JPH0758677B2 - Sample stage used in electron beam lithography system used for manufacturing semiconductor devices - Google Patents
Sample stage used in electron beam lithography system used for manufacturing semiconductor devicesInfo
- Publication number
- JPH0758677B2 JPH0758677B2 JP58146077A JP14607783A JPH0758677B2 JP H0758677 B2 JPH0758677 B2 JP H0758677B2 JP 58146077 A JP58146077 A JP 58146077A JP 14607783 A JP14607783 A JP 14607783A JP H0758677 B2 JPH0758677 B2 JP H0758677B2
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- stage
- sample
- reference guide
- sample holder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000004065 semiconductor Substances 0.000 title claims description 5
- 238000000609 electron-beam lithography Methods 0.000 title description 2
- 238000010894 electron beam technology Methods 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 22
- 239000000919 ceramic Substances 0.000 description 11
- 230000036316 preload Effects 0.000 description 10
- 239000004020 conductor Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000002783 friction material Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910017563 LaCrO Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- -1 that is Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3435—Target holders (includes backing plates and endblocks)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は、試料を載置する試料ホルダと前記試料ホルダ
を載置する載物台とを含む、半導体装置の製造に使用さ
れる電子ビーム描画装置の試料ステージの技術分野に属
する。Description: TECHNICAL FIELD The present invention relates to an electron beam drawing used for manufacturing a semiconductor device, which includes a sample holder on which a sample is mounted and a mounting table on which the sample holder is mounted. It belongs to the technical field of the sample stage of the device.
半導体素子の微細化・高集積化の傾向にともない、LSI
(大規模集積回路)の回路パタンを創成する電子ビーム
描画装置に対して、高精度かつ高速度のパタン描画性能
が要求されている。電子ビーム描画装置の高速化を図る
ためには、描画方式として試料を載置した載物台を一方
向に移動させながらパタン描画を行う“試料連続移動方
式”を採用し、かつ従来装置では数百マイクロメートル
であった電子ビームの偏向領域を、一桁向上させて数ミ
リメートル程度まで拡大するのが有効な方法とされてい
る。また高精度なパタン描画を行うには、電子ビームの
収差をできるかぎり低減する必要があり、このためには
電子光学鏡筒の最下段に位置する対物レンズと試料とを
できるだけ接近させ、電子の飛程距離を短くするのが有
効である。With the trend of miniaturization and high integration of semiconductor elements, LSI
High-precision and high-speed pattern drawing performance is required for an electron beam drawing apparatus that creates a (large-scale integrated circuit) circuit pattern. In order to increase the speed of the electron beam writing system, the "continuous sample moving system" is adopted as the writing system, in which the stage on which the sample is placed is moved in one direction to perform pattern writing. It is an effective method to improve the deflection area of the electron beam, which was 100 micrometers, by an order of magnitude and expand it to about several millimeters. Further, in order to perform highly accurate pattern writing, it is necessary to reduce the aberration of the electron beam as much as possible. For this purpose, the objective lens located at the lowest stage of the electron optical lens barrel and the sample should be brought as close as possible to each other. It is effective to shorten the range.
通常の電子ビーム描画装置においては、対物レンズと試
料ステージの最上段に位置する試料ホルダとは、たかだ
か10〜数10ミリメートル程度しか離れていない。対物レ
ンズによって形成される磁場分布は、レンズのボア部か
ら下方に対して漏れがあるため、試料ステージの載物台
は対物レンズからの漏れ磁場の中を移動することにな
る。従来の試料ステージの可動部分は、電子ビームに対
して浮遊磁場の影響を及ぼさないようにするため、アル
ミニウム合金、燐青銅、チタン等の非磁性の金属材料に
よって構成されていた。この場合、磁場の中を導体が移
動することになるので、試料ホルダ、載物台等の導体中
には誘導電流が誘起される。In an ordinary electron beam drawing apparatus, the objective lens and the sample holder located at the uppermost stage of the sample stage are separated from each other by at most about 10 to several tens of millimeters. Since the magnetic field distribution formed by the objective lens leaks downward from the bore portion of the lens, the stage of the sample stage moves in the leakage magnetic field from the objective lens. The movable part of the conventional sample stage is made of a non-magnetic metal material such as an aluminum alloy, phosphor bronze, or titanium in order to prevent the stray magnetic field from affecting the electron beam. In this case, since the conductor moves in the magnetic field, an induced current is induced in the conductor such as the sample holder and the stage.
パタン描画の高速化を図るため試料連続移動描画方式を
採用した電子ビーム描画装置において、レンズの収差を
できるだけ小さくするため、対物レンズと試料との距離
を実用限界に近い10ミリメートルとした場合、試料ホル
ダの側へ漏れ出る磁場の強さは30ガウスにもおよぶ。こ
のとき試料ホルダや載物台が従来のように非磁性金属材
料すなわち導体で製作されていると、それら導体中に誘
起される誘導電流のため、試料上に投射される電子ビー
ムの位置は数マイクロメートルのずれを生じ、電子ビー
ム描画装置のパタン描画精度は著しく劣化する欠点があ
った。In an electron beam lithography system that employs the continuous-movement sample writing method to speed up pattern writing, if the distance between the objective lens and the sample is set to 10 mm, which is close to the practical limit, in order to minimize lens aberration, The strength of the magnetic field leaking to the holder side is as high as 30 gauss. At this time, if the sample holder and the stage are made of non-magnetic metal material, that is, conductors as in the past, the position of the electron beam projected on the sample is several times due to the induced current induced in those conductors. There is a drawback that the pattern drawing accuracy of the electron beam drawing apparatus is remarkably deteriorated due to the deviation of micrometer.
他方、誘導電流の誘起を防ぐため、試料ステージをセラ
ミックス等で構成した場合、電荷の蓄積が生じ、その蓄
積した電荷のため電界が発生し、電子ビームが曲げら
れ、所望の電子ビームの投射位置に誤差を生じるという
描画時等の支障が発生する。このような材料中に蓄積し
た電荷を解放することは、材料の物性上極めて困難であ
る。かかる電荷の蓄積を防止するため、当業者は多くの
場合、アルミナ(Al2O3)、窒化珪素(Si3N4)等のセラ
ミックス等に金属コーティングを施した試料ホルダ、載
物台を使用していた。しかし、上記セラミックス等は良
く知られているように電気的絶縁性が高く(比抵抗1014
Ω・cm以上)、絶縁材料として多用されているものであ
り、電子ビームの電子はコーティングされた金属を通じ
て絶縁材料中に蓄積されることになり、解放されること
がないため、コーティングの効果は薄い。更に、このよ
うな材料にコーティングを施して使用した場合、セラミ
ックスの表面の荒れ(セラミックスの特徴として表面に
は多くの粒塊が存在し金属のような鏡面にはならない)
に起因したピンホール状コーティング欠陥や、組立・調
整時に工具による引っかき傷による、絶縁物の露出が避
けられず、その部分での局所的な電荷の蓄積が発生し、
結局、使用できないという問題があった。On the other hand, when the sample stage is made of ceramics or the like to prevent induction of induced current, electric charge is accumulated, the electric field is generated by the accumulated electric charge, the electron beam is bent, and the desired electron beam projection position is obtained. There is a problem during drawing, such as an error in the drawing. It is extremely difficult to release the charge accumulated in such a material due to the physical properties of the material. In order to prevent the accumulation of such charges, a person skilled in the art often uses a sample holder or a stage which is a metal coating on ceramics such as alumina (Al 2 O 3 ) and silicon nitride (Si 3 N 4 ). Was. However, as is well known, the ceramics and the like have high electrical insulation (specific resistance 10 14
Ω · cm or more), which is often used as an insulating material, and the electrons of the electron beam are accumulated in the insulating material through the coated metal and are not released, so the effect of the coating is thin. Furthermore, when such a material is coated and used, the surface of the ceramic is rough (the characteristic of ceramics is that there are many agglomerates on the surface and it does not become a mirror surface like metal).
Insulation exposure is unavoidable due to pinhole-shaped coating defects caused by the scratches and scratches caused by tools during assembly and adjustment, and local charge accumulation occurs at that part.
After all, there was a problem that it could not be used.
本願発明が解決しようとする課題は、少なくとも試料ホ
ルダと載物台とを半導電性材料で構成することにより、
上述の相反する問題を同時に解消することである。The problem to be solved by the present invention is to configure at least the sample holder and the stage with a semiconductive material,
It is to solve the above-mentioned conflicting problems at the same time.
〔課題を解決するための手段〕 本願発明は、上記課題を解決するため、上記技術分野に
おいて、少なくとも前記試料ホルダと前記載物台とを比
抵抗10-3〜106Ω・cmの半導電性材料によって構成し、
かつ前記試料ホルダと前記載物台とを接地する、という
手段を講じた。[Means for Solving the Problems] The present invention is, in order to solve the above problems, in the above technical field, at least the sample holder and the above-described object stage have a specific resistance of 10 −3 to 10 6 Ω · cm of semiconductivity. Made of a flexible material,
In addition, a means of grounding the sample holder and the above-mentioned object stand was taken.
試料ホルダと載物台の比抵抗が10-3Ω・cmより高いた
め、対物レンズからの漏れ磁場中を試料ステージが移動
した場合であっても、試料ホルダ或いは載物台に発生す
る誘導電流を小さく抑制することができ、誘導電流によ
る電子ビームの照射位置での「ずれ」を、典型的なステ
ージにおいて、電子ビーム露光装置の照射位置での分解
能(約0.05μm)より十分に小さな値にすることができ
る。Since the resistivity of the sample holder and the stage is higher than 10 -3 Ωcm, the induced current generated in the sample holder or stage even when the sample stage moves in the leakage magnetic field from the objective lens. Can be suppressed to a small value, and the "deviation" at the irradiation position of the electron beam due to the induced current can be made sufficiently smaller than the resolution (about 0.05 μm) at the irradiation position of the electron beam exposure apparatus on a typical stage. can do.
また、試料ホルダと載物台の比抵抗が106Ω・cmより低
く、かつ接地されているため、試料ホルダと載物台に蓄
積される電荷が解放される時間を短くすることができ、
数10ns毎の電子ビーム照射サイクルの時間内においても
電荷の蓄積を生じさせない。従って、電子光学系のグラ
ンド電位に対する試料ステージの電位の影響は小さく、
電子ビームの照射位置での「ずれ」を電子ビーム露光装
置の照射位置での分解能(約0.05μm)より十分に小さ
な値にすることができる。Further, since the specific resistance of the sample holder and the stage is lower than 10 6 Ωcm and they are grounded, it is possible to shorten the time for releasing the charges accumulated in the sample holder and the stage.
Charge accumulation does not occur even within the time of the electron beam irradiation cycle of every several tens of ns. Therefore, the influence of the potential of the sample stage on the ground potential of the electron optical system is small,
The “shift” at the irradiation position of the electron beam can be made sufficiently smaller than the resolution (about 0.05 μm) at the irradiation position of the electron beam exposure apparatus.
更に、比抵抗10-3〜106Ω・cmの半導電性材料に金属を
コーティングした場合にあっても、セラミックスの表面
の荒れに起因したピンホール状コーティング欠陥や、組
立・調整時に工具による引っかき傷による半導電性材料
の露出が生じても、その部分での局所的な電荷の蓄積を
低減できる。Furthermore, even when a semiconductive material with a specific resistance of 10 -3 to 10 6 Ωcm is coated with a metal, pinhole-shaped coating defects due to the surface roughness of ceramics and tooling during assembly and adjustment Even if the semiconductive material is exposed due to scratches, the local accumulation of electric charge at that portion can be reduced.
第1図は本発明の一実施例であって、1は試料を載置し
てXおよびY方向に移動する載物台、2は載物台上に試
料を保持するための試料ホルダである。載物台1は複数
の摺動脚3を具備し、摺動脚3の端面には図示しないPT
FE(四フッ化エチレン)等の摩擦係数の低い材料で構成
された摺動片が張り付けてある。4は載物台がXおよび
Y方向に移動するときの上下方向の基準となる定盤であ
り、載物台1の移動時には摺動脚3が定盤4の上をすべ
りながら移動する。5はX基準ガイドであり、載物台1
がX方向へ移動する時の水平方向の基準となる。なお載
物台1には、X基準ガイド5が貫通し、かつ後述する予
圧ころを配設するに十分な空間を有するX基準ガイド溝
6が形成されている。X基準ガイド溝6の上面とX基準
ガイド5の上面との間には、X方向移動時に互いに接触
しないだけのすきまをもたせてある。定盤4の中央部分
にはY基準ガイド溝6′が形成されている。Y基準ガイ
ド溝6′の中には、載物台1がY方向へ移動するときの
水平方向の基準となるY基準ガイド7が、X基準ガイド
5と相直交するように装着されている。X基準ガイド5
の下側には、Y摺動ロッド8がX基準ガイド5と相直交
する位置関係をもって固定されている。X基準ガイド5
の両端部には、中心軸まわりに回動自在のころ9が取り
つけられており、載物台のY方向への移動にともなっ
て、定盤端部に位置しY方向に平行に配設されたYガイ
ド10,10′上を転動する。また、ころ9の支持により、
X基準ガイド5の下面は定盤4に対してわずかなすきま
をもち、Y方向へ移動する場合の摩擦力の発生を防いで
いる。FIG. 1 is an embodiment of the present invention, in which 1 is a stage for placing a sample and moving in the X and Y directions, and 2 is a sample holder for holding the sample on the stage. . The stage 1 is provided with a plurality of sliding legs 3, and the end faces of the sliding legs 3 have a PT (not shown).
A sliding piece made of a material with a low friction coefficient such as FE (tetrafluoroethylene) is attached. Reference numeral 4 is a surface plate that serves as a reference in the vertical direction when the table is moved in the X and Y directions, and when the table 1 is moved, the sliding legs 3 move while sliding on the surface plate 4. 5 is an X reference guide, which is a stage 1
Is the horizontal reference when moving in the X direction. The stage base 1 is formed with an X reference guide groove 6 which penetrates the X reference guide 5 and has a sufficient space for disposing a preload roller described later. A clearance is provided between the upper surface of the X reference guide groove 6 and the upper surface of the X reference guide 5 so as not to contact each other when moving in the X direction. A Y reference guide groove 6 ′ is formed in the central portion of the surface plate 4. In the Y reference guide groove 6 ', a Y reference guide 7 serving as a horizontal reference when the stage 1 moves in the Y direction is mounted so as to be orthogonal to the X reference guide 5. X reference guide 5
A Y sliding rod 8 is fixed to the lower side of the X base 5 in a positional relationship orthogonal to the X reference guide 5. X reference guide 5
Rollers 9 which are rotatable around the central axis are attached to both ends of the table, and are arranged at the end portions of the surface plate and arranged in parallel to the Y direction as the table is moved in the Y direction. Roll on the Y guides 10 and 10 '. Also, due to the support of the rollers 9,
The lower surface of the X reference guide 5 has a slight clearance with respect to the surface plate 4 to prevent generation of frictional force when moving in the Y direction.
載物台1にはX駆動軸11が、またY摺動ロッド8にはY
駆動軸12がそれぞれ結合され、載物台1を移動させるた
めの駆動力を伝達する。載物台1をX方向に駆動する場
合には、X基準ガイド5の基準面5aに沿って、載物台1
とX駆動軸11が一体となって移動する。またY方向に駆
動する場合には、Y基準ガイド7の基準面7aに沿って、
載物台1,X基準ガイド5,Y摺動ロッド8,Y駆動軸12が一体
となって移動する。The stage 1 has an X drive shaft 11 and the Y sliding rod 8 has a Y drive shaft 11.
The drive shafts 12 are coupled to each other and transmit a driving force for moving the stage 1. When driving the stage 1 in the X direction, the stage 1 is moved along the reference surface 5a of the X reference guide 5.
And the X drive shaft 11 move integrally. When driving in the Y direction, along the reference surface 7a of the Y reference guide 7,
The stage 1, X reference guide 5, Y sliding rod 8, and Y drive shaft 12 move integrally.
第2図(a)は、載物台1をX基準ガイド5に予圧をか
けて押し当てる方法の一例を上から見た図である。X基
準ガイド溝6において、X基準ガイド5の基準面5aと対
向した側面6aには、PTFE等の低摩擦材料によって構成さ
れた摺動片15が張り付けられてある。また、X基準ガイ
ド5の基準面5aと平行なもうひとつの側面5bには、板ば
ね13によって支持された、中心軸まわりに回動自在な予
圧ころ14を結合する。この構成により、板ばね13からの
押し付け力を予圧として、摺動片15を基準面5aに押し当
てる。FIG. 2 (a) is a view of an example of a method for pressing the stage 1 against the X reference guide 5 by applying a preload thereto from above. In the X reference guide groove 6, a slide piece 15 made of a low friction material such as PTFE is attached to a side surface 6a of the X reference guide 5 which faces the reference surface 5a. Further, a preload roller 14 supported by a leaf spring 13 and rotatable about a central axis is coupled to another side surface 5b of the X reference guide 5 which is parallel to the reference surface 5a. With this configuration, the sliding piece 15 is pressed against the reference surface 5a by using the pressing force from the leaf spring 13 as a preload.
第2図(b)は、Y摺動ロッド8をY基準ガイド7に予
圧をかけて押し当てる方法の一例を上から見た図であ
る。Y摺動ロッド8のY基準ガイド7の基準面7aと対向
する摺動面8aには、低摩擦材料によって構成された摺動
片15が張り付けられている。Y摺動ロッド8の摺動面8a
と平行なもうひとつの側面8bには、板ばね13によって支
持された、中心軸まわりに回動自在な予圧ころ14を結合
する。この構成により板ばね13からの押し付け力を予圧
として、摺動片15を基準面7aに押し当てる。Y摺動ロッ
ド8は既述のようにX基準ガイド5に固定されており、
X基準ガイド5には載物台1が押し当てられているた
め、Y摺動ロッド8がY駆動軸12によってY方向に駆動
されると、載物台1も一体となってY方向へ移動する。FIG. 2 (b) is a view of an example of a method of pressing the Y sliding rod 8 against the Y reference guide 7 by applying a preload thereto from above. A sliding piece 15 made of a low friction material is attached to a sliding surface 8a of the Y sliding rod 8 which faces the reference surface 7a of the Y reference guide 7. Sliding surface 8a of Y sliding rod 8
A preload roller 14 supported by a leaf spring 13 and rotatable about a central axis is coupled to the other side surface 8b parallel to. With this configuration, the sliding piece 15 is pressed against the reference surface 7a by using the pressing force from the leaf spring 13 as a preload. The Y sliding rod 8 is fixed to the X reference guide 5 as described above,
Since the stage 1 is pressed against the X reference guide 5, when the Y slide rod 8 is driven in the Y direction by the Y drive shaft 12, the stage 1 also moves in the Y direction as a unit. To do.
以上述べてきた電子ビーム描画装置用試料ステージの構
成において、試料にパタン描画を行う過程で、電子光学
鏡筒から投射される電子ビームやその反射電子に曝され
る試料ステージの機構部品、具体的には試料ホルダと載
物台を比抵抗が10-3〜106Ω・cmの半導電性材料によっ
て製作する。半導電性材料は、大別してセラミックス系
材料とガラス系材料に分類される。通常のセラミックは
絶縁性物質であるため、これを半導電性物質にするため
には、不純物を導入する等の特殊加工をしなくてはなら
ない。本発明で用いる具体的な半導電性セラミックス系
材料としては、SiC,LaCrO3,BaTiO3等があり、また半導
電性ガラス系材料としては、V2O5‐P2O5系ガラス、Fe2O
3‐PbO-B2O3系ガラス等があるが、例えば、SiCは上記の
抵抗値にするために絶縁性SiCの表面を2mm程度削って、
上記の抵抗値を持つ半導電性材料とする必要がある。焼
結して形成した通常の絶縁性SiCは表面の抵抗値と内部
の抵抗値が異なり、表面の抵抗値が高く、内部の抵抗値
は低いからである。また、これらの半導電性材料によっ
て機構部品を製作する場合、ガラス系材料よりもセラミ
ックス系材料のほうが、加工性や成形性に富むため有利
である。In the configuration of the sample stage for the electron beam drawing apparatus described above, in the process of performing pattern drawing on the sample, the mechanical parts of the sample stage exposed to the electron beam projected from the electron optical lens barrel and its reflected electrons, The sample holder and the stage are made of a semiconductive material with a specific resistance of 10 −3 to 10 6 Ω · cm. Semi-conductive materials are roughly classified into ceramic materials and glass materials. Since ordinary ceramics are insulating substances, special processing such as introduction of impurities must be performed in order to make them semi-conductive substances. Specific semiconductive ceramic-based materials used in the present invention include SiC, LaCrO 3 , BaTiO 3 and the like, and semiconductive glass-based materials include V 2 O 5 -P 2 O 5 based glass and Fe. 2 O
There are 3- PbO-B 2 O 3 based glass, etc., but for example, SiC has a surface of insulating SiC that is cut by about 2 mm in order to achieve the above resistance,
It is necessary to use a semiconductive material having the above resistance value. This is because the normal insulating SiC formed by sintering has different surface resistance values and internal resistance values, a high surface resistance value and a low internal resistance value. Further, when a mechanical component is manufactured from these semiconductive materials, a ceramic material is more advantageous than a glass material because it has better workability and moldability.
従来のセラミックス系材料は、焼結時の収縮,熱歪によ
り、高精度な部品を製作できないとされてきた。しか
し、近年のファインセラミックス技術の進歩により、焼
結後に研削およびラッピング加工を施せば、セラミック
ス材料において金属材料よりもすぐれた精度と安定性を
得ることが可能となる。この場合、例えば30ガウスの漏
れ磁場の中を、セラミック系材料が40mm/sの速度で移動
しても、セラミック系材料中に誘起される誘導電流によ
る電子ビームの投射位置誤差は6×10-6マイクロメート
ルにすぎず、まったく問題とならない。It has been considered that conventional ceramic materials cannot manufacture highly accurate parts due to shrinkage and thermal strain during sintering. However, with advances in fine ceramics technology in recent years, if grinding and lapping are performed after sintering, it becomes possible to obtain accuracy and stability superior to metal materials in ceramic materials. In this case, for example, even if the ceramic-based material moves at a velocity of 40 mm / s in a leakage magnetic field of 30 Gauss, the electron beam projection position error due to the induced current induced in the ceramic-based material is 6 × 10 −. It is only 6 micrometers, which is not a problem at all.
上記のごとく、試料ホルダと載物台を半導電性材料で製
作した場合、これらが電子ビームや反射電子に曝される
ことにより、材料内部に電荷が蓄積される。蓄積された
電荷は電場を形成し、逆に電子ビームの投射位置誤差を
生じる。このため半導電性材料に対しては、接地用導線
を接続することにより、電気的に接地しておく必要があ
る。この接地の効果を高めるためには、半導電性材料の
表面にアルミニウム(Al)等の導電性薄膜をコーティン
グし、コーティングした薄膜上に接地用導線を接続して
おくのが有効である。この場合、例えば30ガウスの漏れ
磁場の中を40mm/sの速度でアルミニウム薄膜が移動した
と考えると、アルミニウム薄膜中に誘起される誘導電流
に起因した電子ビームの投射位置誤差はアルミニウム薄
膜の厚さに対して、第3図のごとき関係を有すると考え
られる。従って、半導電性材料に例えばアルミニウム薄
膜をコーティングして使用する場合に、その膜厚を20マ
イクロメートル程度に設定すれば、この薄膜中に誘起さ
れる誘導電流による電子ビーム投射位置誤差を、たかだ
か0.01マイクロメートルにでき、実用上まったく問題と
ならない。As described above, when the sample holder and the stage are made of a semi-conductive material, they are exposed to an electron beam and reflected electrons, so that charges are accumulated inside the material. The accumulated charges form an electric field, which causes an electron beam projection position error. Therefore, it is necessary to electrically ground the semi-conductive material by connecting a grounding conductor. In order to enhance the grounding effect, it is effective to coat the surface of the semiconductive material with a conductive thin film such as aluminum (Al) and connect the grounding conductor to the coated thin film. In this case, for example, assuming that the aluminum thin film moved at a velocity of 40 mm / s in a stray magnetic field of 30 gauss, the electron beam projection position error caused by the induced current induced in the aluminum thin film is the thickness of the aluminum thin film. On the other hand, it is considered that there is a relationship as shown in FIG. Therefore, when a semiconductive material is coated with, for example, an aluminum thin film and the film thickness is set to about 20 μm, the electron beam projection position error due to the induced current induced in this thin film is at most It can be 0.01 micrometer, which is not a problem for practical use.
以上説明したように、本発明によれば電子ビーム描画装
置の対物レンズからの漏れ磁場中を、試料ステージの載
物台が連続的に移動しても、少なくとも前記試料ホルダ
と前記載物台とを比抵抗10-3〜106Ω・cmの半導電性材
料によって構成し、かつ前記試料ホルダと前記載物台と
を接地しているため、前記試料ホルダ、前記載物台に誘
起される誘導電流も電荷の蓄積もきわめて少なく、電子
ビームの照射位置での電子ビーム露光装置の分解能(約
0.05μm)より大きな誤差を生じさせるような電界を生
じさせない。すなわち、電子ビームの照射位置に電子ビ
ーム露光装置の分解能(0.05μm)より大きな誤差を生
じさせるような電界の発生がないため、電子ビームの位
置決め精度が向上し、高精度なパタン描画が可能とな
る。As described above, according to the present invention, even when the stage of the sample stage continuously moves in the leakage magnetic field from the objective lens of the electron beam drawing apparatus, at least the sample holder and the stage described above are provided. Is composed of a semiconductive material having a specific resistance of 10 −3 to 10 6 Ω · cm, and the sample holder and the above-mentioned platform are grounded, so that the sample holder and the above-mentioned platform are induced. The induced current and the accumulation of electric charge are extremely small, and the resolution of the electron beam exposure apparatus at the electron beam irradiation position (about
An electric field that causes an error larger than 0.05 μm) is not generated. That is, since there is no electric field at the irradiation position of the electron beam that causes an error larger than the resolution (0.05 μm) of the electron beam exposure apparatus, the positioning accuracy of the electron beam is improved and highly accurate pattern writing is possible. Become.
第1図は本発明の一実施例を示す斜視図、第2図(a)
は載物台をX基準ガイドに予圧をかけて押し当てる方法
の一例を示す上面図、第2図(b)はY摺動ロッドをY
基準ガイドに予圧をかけて押し当てる方法の一例を示す
上面図、第3図はアルミニウムの膜厚と電子ビーム投射
位置誤差との関係を示す図である。 1…載物台、2…試料ホルダ、3…摺動脚、4…定盤、
5…X基準ガイド、5a…X基準ガイド基準面、5b…X基
準ガイド側面、6…X基準ガイド溝、6a…X基準ガイド
溝側面、6′…Y基準ガイド溝、7…Y基準ガイド、7a
…Y基準ガイド基準面、8…Y摺動ロッド、8a…Y摺動
ロッド摺動面、8b…Y摺動ロッド側面、9…ころ、10,1
0′…Yガイド、11…X駆動軸、12…Y駆動軸、13…板
ばね、14…予圧ころ、15…摺動片。FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG. 2 (a).
Is a top view showing an example of a method of pressing the stage on the X reference guide by applying a preload, and FIG.
FIG. 3 is a top view showing an example of a method of applying a preload to a reference guide and pressing it, and FIG. 3 is a view showing a relationship between an aluminum film thickness and an electron beam projection position error. 1 ... Stage, 2 ... Sample holder, 3 ... Sliding legs, 4 ... Surface plate,
5 ... X reference guide, 5a ... X reference guide reference surface, 5b ... X reference guide side surface, 6 ... X reference guide groove, 6a ... X reference guide groove side surface, 6 '... Y reference guide groove, 7 ... Y reference guide, 7a
... Y reference guide reference surface, 8 ... Y sliding rod, 8a ... Y sliding rod sliding surface, 8b ... Y sliding rod side surface, 9 ... roller, 10,1
0 '... Y guide, 11 ... X drive shaft, 12 ... Y drive shaft, 13 ... Leaf spring, 14 ... Preload roller, 15 ... Sliding piece.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 細川 照夫 神奈川県厚木市小野1839番地 日本電信電 話公社厚木電気通信研究所内 (72)発明者 藤波 明平 神奈川県厚木市小野1839番地 日本電信電 話公社厚木電気通信研究所内 (56)参考文献 特開 昭58−21327(JP,A) 特開 昭52−116078(JP,A) 特開 昭55−96951(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruo Hosokawa 1839 Ono, Atsugi City, Kanagawa Pref., Atsugi Electro-Communications Research Laboratories, Nippon Telegraph and Telephone Public Corporation (72) Inoue Fujinami, 1839, Ono City, Atsugi, Kanagawa Prefecture Nippon Telegraph and Telephone Corporation Public Corporation Atsugi Institute of Electrical Communication (56) Reference JP-A-58-21327 (JP, A) JP-A-52-116078 (JP, A) JP-A-55-96951 (JP, A)
Claims (1)
ダを載置した載物台とを含む、半導体装置の製造に使用
される電子ビーム描画装置に用いる試料ステージにおい
て、少なくとも前記試料ホルダと前記載物台とを比抵抗
10-3〜106Ω・cmの半導電性材料によって構成し、かつ
前記試料ホルダと前記載物台とを接地したことを特徴と
する、半導体装置の製造に使用される電子ビーム描画装
置に用いる試料ステージ。1. A sample stage used in an electron beam drawing apparatus used for manufacturing a semiconductor device, comprising a sample holder on which a sample is mounted and a stage on which the sample holder is mounted. Resistivity with the above-mentioned platform
An electron beam drawing apparatus used for manufacturing a semiconductor device, characterized in that it is made of a semiconductive material of 10 −3 to 10 6 Ω · cm, and that the sample holder and the above-mentioned object stand are grounded. The sample stage to use.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58146077A JPH0758677B2 (en) | 1983-08-10 | 1983-08-10 | Sample stage used in electron beam lithography system used for manufacturing semiconductor devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58146077A JPH0758677B2 (en) | 1983-08-10 | 1983-08-10 | Sample stage used in electron beam lithography system used for manufacturing semiconductor devices |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6037729A JPS6037729A (en) | 1985-02-27 |
JPH0758677B2 true JPH0758677B2 (en) | 1995-06-21 |
Family
ID=15399584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58146077A Expired - Lifetime JPH0758677B2 (en) | 1983-08-10 | 1983-08-10 | Sample stage used in electron beam lithography system used for manufacturing semiconductor devices |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0758677B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4777371A (en) * | 1985-05-06 | 1988-10-11 | Siemens Aktiengesellschaft | Support material for electron beam systems |
JP2710649B2 (en) * | 1988-12-01 | 1998-02-10 | 富士通株式会社 | Exposure equipment |
JP2530450Y2 (en) * | 1989-01-24 | 1997-03-26 | 京セラ株式会社 | XY table |
JP3021264B2 (en) * | 1993-12-13 | 2000-03-15 | アネルバ株式会社 | Substrate heating / cooling mechanism |
JP4544706B2 (en) * | 2000-06-29 | 2010-09-15 | 京セラ株式会社 | Board holder |
JP5635240B2 (en) * | 2009-03-17 | 2014-12-03 | 株式会社ニューフレアテクノロジー | Calibration block and charged particle beam drawing apparatus |
-
1983
- 1983-08-10 JP JP58146077A patent/JPH0758677B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6037729A (en) | 1985-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0071666B1 (en) | Electric travelling support | |
TW446986B (en) | Stage for charged particle microscopy system | |
US6424141B1 (en) | Wafer probe station | |
US5828142A (en) | Platen for use with lithographic stages and method of making same | |
US6169652B1 (en) | Electrostatically screened, voltage-controlled electrostatic chuck | |
JPH08181199A (en) | Transparent optical chuck that can be supervised optically | |
JP2004047982A (en) | Chuck, lithography projector, method of manufacturing chuck, and method of manufacturing device | |
JP2008135736A (en) | Electrostatic chuck | |
TW201005867A (en) | Apparatus for increasing electric conductivity to a seniconductor wafer substrate when exposure to electron beam | |
JPH0758677B2 (en) | Sample stage used in electron beam lithography system used for manufacturing semiconductor devices | |
JP2000011937A (en) | Electrostatic deflector of electron beam exposure device | |
JP2001351839A (en) | Charged particle beam exposure device and manufacturing method of semiconductor device | |
KR20010100758A (en) | Microfabricated template for multiple charged particle beam calibrations and shielded charged particle beam lithography | |
EP0229873B1 (en) | Conductive coated semiconductor electrostatic deflection plates | |
JPH09237827A (en) | Electrostatic attracting device and electron beam exposing device using the same | |
JP2507213Y2 (en) | Vacuum suction board for semiconductor wafer processing and measurement | |
JP3143896B2 (en) | Charged particle beam exposure system | |
Beckert et al. | Development of a vertical wafer stage for high-vacuum applications | |
JP2004349576A (en) | Stage system, static-pressure bearing device, method for positioning, exposure system, and method of manufacturing device | |
JPS63169243A (en) | Vacuum suction device | |
JPS63266848A (en) | Photon scan type microscope | |
JP2709351B2 (en) | CV characteristic conversion method in non-contact CV measurement device | |
JPH07174800A (en) | Surface measuring instrument | |
JPS60100478A (en) | Photovoltage measuring device | |
JPH07321186A (en) | Electrostatic attraction device |