるデータ
は変動しない。更に、複数の発光素子と、上記発光素子
中の任意数の発光素子を選択駆動する手段を備え、同一
の信号源により、上記任意数の発光素子を選択駆動でき
るので、送受信間の距離が長くなって受信光量が減少
し、通信エラーが発生したときまたは通信エラー率が所
定の値を越えたとき、総光出力を増加させることができ
る。更にまた、発光素子を変化させるための電流を変化
させる手段を備え、通信エラーの状況に応じて、上記電
流を変化させることができるので、送受信間の距離が長
くなって受信光量が減少し、通信エラーが発生したとき
または通信エラー率が所定の値を越えたとき、光出力を
増加させることができる。
During transmission, the current for causing the light emitting element to emit light is controlled to a constant current, so that the light output of the light emitting element becomes constant even if the power supply voltage Vcc fluctuates. Further, since the data is reproduced by comparing the output voltage of the light receiving element with the reference voltage that has been made constant, the reproduced data does not change even if the power supply voltage Vcc changes. Furthermore, since a plurality of light emitting elements and means for selectively driving any number of the light emitting elements among the light emitting elements are provided and the same number of light emitting elements can be selectively driven by the same signal source, the distance between transmission and reception is long. Thus, when the amount of received light decreases and a communication error occurs or the communication error rate exceeds a predetermined value, the total optical output can be increased. Furthermore, a means for changing the current for changing the light emitting element is provided, and the current can be changed according to the situation of the communication error, so that the distance between the transmitting and receiving becomes long and the received light amount decreases, The light output can be increased when a communication error occurs or when the communication error rate exceeds a predetermined value.

【0012】[0012]

【実施例】以下、図面に示した実施例に基づいて本発明
を詳細に説明する。図1は本発明による光通信制御装置
の光送信手段の一実施例を示す回路図である。図におい
て、1は通信制御装置LSI、2はバッファ、3はオペ
アンプ、4はトランジスタ、5は発光素子、6はツェナ
ーダイオードである。この回路の特徴は発光ダイオード
(発光素子)を駆動するトランジスタ4のベース・エミ
ッタ間にオペアンプ3を設けることにより負帰還をかけ
て、発光素子5を通れる光電流を一定にする定電流回路
を構成した点である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a circuit diagram showing an embodiment of an optical transmission means of an optical communication control device according to the present invention. In the figure, 1 is a communication control device LSI, 2 is a buffer, 3 is an operational amplifier, 4 is a transistor, 5 is a light emitting element, and 6 is a Zener diode. The feature of this circuit is that the operational amplifier 3 is provided between the base and the emitter of the transistor 4 for driving the light emitting diode (light emitting element) to thereby form a constant current circuit for negative feedback to make the photocurrent passing through the light emitting element 5 constant. That is the point.

【0013】この構成によれば、通信制御LSI1から
データに基づいてビット列が出力されると、そのビット
値に応じてバッファ32には高電位又は低電位信号が入
力されるが、今バッファ2の出力が‘Low’レベルに
なる場合を考えると、オペアンプ3の出力レベルに関係
なく、トランジスタ4のベース電圧は‘Low’レベル
になるので、トランジスタ4はオフ状態となり、従って
光電流は流れない。それに対して、バッファ2の出力が
‘High’レベルになると、トランジスタ4のベース
電圧は‘High’レベルになり、トランジスタ4はオ
ン状態となり、光電流が発光素子、トランジスタ4、抵
抗R1を通って流れる。このとき、R1の存在により光
電流が増大すると抵抗R1の端子電圧が上昇するが、こ
の電圧がオペアンプ3の負極入力に供給されるので、負
帰還がかかり、例えばVccの変動によりR1を流れる
電流が増加するとオペアンプ3の−入力が上がりオペラ
ンプの入力電圧が小さくなって、その出力が減少する。
従ってトランジスタ4のベース電流が減少し、トランジ
スタ4の出力電流が減少する。逆にR1を流れる電流が
減少するとオペアンプ3の−入力は下がり、オペアンプ
の入力電圧が大きくなるから、その出力が大きくなり、
従ってトランジスタ4のベース電流が増加し、トランジ
スタ4の出力電流が増加する。周知のようにオペアンプ
3の増巾率は充分に大きいので、バランスした状態にお
いて、オペアンプ3の二つの入力端子間の電圧差はほと
んど0になる状態で動作する。つまり、オペアンプ3の
−入力端子の電圧は−定電圧VA となり、従ってR1を
流れる電流はVccに関係なくVA /R1になり、発光
素子を流れる電流もほぼVA /R1になる。
According to this configuration, when the communication control LSI 1 outputs a bit string based on the data, the high potential or low potential signal is input to the buffer 32 according to the bit value. Considering the case where the output goes to the “Low” level, the base voltage of the transistor 4 goes to the “Low” level regardless of the output level of the operational amplifier 3, so that the transistor 4 is turned off, so that no photocurrent flows. On the other hand, when the output of the buffer 2 becomes “High” level, the base voltage of the transistor 4 becomes “High” level, the transistor 4 is turned on, and the photocurrent passes through the light emitting element, the transistor 4, and the resistor R1. Flowing. At this time, when the photocurrent increases due to the presence of R1, the terminal voltage of the resistor R1 rises, but since this voltage is supplied to the negative input of the operational amplifier 3, negative feedback is applied and, for example, the current flowing through R1 due to fluctuation of Vcc. Is increased, the-input of the operational amplifier 3 is increased and the input voltage of the operation lamp is decreased, and its output is decreased.
Therefore, the base current of the transistor 4 decreases and the output current of the transistor 4 decreases. On the contrary, when the current flowing through R1 decreases, the-input of the operational amplifier 3 decreases and the input voltage of the operational amplifier increases, so that the output increases,
Therefore, the base current of the transistor 4 increases and the output current of the transistor 4 increases. As is well known, since the amplification factor of the operational amplifier 3 is sufficiently large, the operational amplifier 3 operates in a balanced state in which the voltage difference between the two input terminals of the operational amplifier 3 becomes almost zero. That is, the voltage at the-input terminal of the operational amplifier 3 becomes the -constant voltage V A , and therefore the current flowing through R1 becomes V A / R1 regardless of Vcc, and the current flowing through the light emitting element also becomes almost V A / R1.

【0014】なお、オペアンプの+入力端電圧VA がV
ccによって変動しないように、図1に示すようにツェ
ナーダイオード6等を用いて定電圧化をはかる。上記の
ように、Vccの変動にかかわらずオン時に発光素子を
流れる電流を一定にすれば、電池等の電源電圧変動に対
して光出力を一定にできる。
The + input terminal voltage V A of the operational amplifier is V
As shown in FIG. 1, a zener diode 6 or the like is used to make a constant voltage so as not to vary with cc. As described above, if the current flowing through the light emitting element is made constant at the time of turning on regardless of the change in Vcc, the light output can be made constant against the change in the power supply voltage of the battery or the like.

【0015】次に図2により、Vccの変動に対して光
受信手段のコンパレータの基準電圧を一定にすることに
よって、受光素子によるデータ復調時のエラー発生を低
減する方法を説明する。図2は本発明による受光素子側
回路の一例を示す図である。図において、11は受光素
子であり、例えばフォトトランジスタで構成され、12
はコンパレータ、13はバッファ、R13は抵抗、14
はツェナーダイオードある。フォトトランジスタ等の受
光素子によって、光を受信すると、定電圧源Vcから供
給される電流が、受信光量に応じて抵抗R11、受光素
子11を通って流れる。受光素子(フォトトランジス
タ)11の出力はコンパレータ12の一方の入力端子V
i−に接続され、他方の入力端子+に入力されている基
準電圧VBと比較される。この基準電圧VB はツェナー
ダイオード14と抵抗R13によって定電圧化されてい
る。従って、Vccが変動しても基準電圧VB は変動せ
ず、コンパレータ12の出力レベルは受信光量の値にの
み依存し、受信光量が所定値以上であればVi−はVB
以下となり、コンパレータ12の出力は‘High’と
なり、バッファ13を介してその値が通信制御LSI1
に入力される。
Next, referring to FIG. 2, a method of reducing the error occurrence at the time of data demodulation by the light receiving element by keeping the reference voltage of the comparator of the light receiving means constant against the fluctuation of Vcc will be described. FIG. 2 is a diagram showing an example of a light receiving element side circuit according to the present invention. In the figure, 11 is a light receiving element, which is composed of, for example, a phototransistor.
Is a comparator, 13 is a buffer, R13 is a resistor, 14
Is a Zener diode. When light is received by a light receiving element such as a phototransistor, a current supplied from the constant voltage source Vc flows through the resistor R11 and the light receiving element 11 according to the amount of received light. The output of the light receiving element (phototransistor) 11 is one input terminal V of the comparator 12.
It is connected to i- and compared with the reference voltage V B input to the other input terminal +. The reference voltage V B is made constant by the Zener diode 14 and the resistor R13. Therefore, even if Vcc fluctuates, the reference voltage V B does not fluctuate, and the output level of the comparator 12 depends only on the value of the received light amount. If the received light amount is a predetermined value or more, Vi− is V B.
Below, the output of the comparator 12 becomes “High”, and its value is passed through the buffer 13 to the communication control LSI 1
Entered in.

【0016】図3は本発明による通信制御装置における
他の実施例であり、出力光量を自動的に変化されること
ができる光送信手段を示している。図3において、16
はANDゲート、2a、2bはバッファ4a、4bはト
ランジスタ、5a、5bは例えば発光ダイオード等の発
光素子である。この例に示す光送信手段は、通常は発光
素子5aのみを動作できる。即ち、通常は図の発光素子
5bを動作可能状態にする信号‘LED2 ON’を
‘Low’に設定しておき、バッファ2b、トランジス
タ4b、発光素子5bは動作させない。又一方、公知の
技術により光送信手段が原因の通信エラーを検出すると
上記‘LED2 ON’を‘High’にすることによ
って、トランジスタ4bを動作可能状態にする。この状
態で通信制御LSI1からデータビット列が出力される
と、バッファ2aを介してトランジスタ4aをオン/オ
フさせ、発光素子5aをオン/オフさせる一方、この信
号と遅延時間のばらつきはあるものの、ほぼ同位相で、
ANDゲート16、バッファ2bを介してトランジスタ
4bをオン/オフさせ、発光素子5bをもオン/オフさ
せる。従って、発光素子5a、発光素子5bを近接して
設ければ、1個の光源から2倍の光量が出力されたもの
と等価になる。
FIG. 3 shows another embodiment of the communication control apparatus according to the present invention, showing an optical transmission means capable of automatically changing the output light quantity. In FIG. 3, 16
Is an AND gate, 2a and 2b are buffers 4a and 4b, and transistors 5a and 5b are light emitting elements such as light emitting diodes. The optical transmission means shown in this example can normally operate only the light emitting element 5a. That is, normally, the signal "LED2 ON" for setting the light emitting element 5b in the figure to the operable state is set to "Low", and the buffer 2b, the transistor 4b, and the light emitting element 5b are not operated. On the other hand, when a communication error caused by the optical transmission means is detected by a known technique, the above-mentioned “LED2 ON” is set to “High” to enable the transistor 4b. When a data bit string is output from the communication control LSI 1 in this state, the transistor 4a is turned on / off and the light emitting element 5a is turned on / off via the buffer 2a. In phase,
The transistor 4b is turned on / off via the AND gate 16 and the buffer 2b, and the light emitting element 5b is also turned on / off. Therefore, if the light emitting element 5a and the light emitting element 5b are provided close to each other, it is equivalent to one light source outputting twice as much light.

【0017】上記実施例によれば、送受信間の距離が長
くなると受信光量が減少し、それによって通信エラーが
発生する不具合を解消する効果がある。即ち、上記にお
いて通信エラーが発生して‘LED2 ON’信号が
‘High’になった後、そのときの通信相手との通信
が完了するまで上記‘High’状態が持続される。ま
た上記において一度の通信エラーの発生によって‘LE
D2 ON’信号を直ちに‘High’にする代りに、
通信エラー率が所定の値を越えたとき‘LED2ON’
信号を‘High’にすることも可能である。更に、上
記実施例では、2個の発光素子とその駆動系を並列に設
ける場合を示したが、それらが3個以上の場合も同様に
実現可能であることは説明を必要としないであろう。こ
の場合は、例えば最初の通信エラーでは2個の発生素子
のみ動作可能状態にし、それでも通信エラーが解消しな
いとき、次々に新たな発光素子を動作可能状態にするよ
うに通信エラーの度合によって段階的に駆動する発光素
子数を増加するように制御してもよい。
According to the above-described embodiment, the amount of received light is reduced as the distance between the transmitter and the receiver is increased, which has the effect of eliminating the problem that a communication error occurs. That is, after the communication error occurs and the'LED2 ON 'signal becomes'High' in the above, the'High 'state is maintained until the communication with the communication partner at that time is completed. In addition, when a communication error occurs once in the above, 'LE
Instead of immediately setting the D2 ON 'signal to'High',
"LED2ON" when the communication error rate exceeds the specified value
It is also possible to set the signal to “High”. Furthermore, in the above-mentioned embodiment, the case where two light emitting elements and their driving systems are provided in parallel has been shown, but it is not necessary to explain that they can be similarly realized even when the number of them is three or more. . In this case, for example, in the first communication error, only two generating elements are made operable, and when the communication error is still not resolved, the new light emitting elements are made operable one after another depending on the degree of the communication error. You may control so that the number of the light emitting elements driven to may be increased.

【0018】図4(a)(b)は本発明の他の実施例を
示す回路図であり、この例では、上記において、通信エ
ラーの状況に応じて発光素子を流れる光電流を変化させ
るものである。これは値の異なる3種の電流制御回路を
備えた例であり、上述した定電流回路の電流値を異なる
値にすることによって、夫々の値において光出力を一定
にする。即ち、同図(a)に示すようにツェナー電圧が
異なる種のツェナーダイオード6a、6b、6cによっ
て得た定電圧VAa、VAb、VAcを夫々のスイッチ
ング回路17を介してオペアンプ3の+入力端に供給
し、オペアンプ3のフィードバックを施したオペランプ
3の出力を発光ダイオード電流制御用トランジスタ4の
ベースに入力する。この回路において、通信エラーの状
況に応じて行い、同図(a)のスイッチング回路17の
選択端子SLI1〜3のうち、いづれかの端子に‘Hi
gh’の信号を、また選択しない端子には、‘Low’
の信号を与えると、‘High’の電位を与えたスイッ
チング回路のみがオンとなって、選択された電圧がオペ
アンプに供給される。従って、選択した電圧に応じた電
流が発光素子に流れ、発光量を任意に選択可能となるな
お、図4(b)は、(a)に示すスイッチング回路の詳
細である。上記実施例でVA を変化させた発光素子制御
トランジスタ4のエミッタ抵抗R1を変化させても発光
量を変化させることができるのは説明するまでもない。
また、光電流を変化させる方法は定電流回路に限定され
るものではない。
FIGS. 4A and 4B are circuit diagrams showing another embodiment of the present invention. In this example, in the above, the photocurrent flowing through the light emitting element is changed according to the situation of the communication error. Is. This is an example in which three types of current control circuits having different values are provided, and the light output is made constant at each value by making the current values of the above-mentioned constant current circuit different values. That is, as shown in FIG. 7A, the constant voltages VAa, VAb, and VAc obtained by the Zener diodes 6a, 6b, and 6c having different Zener voltages are applied to the + input terminal of the operational amplifier 3 via the respective switching circuits 17. The output of the operation lamp 3 supplied and fed back from the operational amplifier 3 is input to the base of the light emitting diode current control transistor 4. In this circuit, the operation is performed in accordance with the situation of the communication error, and any one of the selection terminals SLI1 to SLI1 of the switching circuit 17 of FIG.
gh 'signal,' Low 'to the terminal which is not selected
Signal is applied, only the switching circuit to which the potential of “High” is applied is turned on, and the selected voltage is supplied to the operational amplifier. Therefore, a current according to the selected voltage flows through the light emitting element, and the amount of light emission can be arbitrarily selected. FIG. 4B shows the details of the switching circuit shown in FIG. It goes without saying that the amount of light emission can be changed by changing the emitter resistance R1 of the light emitting element control transistor 4 in which V A is changed in the above embodiment.
Further, the method of changing the photocurrent is not limited to the constant current circuit.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
電源電圧Vccが変動しても発光素子の光出力を一定に
保つことが可能であり、また受光素子の出力電圧を、定
電圧化された基準電圧と比較してデータを再生すること
により、電源電圧Vccが変動しても再生されるデータ
波形は所定のものになる。更に、送受信間の距離が長く
なって受信光量が減少した場合であっても発光量を増大
させてそれを補うことができる。また、通信エラーが発
生したとき、あるいは通信エラー率が所定の値を越えた
とき、光出力を増加させることにより、通信エラーを解
消できるので、信頼性の高い光通信制御装置を実現する
上で効果が大きい。
As described above, according to the present invention,
Even if the power supply voltage Vcc fluctuates, the light output of the light emitting element can be kept constant, and the output voltage of the light receiving element is compared with a reference voltage that has been made into a constant voltage to reproduce the data. Even if the voltage Vcc fluctuates, the reproduced data waveform becomes a predetermined one. Further, even when the distance between the transmitting and receiving sides becomes long and the received light amount decreases, the emitted light amount can be increased to compensate for it. Further, when a communication error occurs, or when the communication error rate exceeds a predetermined value, the communication error can be eliminated by increasing the optical output, so that a highly reliable optical communication control device can be realized. Great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光通信制御装置の光送信手段の一
実施例を示す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of an optical transmission means of an optical communication control device according to the present invention.

【図2】本発明による光通信制御装置の光受信手段の一
実施例を示す回路図である。
FIG. 2 is a circuit diagram showing an embodiment of an optical receiving means of the optical communication control device according to the present invention.

【図3】本発明による光通信制御装置の光送信手段の他
の実施例を示す回路図である。
FIG. 3 is a circuit diagram showing another embodiment of the optical transmission means of the optical communication control device according to the present invention.

【図4】本発明による光通信制御装置の光送信手段の他
の実施例を示す回路図であり、(a)は全体の回路図、
(b)はスイッチング回路の具体例を示す図である。
FIG. 4 is a circuit diagram showing another embodiment of the optical transmission means of the optical communication control device according to the present invention, in which (a) is an overall circuit diagram,
(B) is a figure which shows the specific example of a switching circuit.

【図5】本発明を適用する情報機器の一例を示す全体構
成図である。
FIG. 5 is an overall configuration diagram showing an example of an information device to which the present invention is applied.

【図6】従来の光通信制御装置の光送信手段及び光受信
手段の一例を示す回路図である。
FIG. 6 is a circuit diagram showing an example of an optical transmission unit and an optical reception unit of a conventional optical communication control device.

【図7】本発明が解決しようとする課題を説明するため
の図であって、電流と発光量の関係を示す特性図であ
る。
FIG. 7 is a diagram for explaining a problem to be solved by the present invention and is a characteristic diagram showing a relationship between a current and a light emission amount.

【図8】(a)(b)は本発明が解決しようとする課題
を説明するための図であって、受信側の基準電圧と復調
波形の関係を示す波形図である。
8A and 8B are diagrams for explaining a problem to be solved by the present invention, and are waveform diagrams showing a relationship between a reference voltage on the receiving side and a demodulation waveform.

【符号の説明】[Explanation of symbols]

1 通信制御LSI、2 バッファ、3 オペアンプ、
4 トランジスタ、5発光素子、6 ツェナーダイオー
ド、11 受光素子、12 コンパレータ、13 バッ
ファ、14 ツェナーダイオード、16 ANDゲー
ト、 17 スイッチング回路、20通信制御装置。
1 communication control LSI, 2 buffer, 3 operational amplifier,
4 transistors, 5 light emitting elements, 6 Zener diodes, 11 light receiving elements, 12 comparators, 13 buffers, 14 Zener diodes, 16 AND gates, 17 switching circuits, 20 communication control devices.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/04 10/06 10/105 10/10 10/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H04B 10/04 10/06 10/105 10/10 10/22

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発光素子を含む光送信手段と受光素子を
含む光受信手段とを備えた光通信制御装置において、送
信時、上記発光素子を発光させるための電流を定電流制
御することを特徴とする光通信制御装置。
1. An optical communication control device comprising an optical transmitter including a light emitting element and an optical receiver including a light receiving element, wherein a current for causing the light emitting element to emit light is controlled at a constant current during transmission. Optical communication control device.
【請求項2】 発光素子を含む光送信手段と、受光素子
を含む光受信手段とを備えた光通信性制御装置におい
て、上記受光素子の出力電圧を、定電圧化された基準電
圧と比較してデータを再生することを特徴とする光通信
制御装置。
2. An optical communication control device comprising an optical transmitter including a light emitting element and an optical receiver including a light receiving element, wherein an output voltage of the light receiving element is compared with a reference voltage which has been made into a constant voltage. An optical communication control device characterized by reproducing data.
【請求項3】 発光素子を含む光送信手段と受光素子を
含む光受信手段とを備えた光通信制御装置において、上
記発光素子を複数備え、上記複数の発光素子のうち任意
の数の発光素子を選択駆動するように構成したことを特
徴とする光通信制御装置。
3. An optical communication control device comprising a light transmitting means including a light emitting element and a light receiving means including a light receiving element, wherein a plurality of the light emitting elements are provided, and an arbitrary number of the light emitting elements among the plurality of light emitting elements. An optical communication control device characterized in that it is configured to selectively drive.
【請求項4】 通信エラーが発生したとき、または通信
エラー率が所定の値を越えたとき、上記複数の発光素子
中のいくつかを選択駆動する構成にしたことを特徴とす
る請求項3記載の光通信制御装置。
4. A configuration in which some of the plurality of light emitting elements are selectively driven when a communication error occurs or when the communication error rate exceeds a predetermined value. Optical communication control device.
【請求項5】 発光素子を含む光送信手段と受光素子を
含む光受信手段とを備えた光通信制御装置において、発
光素子駆動電流を変化させる手段を備え、通信エラーの
状況に応じて、上記発光素子駆動電流を変化させること
を特徴とする光通信制御装置。
5. An optical communication control device comprising an optical transmitting means including a light emitting element and an optical receiving means including a light receiving element, comprising means for changing a light emitting element drive current, and the above means is provided according to the situation of a communication error. An optical communication control device characterized by changing a light emitting element drive current.
JP5222130A 1993-08-13 1993-08-13 Optical communication control unit Pending JPH0758704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5222130A JPH0758704A (en) 1993-08-13 1993-08-13 Optical communication control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5222130A JPH0758704A (en) 1993-08-13 1993-08-13 Optical communication control unit

Publications (1)

Publication Number Publication Date
JPH0758704A true JPH0758704A (en) 1995-03-03

Family

ID=16777644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5222130A Pending JPH0758704A (en) 1993-08-13 1993-08-13 Optical communication control unit

Country Status (1)

Country Link
JP (1) JPH0758704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271348B2 (en) 2011-01-17 2016-02-23 Koninklijke Philips N.V. Driver device and driving method for driving a load, in particular an LED unit
JP2019537868A (en) * 2016-10-21 2019-12-26 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Current modulation circuit, drive circuit, and method for driving a lighting load using current modulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271348B2 (en) 2011-01-17 2016-02-23 Koninklijke Philips N.V. Driver device and driving method for driving a load, in particular an LED unit
US9596726B2 (en) 2011-01-17 2017-03-14 Philips Lighting Holding B.V. Driver device and driving method for driving a load, in particular an LED unit
JP2019537868A (en) * 2016-10-21 2019-12-26 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Current modulation circuit, drive circuit, and method for driving a lighting load using current modulation

Similar Documents

Publication Publication Date Title
US6144222A (en) Programmable LED driver
US20040150430A1 (en) Voltage mode differential driver and method
US20050195904A1 (en) Transmission Line Driver
KR910005362B1 (en) Display driver
US6118438A (en) Low comment mode impedence differential driver and applications thereof
US6901223B2 (en) Optical transmitter and optical transmitting apparatus using the same
US20030156609A1 (en) Driving control circuit for ligth-emitting device
US5914484A (en) Circuit for adjusting luminous energy of light-emitting element and optical device using same
US4450571A (en) Two-way signal transmission and one-way DC power supply using a single line pair
JP2000315923A (en) Burst light receiving circuit
JPH0339425B2 (en)
JPH0758704A (en) Optical communication control unit
US8452001B1 (en) Class A-B line driver for gigabit Ethernet
US6738173B2 (en) Limiting amplifier modulator driver
US5425094A (en) Cross point switch with power failure mode
US5903193A (en) Amplifying device and transmission output control apparatus
US5448076A (en) Optically-coupled differential line driver generating an optical signal having at least three states
US6456111B1 (en) Receiver circuit for a complementary signal
KR100810328B1 (en) Current driving type light source driving circuit
JP3162163B2 (en) Optical receiver
US20060066352A1 (en) Low-voltage, low-skew differential transmitter
JP2005516479A (en) Transmitter output stage for 2-wire bus
US6977540B2 (en) High-speed isolated port
US20040047428A1 (en) Transmitter for outputting differential signals of different voltage levels
US6891406B2 (en) Method and apparatus for supplying a reference voltage for chip-to-chip communication