JPH0758240B2 - Electrodynamic low noise shaker - Google Patents
Electrodynamic low noise shakerInfo
- Publication number
- JPH0758240B2 JPH0758240B2 JP59063828A JP6382884A JPH0758240B2 JP H0758240 B2 JPH0758240 B2 JP H0758240B2 JP 59063828 A JP59063828 A JP 59063828A JP 6382884 A JP6382884 A JP 6382884A JP H0758240 B2 JPH0758240 B2 JP H0758240B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- exciter
- phase
- electrodynamic
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
- G10K11/178—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K2210/00—Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
- G10K2210/30—Means
- G10K2210/301—Computational
- G10K2210/3011—Single acoustic input
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K2210/00—Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
- G10K2210/50—Miscellaneous
- G10K2210/506—Feedback, e.g. howling
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Feedback Control In General (AREA)
Description
【発明の詳細な説明】 本発明は、動電形低雑音加振機に関するものである。The present invention relates to an electrodynamic low noise exciter.
耐振試験用の動電形加振機は、ノイズとして雑音振動が
一般に0.03〜0.3m/S2程度発生する。この値は常時微動
の30〜100倍位に相当する。しかし、このノイズを抑圧
できれば、低ノイズにして小加振力の加振機にくらべ、
加振される試料の質量の上限を大きくできるという利点
がある。また、上記耐振試験の外に、精密測定機器に及
ぼす外部振動の影響の実験や振動計の校正を、それらの
測定機器の使用状態に近い微小振動で行うことが可能に
なる。これらの目的を達成するため、本発明者らは、加
振機のSN比を改善する一方策として、直流電源の改良が
効果的であることを既に報告している(白石、石神:微
小振動発生用加振機、昭和54年度精機学会春期大会、講
演論文集639−640)。An electrodynamic exciter for vibration resistance test generally produces noise vibration of about 0.03 to 0.3 m / S 2 as noise. This value is equivalent to 30 to 100 times that of microtremor. However, if this noise can be suppressed, the noise will be reduced to a level lower than that of an exciter with a small excitation force.
There is an advantage that the upper limit of the mass of the sample to be excited can be increased. In addition to the above vibration resistance test, it becomes possible to carry out an experiment of the influence of external vibration exerted on precision measuring equipment and a calibration of a vibrometer with a minute vibration close to the usage state of those measuring equipment. In order to achieve these objects, the present inventors have already reported that the improvement of the DC power supply is effective as one of the measures for improving the SN ratio of the vibration exciter (Shiraishi, Ishigami: Micro vibration). Exciting shaker, Proceedings of the Seiki Society Spring Meeting, 1979, 639-640).
しかし、上記目的達成のためには、電源の改良だけでは
不十分で、負帰還制御が必要であるが、加振機は使用周
波数帯域内で位相回転の多い系であるため、従来の一次
系による位相補償回路を用いてサーボ系を構成すること
は困難である。また、耐振試験は、普通10Hz程度以上の
帯域においては加速度一定の試験が行われる。これは、
通常の圧電形振動計や振動レベル計の比較校正を行うと
きも同様である。そのため、加振機の伝達関数は変位特
性よりも加速度特性を取り扱う方が便利である。However, in order to achieve the above object, it is not enough to improve the power supply and negative feedback control is required.However, since the vibration exciter is a system with many phase rotations within the frequency band used, the conventional primary system It is difficult to construct a servo system using the phase compensation circuit of In addition, the vibration resistance test is usually a constant acceleration test in the band of about 10 Hz or higher. this is,
The same applies when performing comparative calibration of an ordinary piezoelectric vibrometer or vibration level meter. Therefore, it is more convenient for the transfer function of the vibration exciter to handle the acceleration characteristic rather than the displacement characteristic.
本発明の目的は、上記従来の耐振試験用の動電形加振機
において、その動電形加振機の加速度信号に基づいて二
次系による位相補償を可能とし、安定なサーボ系を実現
して雑音を低く抑えることにある。An object of the present invention is to realize a stable servo system in the above-mentioned conventional electrodynamic vibrator for vibration resistance test, which enables phase compensation by a secondary system based on the acceleration signal of the electrodynamic vibrator. To keep the noise low.
なお、上記位相回転とは、後述の第1図における加振器
系についていえば、加えられる信号の周波数が高くなる
に従ってその入力端Aと出力端Bでの信号の位相差が増
加することを意味している。また、上記位相補償とは、
同様に、第1図によって説明すると、同図において、信
号が位相補償回路から、等化回路、低域ろ波器、直流阻
止回路、加振器系の入力端Aから帰還端Cに至る経路を
通るとき、位相回転(位相遅れ)の角度が増加して、低
い周波数及び高い周波数において、負帰還ではなく正帰
還の条件を満たす周波数が存在することになる。そこ
で、正帰還にならないようにするために、これらの低い
周波数においては位相を遅らせ、高い周波数においては
位相を進ませる。このように正帰還にならないようにす
る目的で位相を回転させることを位相補償という。It should be noted that the above-mentioned phase rotation means, in the vibration exciter system in FIG. 1 described later, that the phase difference between the signals at the input end A and the output end B increases as the frequency of the applied signal increases. I mean. In addition, the phase compensation is
Similarly, referring to FIG. 1, in the same figure, the signal path from the phase compensation circuit to the equalization circuit, the low-pass filter, the DC blocking circuit, and the input end A to the feedback end C of the vibration exciter system. , The phase rotation (phase lag) angle increases, and at low and high frequencies, there are frequencies that satisfy positive feedback rather than negative feedback. Therefore, in order to prevent positive feedback, the phase is delayed at these low frequencies and the phase is advanced at these high frequencies. Rotating the phase for the purpose of preventing positive feedback is called phase compensation.
上記目的を達成するための本発明の動電形低雑音加振機
は、動電形加振機の低域における位相の進み及び高域に
おける位相の遅れを補償する二次系の位相補償回路、上
記動電形加振機の出力の加速度特性を特定の帯域におい
て平坦にするための等化を行う二次系の等化回路、その
等化後の信号が加えられる低域ろ波器、その低域ろ波器
の出力信号が加えられる直流阻止回路、並びに上記直流
阻止回路の出力が加えられる動電形加振器を備え、さら
に、上記加振器の機械的出力を加速度信号として検出す
るサーボ加速度計から上記位相補償回路の入力側に負帰
還させる負帰還回路を設けることにより構成したことを
特徴とするものである。The electrodynamic low noise exciter of the present invention for achieving the above object is a phase compensating circuit of a secondary system for compensating the phase advance in the low range and the phase delay in the high range of the electrodynamic exciter. A secondary system equalization circuit for equalizing the acceleration characteristic of the output of the electrodynamic vibrator in a specific band, a low-pass filter to which the signal after the equalization is added, A DC blocking circuit to which the output signal of the low-pass filter is applied, and an electrodynamic exciter to which the output of the DC blocking circuit is applied are further provided, and the mechanical output of the exciter is detected as an acceleration signal. And a negative feedback circuit for negatively feeding back the servo accelerometer to the input side of the phase compensation circuit.
以下に本発明の実施例を図面を参照しながら詳細に説明
する。Embodiments of the present invention will be described below in detail with reference to the drawings.
本発明に係る動電形低雑音加振機は第1図に示すように
構成され、即ち、入力の帯域を帯域ろ波回路により設定
し、その出力をそれぞれ二次系で構成した位相補償回路
及び等化回路に加え、上記位相補償回路において低域に
おける位相の進み及び高域における位相の遅れを補償し
た後、加速度特性が1〜100Hzの帯域において平坦なサ
ーボ系を実現するために、等化回路により振動レベル計
の周波数帯域を含む上記1〜100Hzの帯域において周波
数の等化を行い、その等化後の信号を低域ろ波器に加え
て後述するサーボ加速度計をその上限周波数以下で使用
可能となし、さらに低域ろ波器から出力される信号を直
流阻止回路を通して加振器系に加え、その信号を加振器
系における電力増幅器により電力増幅した後、次段の既
存の耐振試験用の動電形加振機に加え、それによって駆
動される動電形加振器の機械的出力を加速度センサーと
してのサーボ加速度計により加速度信号として検出し、
その加速度信号を増幅器で増幅した後負帰還回路によっ
て上記位相補償回路の前段に負帰還し、それにより動電
形加振器の雑音を除去、抑制するようにしている。な
お、上記位相補償回路は、その伝達関数が負帰還制御回
路の一巡伝達関数中に含まれるように配設すればよく、
例えばそれを負帰還回路に設けることもできる。The electrodynamic low-noise exciter according to the present invention is constructed as shown in FIG. 1, that is, a phase compensation circuit in which the band of the input is set by a bandpass filter circuit and the output of each is formed by a secondary system. In addition to the equalization circuit, in order to realize a flat servo system in the band of acceleration characteristics of 1 to 100 Hz after compensating for the phase lead in the low range and the phase delay in the high range in the phase compensation circuit, etc. The frequency equalization is performed by the equalization circuit in the band of 1 to 100 Hz including the frequency band of the vibration level meter, the signal after the equalization is added to the low pass filter, and the servo accelerometer described later is set to the upper limit frequency or less. The signal output from the low-pass filter is added to the exciter system through the DC blocking circuit, the signal is amplified by the power amplifier in the exciter system, and then the Electrodynamic type for vibration resistance test In addition to the exciter, the mechanical output of the electrodynamic exciter driven by it is detected as an acceleration signal by a servo accelerometer as an acceleration sensor,
After the acceleration signal is amplified by the amplifier, it is negatively fed back to the preceding stage of the phase compensation circuit by the negative feedback circuit, so that the noise of the electrodynamic exciter is removed and suppressed. The phase compensation circuit may be arranged such that its transfer function is included in the open loop transfer function of the negative feedback control circuit.
For example, it can be provided in the negative feedback circuit.
上記構成を有する加振機においては、信号が位相補償回
路から等化回路、低域ろ波器、直流阻止回路、加振器系
の入力端Aから出力端Bに至る経路を通って出力とな
る。この間の主として動電形加振器から出る雑音が出力
に現れることになるが、この雑音を含んだ出力をサーボ
加速度計で検出し、増幅器で増幅してから負帰還回路を
経由して位相補償回路の入力側に負帰還させる。すなわ
ち、第1図は負帰還制御回路である。そして、上記位相
補償回路から加振器系の出力端Bまでの伝達関数をα、
加振器系の出力端Bに生じる雑音をN、サーボ加速度計
から増幅器、負帰還回路までの伝達関数をβ、帯域ろ波
回路の伝達関数をFとすれば、第1図の負帰還制御回路
の伝達関数Gは、 となる。ただし、帯域ろ波回路及びその伝達関数Fは、
入力の帯域を設定するために設けたもので、本発明に係
わりはない。In the vibration exciter having the above configuration, the signal is output as an output from the phase compensation circuit, the equalization circuit, the low-pass filter, the DC blocking circuit, and the path from the input end A to the output end B of the vibration exciter system. Become. During this period, the noise mainly generated from the electrodynamic exciter will appear in the output, but the output including this noise is detected by the servo accelerometer, amplified by the amplifier, and then phase-compensated via the negative feedback circuit. Negative feedback is applied to the input side of the circuit. That is, FIG. 1 shows a negative feedback control circuit. Then, the transfer function from the phase compensation circuit to the output end B of the vibration exciter system is expressed by α,
N is the noise generated at the output end B of the vibration exciter system, β is the transfer function from the servo accelerometer to the amplifier and the negative feedback circuit, and F is the transfer function of the band-pass filter circuit. The transfer function G of the circuit is Becomes However, the bandpass filter circuit and its transfer function F are
It is provided for setting the input band and has no relation to the present invention.
したがって、例えば一巡伝達関数αβ=1の場合、雑音
Nは1/2に抑えられることになる。Therefore, for example, when the open loop transfer function αβ = 1, the noise N is suppressed to 1/2.
次に、実験に用いた加振器系の特性とその特性に応じた
ものとして構成される等化回路(第3図参照)による周
波数等化法について詳述する。Next, the characteristics of the vibration exciter system used in the experiment and the frequency equalization method by the equalization circuit (see FIG. 3) configured according to the characteristics will be described in detail.
上記等化回路は、第1図の動電形加振器の入力と出力と
の間のゲインの周波数特性(第2図)が平坦でないた
め、その周波数特性をある周波数帯域に限って平坦にす
るために付加した回路であり、またその等化回路を用い
て周波数特性を平坦にする方法が上記周波数等化法であ
る。In the above equalization circuit, the frequency characteristic of the gain between the input and the output of the electrodynamic vibrator of FIG. 1 (FIG. 2) is not flat, so that the frequency characteristic is flattened only within a certain frequency band. The frequency equalization method is a circuit added for the purpose of flattening the frequency characteristic by using the equalization circuit.
使用した加振器系においては、低周波特性のすぐれた加
速度センサーとしてコーボ加速度計を採用し、耐振試験
用の動電形加振機としては加振力6.6KN、定格励磁電流4
0Aのところを19Aで励磁し、出力500VAの直流増幅器で駆
動している。この動電形加振器は、励磁電流19Aのと
き、500Hz程度以下の帯域では、一般によく利用される
等化回路によらなくても、二次すすみ系で十分な近似が
得られるものである。上記加振器系の周波数特性は、実
測により、第2図に示すものとして得られる。The exciter system used was a corvo accelerometer as an acceleration sensor with excellent low-frequency characteristics, and an electrodynamic exciter for vibration resistance tests had an excitation force of 6.6 KN and a rated excitation current of 4
It is excited by 19A at 0A and driven by a DC amplifier with an output of 500VA. This electrodynamic exciter, when the exciting current is 19A, can obtain a sufficient approximation in the second-order system without using the commonly used equalization circuit in the band below 500Hz. . The frequency characteristic of the vibration exciter system is obtained by actual measurement as shown in FIG.
今、上記動電形加振器の駆動コイルのリアクタンスを無
視して、可動部を一自由度と仮定すると、入力電圧に対
する発生加速度の形の伝達関数G(s)は(1)式のよ
うになる。Now, ignoring the reactance of the drive coil of the above-mentioned electrodynamic exciter and assuming that the movable part has one degree of freedom, the transfer function G (s) in the form of the generated acceleration with respect to the input voltage is expressed by the equation (1). become.
上式において、ζは減衰比、foは固有振動数、Blは駆動
コイルが置かれている磁界の磁束密度と駆動コイルの有
効巻線長さとの積、Mは可動部の実効的な質量、Kは可
動部支持ばねのばね定数、Cdは可動部支持部のダンピン
グ係数、Rdは駆動コイルの抵抗をそれぞれ表す。上記積
Blは動電形加振器に質量既知の重りを搭載し、そのとき
可動部支持ばねのたわみが復元するまで駆動コイルに電
流を流すことにより求められ、また固有振動数foは駆動
コイル電流に対する発生速度の形の周波数伝達関数が上
記振動数foのところでピークになることから求められ
る。本実施例では、上記積Bl及び振動数foは、Bl=26N/
A、fo≒15Hzとして得られている。しかし、振幅が大き
くなるほどばね定数Kが小さくなる傾向が見られる。従
って、固有振動数foとばね定数Kから質量Mを求める手
法が使えない。各定数は求められないけれども、(1)
式の減衰比ζ=2と仮定して相対ゲインの曲線を描く
と、最大3dB程度の偏差で第2図の実測値と重ねること
ができる。このことから、第1図の動電形加振器は、伝
達関数が(1)式の二次すすみ系であるとして制御系の
設計を行うことができる。 In the above equation, ζ is the damping ratio, fo is the natural frequency, B l is the product of the magnetic flux density of the magnetic field in which the drive coil is placed and the effective winding length of the drive coil, and M is the effective mass of the movable part. , K is the spring constant of the movable part support spring, C d is the damping coefficient of the movable part support part, and R d is the resistance of the drive coil. Product
B l is obtained by mounting a weight of known mass on an electrodynamic exciter, and then applying a current to the drive coil until the deflection of the movable part support spring is restored, and the natural frequency fo is the drive coil current. It can be obtained from the frequency transfer function in the form of the generated velocity with respect to the peak at the frequency fo. In this embodiment, the product B l and the frequency fo are B l = 26N /
It is obtained with A, fo ≈ 15Hz. However, the spring constant K tends to decrease as the amplitude increases. Therefore, the method of obtaining the mass M from the natural frequency fo and the spring constant K cannot be used. Although it is not possible to obtain each constant, (1)
When the curve of the relative gain is drawn assuming the damping ratio ζ = 2 in the equation, it can be overlapped with the measured value of FIG. 2 with a maximum deviation of about 3 dB. From this, in the electrodynamic vibrator of FIG. 1, the control system can be designed on the assumption that the transfer function is the second-order Sumi-system of the formula (1).
次に、第2図のゲイン特性を平坦にするために、伝達関
数G(s)の逆数の伝達関数Gi(s)を有する要素で等
化を行う。伝達関数Gi(s)はα、β、γを定数とする
とき、(4)式のようになる。Next, in order to flatten the gain characteristic of FIG. 2, equalization is performed with an element having a transfer function G i (s) that is the reciprocal of the transfer function G (s). The transfer function G i (s) is expressed by equation (4) when α, β, and γ are constants.
上記伝達関数Gi(s)を実現する回路においては、ドリ
フト、半導体ノイズ、電源電圧変動の影響等を極力おさ
えるために、積分時定数を少なめにし、伝達関数G
i(s)の定数αを約1/100にすると共に、成分系統の出
力段には直流阻止路を入れる。そして、伝達関数G
i(s)を近似的に実現するために、第3図の回路を用
いる。 In the circuit that realizes the transfer function G i (s), the integration time constant is set to a small value in order to minimize the effects of drift, semiconductor noise, power supply voltage fluctuations, etc.
The constant α of i (s) is set to about 1/100, and a DC blocking path is inserted in the output stage of the component system. And the transfer function G
The circuit of FIG. 3 is used to approximate i (s).
次に、上記二次系による位相補償回路について詳述す
る。Next, the phase compensation circuit based on the secondary system will be described in detail.
上記動電形加振器の特性は第3図の回路で等化を行って
も、1Hz以下でのノイズ抑制策等のために、低域では位
相が進む。また、上記サーボ加速度計をその上限周波数
以下で使用するために、遮断周波数480Hzの低域ろ波器
を前向き要素に追加する。そのため、サーボ系を構成し
たときの一巡周波数伝達関数の100Hz程度以上における
位相遅れは、第2図よりも更に多くなる。そこで低域及
び高域共に位相補償が必要になる。Even if the characteristic of the above-mentioned electrodynamic exciter is equalized by the circuit of FIG. 3, the phase advances in the low range due to noise suppression measures at 1 Hz or less. Further, in order to use the servo accelerometer below its upper limit frequency, a low-pass filter with a cut-off frequency of 480 Hz is added to the forward facing element. Therefore, the phase delay at about 100 Hz or more of the open-loop frequency transfer function when the servo system is configured is further larger than that in FIG. Therefore, phase compensation is required for both low and high frequencies.
従来の位相補償回路としての位相のおくれ回路及び位相
すすみ回路は、それぞれ第4図(a)及び第5図(a)
に示される。上記位相おくれ回路の周波数伝達関数G
(jω)は(5)式のようになり、そのベクトル軌跡は
第4図(b)のように半円になる。この特性は、周波数
が無限大から零に向かって減少するときに(6)式の関
係式で示される最大位相遅れφmaxが生じる。しかし、
ゲインは単調に増加する。A conventional phase compensation circuit as a phase compensation circuit and a phase pass circuit are respectively shown in FIGS. 4 (a) and 5 (a).
Shown in. Frequency transfer function G of the phase delay circuit
(Jω) is given by equation (5), and its vector locus becomes a semicircle as shown in FIG. 4 (b). In this characteristic, when the frequency decreases from infinity to zero, the maximum phase delay φmax represented by the relational expression (6) occurs. But,
The gain increases monotonically.
周波数伝達関数G1(jω)は位相を遅らせるとゲインが
増大する一方であるから、このような加振器系に適用し
て、ゲイン余有及び位相余有を適度に得ることは非常に
困難である。これは第5図(a)に示した位相すすみ回
路についても同様である。そこで、位相おくれ回路につ
いては位相が遅れて且つゲインが下がる周波数帯域を有
する回路を考える必要がある。 Since the gain of the frequency transfer function G 1 (jω) increases only when the phase is delayed, it is very difficult to obtain the gain margin and the phase margin appropriately by applying it to such an exciter system. Is. This also applies to the phase-passing circuit shown in FIG. 5 (a). Therefore, for the phase delay circuit, it is necessary to consider a circuit having a frequency band in which the phase is delayed and the gain is decreased.
今、第4図(b)のベクトル軌跡において、半円部分を
2乗すればカージオイドを半分にした形となる。これは
(5)式右辺の第2項を二次おくれ系にすることであ
り、そのベクトル軌跡には、位相が遅れるにつれてゲイ
ンが下がる周波数帯域が存在する。このような周波数伝
達関数G2(jω)は(7)式のようにすれば回路の実現
が容易になる。Now, in the vector locus of FIG. 4 (b), if the semicircular portion is squared, the cardioid is halved. This is to make the second term on the right side of the equation (5) a quadratic lag system, and the vector locus has a frequency band in which the gain decreases as the phase delays. If the frequency transfer function G 2 (jω) is expressed by the equation (7), the circuit can be easily realized.
上式において、減衰比ζは使用するオペアンプの増幅率
Aとの間にA=3−2ζの関係があり、ψ及びξも定数
である。 In the above equation, the damping ratio ζ has a relation of A = 3−2ζ with the amplification factor A of the operational amplifier used, and ψ and ξ are also constants.
上記(7)式において、減衰比ζ=1、即ち増幅率A=
1とすれば、二次系による位相おくれ回路及びその周波
数伝達関数のベクトル軌跡はそれぞれ第6図(a)
(b)のようになり、(7)式中の定数は となる。ここで、ωは角周波数である。上記位相おくれ
回路は、この回路に加えられた信号をそのまま加算器に
伝える回路と、上記信号を二次の低域ろ波回路を通過さ
せた後に上記加算器に伝える低域ろ波回路とにより構成
され、上記低域ろ波回路を構成しているオペアンプIC1
の増幅率Aは1であるが、1≦A<3の範囲の値をとる
ことができる。仮に増幅率A>1とすれば、位相遅れは
更に大になるが、第6図(a)のように増幅率A=1と
した場合でも相当の効果が期待でき、増幅率A>1の場
合よりも抵抗を2個少なくできる。また、第6図(a)
において容量Cと抵抗R1とを入れ換えると、第7図
(a)に示す位相すすみ回路となり、その周波数伝達関
数のベクトル軌跡は同図(b)に示すようになる。In the above equation (7), the damping ratio ζ = 1, that is, the amplification factor A =
If it is 1, the phase lag circuit by the secondary system and the vector locus of its frequency transfer function are respectively shown in FIG. 6 (a).
It becomes like (b), and the constant in (7) is Becomes Here, ω is the angular frequency. The phase delay circuit includes a circuit for transmitting the signal applied to this circuit to the adder as it is, and a low-pass filter circuit for transmitting the signal to the adder after passing through the secondary low-pass filter circuit. Operational amplifier IC configured to configure the above low-pass filter circuit 1
Although the amplification factor A of 1 is 1, it can take a value in the range of 1 ≦ A <3. If the amplification factor A> 1, the phase delay is further increased. However, even if the amplification factor A = 1 as shown in FIG. 6 (a), a considerable effect can be expected. The resistance can be reduced by two than the case. Also, FIG. 6 (a)
When the capacitor C and the resistor R 1 are exchanged with each other, the phase pass circuit shown in FIG. 7 (a) is obtained, and the vector locus of the frequency transfer function thereof is as shown in FIG. 7 (b).
前述した第1図に示すサーボ系は、上記加振器系、二次
系による位相補償回路及び等化回路等を用いて構成され
たもので、そのサーボ系による実験結果を以下に説明す
る。The servo system shown in FIG. 1 described above is configured by using the above-mentioned vibrator system, phase compensation circuit and equalization circuit by the secondary system, and the experimental results by the servo system will be described below.
一巡周波数伝達回路は1Hz及び100HzにおいてOdB以上を
目標にし、第8図及び第1表に示した結果を得た。The open loop frequency transfer circuit targeted OdB or more at 1 Hz and 100 Hz, and obtained the results shown in FIG. 8 and Table 1.
高域でゲイン余有がいくらか少ないようであるが、搭載
質量の増加と共に高域におけるゲイン余有は増大するか
ら、この程度で使用できる。1Hzにおける加速度波形と
そのスペクトルは、第9図(a)(b)に示すものから
第10図(a)(b)に示すものに改善され、また無信号
時のノイズは0.1m/s2(rms)から3mm/s2(rms)に改善
できた。ノイズの減少は電力増幅器の終段を電池で動作
させた効果がよく現れている。一巡周波数伝達関数の大
きさはわずかであるが、1Hz位の低域では波形改善の面
で負帰還制御の効果は大きい。全体の周波数特性は1〜
100Hzの帯域でゲインの偏差が1.5dB以内に入った。以上
のことから、低レベルの加速度振動計の校正が可能であ
ることが理解される。例えば、振動レベル計を振動加速
度レベル80dB、1Hzで校正する場合には加速度波形歪率
4.0%が得られる。It seems that the gain surplus is somewhat small in the high range, but since the gain surplus in the high range increases as the mounting mass increases, it can be used at this level. The acceleration waveform and its spectrum at 1Hz have been improved from those shown in Figures 9 (a) and (b) to those shown in Figures 10 (a) and (b), and the noise when there is no signal is 0.1m / s 2 (Rms) was improved to 3 mm / s 2 (rms). The effect of operating the final stage of the power amplifier with a battery is often shown in the noise reduction. The magnitude of the open-loop frequency transfer function is small, but the effect of the negative feedback control is great in terms of waveform improvement in the low range around 1 Hz. The overall frequency characteristic is 1
Gain deviation was within 1.5 dB in the 100 Hz band. From the above, it can be understood that a low level acceleration vibrometer can be calibrated. For example, when calibrating a vibration level meter at a vibration acceleration level of 80 dB and 1 Hz, the acceleration waveform distortion rate
4.0% is obtained.
このように本発明の動電形低雑音加振機によれば、動電
形加振機の雑音を低いものに抑えることができる。As described above, according to the electrodynamic low-noise exciter of the present invention, the noise of the electrodynamic exciter can be suppressed to a low level.
第1図は本発明の実施例のブロク構成図、第2図は加振
器系の周波数特性を示すボード線図、第3図は等化回路
の構成図、第4図(a)(b)及び第5図(a)(b)
は従来の位相おくれ回路及び位相すすみ回路のそれぞれ
の構成図及び周波数伝達関数のベクトル軌跡を示す線
図、第6図(a)(b)及び第7図(a)(b)は二次
系による位相おくれ回路及び位相すすみ回路のそれぞれ
の構成図及び周波数伝達関数のベクトル軌跡を示す線
図、第8図は第1図に示す負帰還制御系の一巡周波数伝
達関数のボード線図、第9図(a)(b)及び第10図
(a)(b)は本発明による波形改善策を実施する前後
のそれぞれにおける加速度波形及びスペクトルを示す線
図である。FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a Bode diagram showing frequency characteristics of an exciter system, FIG. 3 is a block diagram of an equalizing circuit, and FIGS. ) And FIG. 5 (a) (b)
Is a diagram showing respective configuration diagrams of a conventional phase delay circuit and a phase shift circuit, and a diagram showing a vector locus of a frequency transfer function, and FIGS. 6 (a) and (b) and FIGS. 7 (a) and (b) are secondary systems. FIG. 8 is a configuration diagram of each of the phase delay circuit and the phase shift circuit and a diagram showing a vector locus of the frequency transfer function. FIG. 8 is a Bode diagram of the open loop frequency transfer function of the negative feedback control system shown in FIG. FIGS. 10 (a) and 10 (b) and FIGS. 10 (a) and 10 (b) are diagrams showing acceleration waveforms and spectra before and after the waveform improvement measure according to the present invention is implemented.
Claims (1)
び高域における位相の遅れを補償する二次系の位相補償
回路、上記動電形加振機の出力の加速度特性を特定の帯
域において平坦にするための等化を行う二次系の等化回
路、その等化後の信号が加えられる低域ろ波器、その低
域ろ波器の出力信号が加えられる直流阻止回路、並びに
上記直流阻止回路の出力が加えられる動電形加振器を備
え、さらに、上記加振器の機械的出力を加速度信号とし
て検出するサーボ加速度計から上記位相補償回路の入力
側に負帰還させる負帰還回路を設けることにより構成し
たことを特徴とする動電形低雑音加振機。1. A secondary phase compensating circuit for compensating a phase lead in a low range and a phase lag in a high range of an electrodynamic exciter, and an acceleration characteristic of an output of the electrodynamic exciter is specified. Equalization circuit for equalization in order to flatten in the band, low-pass filter to which the signal after the equalization is added, and DC blocking circuit to which the output signal of the low-pass filter is added And a dynamic exciter to which the output of the DC blocking circuit is added, and further, a negative feedback from the servo accelerometer that detects the mechanical output of the exciter as an acceleration signal to the input side of the phase compensation circuit. An electrodynamic low-noise exciter characterized by being constructed by providing a negative feedback circuit for
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59063828A JPH0758240B2 (en) | 1984-03-31 | 1984-03-31 | Electrodynamic low noise shaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59063828A JPH0758240B2 (en) | 1984-03-31 | 1984-03-31 | Electrodynamic low noise shaker |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60207908A JPS60207908A (en) | 1985-10-19 |
JPH0758240B2 true JPH0758240B2 (en) | 1995-06-21 |
Family
ID=13240606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59063828A Expired - Lifetime JPH0758240B2 (en) | 1984-03-31 | 1984-03-31 | Electrodynamic low noise shaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0758240B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7277260B2 (en) | 2019-06-03 | 2023-05-18 | ファナック株式会社 | Motor control device and industrial machine for suppressing vibration |
-
1984
- 1984-03-31 JP JP59063828A patent/JPH0758240B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60207908A (en) | 1985-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6267008B1 (en) | Angular rate detecting device | |
US4197478A (en) | Electronically tunable resonant accelerometer | |
US9326066B2 (en) | Arrangement and method for converting an input signal into an output signal and for generating a predefined transfer behavior between said input signal and said output signal | |
EP0713287B1 (en) | Power system stabilizer for generator | |
US9255856B2 (en) | Dynamometer system | |
KR101300024B1 (en) | Absolute displacement detection method and absolute displacement sensor using the method | |
US8988017B2 (en) | Resonator | |
JP6785891B2 (en) | Microelectromechanical system (MEMS) gyroscope quality factor correction | |
US9611139B2 (en) | Resonator | |
Ellis et al. | Cures for low-frequency mechanical resonance in industrial servo systems | |
US20200288242A1 (en) | Speaker excursion protection | |
JPH06161561A (en) | Method and apparatus for control of electromechanical actuator | |
CA2110208C (en) | Method and system for estimating inertia of 2-mass system during speed control | |
JPH0758240B2 (en) | Electrodynamic low noise shaker | |
JPH0410319B2 (en) | ||
JP3360935B2 (en) | Machine resonance detection device and vibration suppression control device in motor control system | |
JP3988505B2 (en) | Drive device for vibration type angular velocity sensor | |
Sabater | Quadrature Compensation and Demodulation Phase Reference Selection for FM Accelerometers | |
JPH0679242B2 (en) | Stabilizing filter for feedback control system | |
JPH024548Y2 (en) | ||
US11909339B2 (en) | Resonance suppression control device | |
US5020126A (en) | Method and circuit for the automatic control of the speed of a DC motor by the control voltage of the motor | |
JPH01197000A (en) | Condenser microphone | |
GB1585759A (en) | Depressing resonant frequency of a suspended mass | |
JPH02230507A (en) | Magnetic head driving device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |