JPH0757233A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0757233A
JPH0757233A JP20492393A JP20492393A JPH0757233A JP H0757233 A JPH0757233 A JP H0757233A JP 20492393 A JP20492393 A JP 20492393A JP 20492393 A JP20492393 A JP 20492393A JP H0757233 A JPH0757233 A JP H0757233A
Authority
JP
Japan
Prior art keywords
magnetic
thickness
film
alloy
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20492393A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
博之 鈴木
Fumio Nakano
文雄 中野
Naoki Kodama
直樹 兒玉
Takao Yonekawa
隆生 米川
Atsusuke Takagaki
篤補 高垣
Naoto Endo
直人 遠藤
Katsuo Abe
勝男 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20492393A priority Critical patent/JPH0757233A/en
Publication of JPH0757233A publication Critical patent/JPH0757233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To reduce disk noise by forming a nonmagnetic underlayer on each side of a substrate and then forming an alloy film having a close-packed hexagonal structure and a prescribed compsn. and magnetic layers each having a prescribed compsn. CONSTITUTION:A substrate 11 of an Al alloy contg. 4% Mg is prepd., Ni-12wt.% P plating is formed on both sides of the substrate 11 in 20mum thickness and the surface of the plating is finely grooved and ground to 15mum thickness. This substrate 11 is washed, dried and set in a sheet feed type film forming device using a DC magnetron cathode, Ni-P is sputtered to form underlayers 12, 12' in 50nm thickness and Co-15at.% Cr-8at.% Pt films are formed as lower magnetic layers 13, 13' in 12nm thickness. Alloy films 14, 14' of Co-20at.% Cr-4at.% Ta-0.2at.% Nb are further formed in 0.5nm thickness, Co-Cr-Pt films having the same compsn. as the magnetic layers 13, 13' are formed as upper magnetic layers 15, 15' in 12nm thickness and carbon films are formed as protective layers 16, 16'. A lubricant such as perfluoroalkyl polyether is stuck on the layers 16, 16'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜磁気記録媒体、特
に低ノイズかつ高記録密度特性に優れた薄膜磁気記録媒
体に関し、磁気抵抗効果を用いた読み出し用磁気ヘッド
と書き込み用のインダクティブヘッドを組み合わせた磁
気記憶装置に用いて好適な磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic recording medium, and particularly to a thin film magnetic recording medium excellent in low noise and high recording density characteristics, and a read magnetic head and a write inductive head using a magnetoresistive effect. The present invention relates to a magnetic recording medium suitable for use in a combined magnetic storage device.

【0002】[0002]

【従来の技術】高密度な記録が可能な媒体の材料とし
て、純Cr膜上にCo合金膜が形成されたものや、Co-N
i-Pt系薄膜が提案されており、一部実用化されてい
る。Co合金磁性膜としては、例えばアイトリプルイ−
・トランザクション・オン・マグネティックス(IEEE Tr
ans. Magn.)第23巻(1987年)122ペ−ジに記載されている
ようにCo-Cr-Ta系薄膜が用いられている。
2. Description of the Related Art As a material of a medium capable of high density recording, a Co alloy film formed on a pure Cr film or a Co-N film is used.
An i-Pt-based thin film has been proposed and partially put into practical use. The Co alloy magnetic film is, for example, Eye Triple E
・ Transaction on Magnetics (IEEE Tr
An Co.-Cr-Ta type thin film is used as described in ans. Magn.) Volume 23 (1987), page 122.

【0003】また、磁性層が多層構造の薄膜媒体を用い
て再生出力を更に向上させ、高記録密度化を達成しよう
とする動きもある(例えば、特開平1−173313号
公報、特開平1−217723号公報参照)。磁性層と
非磁性層を積層することにより、Niを含有したCo基合
金、Co-Pt合金等では出力向上が期待できる。
There is also a movement to further improve the reproduction output by using a thin film medium having a magnetic layer having a multilayer structure (for example, JP-A-1-173313 and JP-A-1-173313). 217723). By stacking a magnetic layer and a non-magnetic layer, an output improvement can be expected in a Co-based alloy containing Ni, a Co-Pt alloy, or the like.

【0004】しかしながら、特開平3−283016号
公報に記載のように、これらの媒体では、記録時の隣接
ビット間の遷移領域に由来すると考えられるノイズやビ
ットシフトが従来の塗布型媒体に比べ大きく、より一層
の高記録密度化を達成するためにはノイズ及びビットシ
フトを改善する必要がある。このような背景から、Co-
Cr-Ta系磁性層とCr系薄膜非磁性層を交互に繰り返し
てなる磁気記録媒体が提案されている。
However, as described in JP-A-3-283016, in these media, noise and bit shift, which are considered to be derived from the transition area between adjacent bits at the time of recording, are larger than those in the conventional coating type media. However, it is necessary to improve noise and bit shift in order to achieve higher recording density. Against this background, Co-
A magnetic recording medium has been proposed in which a Cr-Ta based magnetic layer and a Cr based thin film non-magnetic layer are alternately repeated.

【0005】このほか、磁性層の材料としてCo-Cr-P
t合金を用いた場合には、アイトリプルイ−・トランザ
クション・オン・マグネティックス(IEEE Trans. Mag
n.)第26巻(1990年)2706ペ−ジに記載のように、交互に
繰り返してなる磁性薄膜の厚さを一定にした場合には、
非磁性中間層の数を増加させることにより、ノイズが減
少することも明らかにされている。
In addition, Co-Cr-P is used as a material for the magnetic layer.
When using a t-alloy, i-triple-e-Transaction on Magnetics (IEEE Trans.
n.) As described in Volume 26 (1990), page 2706, when the thickness of the magnetic thin film which is alternately repeated is constant,
It has also been shown that increasing the number of non-magnetic intermediate layers reduces noise.

【0006】[0006]

【発明が解決しようとする課題】従来技術による媒体で
は、非磁性の金属中間層を形成する必要が生じるため
に、非磁性下地層と磁性層を形成後、さらに少なくとも
一層のCr系薄膜非磁性中間層、磁性層を形成しなけれ
ばならない。従って、結晶構造の異なった非磁性中間層
の形成により上部磁性層の結晶性が低下し、磁気特性が
低下するという欠点がある。また、高記録密度における
媒体ノイズの低減に限界があり、磁気記憶装置の単位体
積あたりの大容量化に制約がある。さらに量産化するに
当たり、非磁性中間層の膜厚を制御することが、媒体ご
との電磁変換特性の変動を小さくするという観点から必
要になる。
In the medium according to the prior art, since it is necessary to form a non-magnetic metal intermediate layer, at least one Cr-based thin film non-magnetic layer is formed after the non-magnetic underlayer and the magnetic layer are formed. The intermediate layer and the magnetic layer must be formed. Therefore, there is a drawback that the crystallinity of the upper magnetic layer is lowered due to the formation of the non-magnetic intermediate layer having a different crystal structure, and the magnetic characteristics are lowered. Further, there is a limit to the reduction of medium noise at high recording density, and there is a restriction to increase the capacity per unit volume of the magnetic storage device. Further, in mass production, it is necessary to control the film thickness of the non-magnetic intermediate layer from the viewpoint of reducing the fluctuation of the electromagnetic conversion characteristics for each medium.

【0007】本発明は、上部磁性層の結晶性、磁気特性
を低下させること無く、高出力かつ低ノイズの磁気記録
媒体を提供することを目的とする。
An object of the present invention is to provide a magnetic recording medium of high output and low noise without deteriorating the crystallinity and magnetic characteristics of the upper magnetic layer.

【0008】[0008]

【課題を解決するための手段】本発明の磁気記録媒体
は、基板上に非磁性下地層を形成後、例えば強磁性層と
して結晶構造が稠密六方構造をとるCo-Cr-Ta合金膜
を形成し、その表面に結晶構造が同じく稠密六方構造を
とり、主として常磁性のCo-Cr-Ta-T合金中間層を形
成後、更に強磁性のCo-Cr-Ta磁性層を形成する。
In the magnetic recording medium of the present invention, after a non-magnetic underlayer is formed on a substrate, a Co-Cr-Ta alloy film having a dense hexagonal crystal structure is formed as a ferromagnetic layer, for example. Then, a crystal structure also has a close-packed hexagonal structure on the surface, and after forming a paramagnetic Co-Cr-Ta-T alloy intermediate layer, a ferromagnetic Co-Cr-Ta magnetic layer is further formed.

【0009】このように結晶構造が磁性層と同じで常磁
性の中間層を用い、従来の結晶構造の異なった非磁性金
属中間層プロセスを除くことに本発明の一つの特徴があ
る。
As described above, one feature of the present invention is to use the paramagnetic intermediate layer having the same crystal structure as the magnetic layer and to eliminate the conventional non-magnetic metal intermediate layer process having a different crystal structure.

【0010】非磁性下地層としては、Ni-P薄膜、C
r、あるいはCrを主成分とする薄膜からなる下地層を用
いることが好ましい。
As the non-magnetic underlayer, Ni-P thin film, C
It is preferable to use an underlayer composed of a thin film containing r or Cr as a main component.

【0011】主として常磁性のCo-Cr-Ta-T合金中間
層に含有される元素Tのうち、少なくとも一元素は、媒
体を構成する元素群Mの中で、主として常磁性体である
領域にのみ含有する合金成分であることが望ましい。
At least one element of the element T contained in the paramagnetic Co-Cr-Ta-T alloy intermediate layer is mainly contained in a region of a paramagnetic material in the element group M constituting the medium. It is desirable that the alloy component contains only.

【0012】磁性層のCo濃度の高い領域間にCo濃度が
低くかつCr濃度が高く主として常磁性体である領域を
膜厚方向に複数領域含むように積層を繰り返した媒体
と、該磁性層内でCo濃度の高い領域間にCo濃度が低く
かつCr濃度が高く主として常磁性体である領域を膜厚
方向に一領域含むように積層した媒体を比べると、後者
の方が媒体ノイズをさらに低減できる。
In the magnetic layer, a medium in which the layers are repeatedly stacked so as to include a plurality of regions having a low Co concentration and a high Cr concentration between the regions having a high Co concentration and mainly a paramagnetic substance in the film thickness direction between the regions having a high Co concentration in the magnetic layer In comparison with a medium in which a region having a low Co concentration and a high Cr concentration between the regions having a high Co concentration so as to include one region mainly in the film thickness direction in the film thickness direction is compared, the latter further reduces the medium noise. it can.

【0013】前記磁性層の残留磁化Br[G]と膜厚t[μ
m]の積の値が100G・μm以上400G・μm以下、より好ましく
は150G・μm以上280G・μm以下の値を有する媒体を、少な
くとも1枚以上用い、磁気抵抗効果を用いた読み出し用
磁気ヘッドと書き込み用インダクティブヘッドを組み合
わせることにより、磁気記憶装置を構成する。磁気抵抗
効果を用いた読み出し用磁気ヘッドと書き込み用のイン
ダクティブヘッドは同一素子上に形成されていることが
望ましい。
Residual magnetization Br [G] and film thickness t [μ of the magnetic layer
The magnetic head for reading using the magnetoresistive effect by using at least one medium having a product value of m] of 100 G · μm or more and 400 G · μm or less, more preferably 150 G · μm or more and 280 G · μm or less. A magnetic storage device is configured by combining the above and the writing inductive head. It is desirable that the read magnetic head and the write inductive head using the magnetoresistive effect are formed on the same element.

【0014】また、本発明の磁気記録媒体の少なくとも
1枚以上を、インダクティブヘッドと組み合わせて磁気
記憶装置を構成することも可能である。
It is also possible to construct at least one magnetic recording medium of the present invention with an inductive head to form a magnetic storage device.

【0015】[0015]

【作用】本発明者は、磁性層間にCr濃度が高く主とし
て常磁性体である領域を少なくとも一領域含ませた磁気
記録媒体において記録再生時の媒体ノイズを減少できる
ことを見出した。これは、磁気的相互作用を低減できる
ためであると考えられる。したがって、基板上に、非磁
性下地層、Coを主成分とする薄膜磁性層が順次形成さ
れ、該磁性層内のCo濃度の高い領域間でCo濃度が低く
かつCr濃度が高く主として常磁性体である領域を膜厚
方向で一領域含ませる構造は、低ノイズ化に非常に有効
であると考えた。さらに磁性層のCo濃度の高い領域間
にCo濃度が低くかつCr濃度が高く主として常磁性体で
ある領域を膜厚方向に複数領域含ませた構造において
も、膜厚方向に磁気的相互作用が低減され、記録再生時
の媒体ノイズは一層低減されることも見出した。この効
果も主として常磁性の層を形成することにより強磁性層
間の磁気的相互作用を低減できるためと考えられる。
The present inventor has found that it is possible to reduce medium noise at the time of recording / reproducing in a magnetic recording medium in which at least one region having a high Cr concentration and mainly a paramagnetic substance is included between the magnetic layers. It is considered that this is because the magnetic interaction can be reduced. Therefore, a non-magnetic underlayer and a thin film magnetic layer containing Co as a main component are sequentially formed on the substrate, and the Co concentration is low and the Cr concentration is high between the regions having a high Co concentration in the magnetic layer. It was considered that the structure including one region in the film thickness direction is very effective in reducing noise. Further, even in a structure in which a plurality of regions having a low Co concentration and a high Cr concentration and mainly a paramagnetic material are included in the film thickness direction between regions having a high Co concentration in the magnetic layer, magnetic interaction in the film thickness direction is caused. It was also found that the medium noise during recording and reproduction is further reduced. It is considered that this effect is also because the magnetic interaction between the ferromagnetic layers can be reduced mainly by forming the paramagnetic layer.

【0016】さらに、磁性層間にCr濃度が高く主とし
て常磁性体である領域を少なくとも一領域含ませた磁気
記録媒体において、Cr濃度が高く主として常磁性体で
ある領域に含有される元素Tのうち、少なくとも一元素
は、媒体を構成する元素群Mの中で、主として常磁性体
である領域にのみ含有する合金成分Tを含ませることに
より、この領域の膜厚を量産時に容易に制御することが
可能となる。
Furthermore, in a magnetic recording medium including at least one region having a high Cr concentration and mainly a paramagnetic substance between the magnetic layers, among the elements T contained in the region having a high Cr concentration and mainly a paramagnetic substance. , At least one element is included in the element group M that constitutes the medium, so that the alloy component T mainly contained only in a region that is a paramagnetic substance is included, so that the film thickness in this region can be easily controlled during mass production. Is possible.

【0017】主として常磁性体である領域が膜厚方向に
複数設けられる場合には、その数以上の添加元素Tを各
領域で独立して混入させることにより、各Cr濃度が高
く主として常磁性体である各領域の量を評価することが
可能となる。
When a plurality of regions, which are mainly paramagnetic substances, are provided in the film thickness direction, each Cr concentration is high and mainly the paramagnetic substance is obtained by mixing more than that number of additional elements T in each region independently. It is possible to evaluate the amount of each area.

【0018】主として常磁性体である領域を形成する際
に、Co合金中のCr組成を調整することにより、主とし
て2種類の中間層が形成可能である。例えばCo-25at.
%Cr合金膜が常磁性体であるような薄膜形成条件(1)で
Co-23at.%Cr合金膜を形成した場合、強磁性体と常磁
性体が混在した膜が形成可能である。薄膜形成条件(1)
に比べ、基板温度を上昇させたり、薄膜形成時の放電ガ
ス圧力を低下させたりすることにより、膜の平均組成に
比べCr濃度の低い強磁性体の体積比はより高くなる傾
向があった。
When forming a region that is mainly a paramagnetic material, two types of intermediate layers can be formed mainly by adjusting the Cr composition in the Co alloy. For example Co-25at.
When the Co-23at.% Cr alloy film is formed under the thin film forming condition (1) such that the% Cr alloy film is a paramagnetic material, a film in which a ferromagnetic material and a paramagnetic material are mixed can be formed. Thin film forming conditions (1)
Compared with the above, by increasing the substrate temperature or decreasing the discharge gas pressure during thin film formation, the volume ratio of the ferromagnetic material having a lower Cr concentration than the average composition of the film tends to be higher.

【0019】このような主として常磁性体からなる中間
層を介して、例えば常磁性体と強磁性体と共存させ、あ
るいはその割合を変化させることにより、上部磁性体と
下部磁性体の磁気的相互作用を低減することが可能にな
った。このような中間層形成条件によって強磁性体の存
在する割合が変化する傾向は、Co-Cr二元系に限定さ
れたものではなく数原子%の第3元素を添加した場合に
も同様であった。格子の不整合を考慮し、下部磁性層の
平均した原子サイズに合わせた組成の中間層組成が選択
しうる。添加元素Tは、膜面単位面積当たり109個/c
2以上含まれていれば、全反射型蛍光X線分析等によ
り定量評価できる。よって添加元素Tを含有した領域を
形成するために、Tは微量を添加するだけでよい。Tと
してNb、Ti等が好ましいのは以下の理由による。他の
媒体を構成する元素を検出するために用いるこれらの特
性X線のエネルギ−値とNb、Tiの特性X線のエネルギ
−値が重複せず、他の構成層形成時にNb、Tiの混入の
恐れがないことによる。
Through such an intermediate layer mainly made of paramagnetic material, for example, the paramagnetic material and the ferromagnetic material are allowed to coexist or the ratio thereof is changed, whereby the magnetic mutual relation between the upper magnetic material and the lower magnetic material is made. It has become possible to reduce the action. The tendency that the existence ratio of the ferromagnetic material changes depending on the conditions for forming the intermediate layer is not limited to the Co-Cr binary system, and is the same when a few atomic% of the third element is added. It was Considering the lattice mismatch, the composition of the intermediate layer can be selected according to the average atomic size of the lower magnetic layer. Additive element T is 10 9 / c per unit area of film surface
If it is contained in m 2 or more, it can be quantitatively evaluated by total reflection fluorescent X-ray analysis or the like. Therefore, in order to form a region containing the additive element T, it is only necessary to add a trace amount of T. The reason why T is preferably Nb, Ti or the like is as follows. The energy values of these characteristic X-rays used for detecting the elements constituting other media do not overlap with the energy values of the characteristic X-rays of Nb and Ti, and Nb and Ti are mixed when other constituent layers are formed. Because there is no fear of.

【0020】一方、Co-25at.%Crに比べCr組成の高
いCo-30at.%Cr合金膜を薄膜形成条件(1)で形成した
場合には、常磁性体と非磁性の非晶質膜が混在してい
た。薄膜形成条件(1)に比べ、基板温度を低下させた
り、薄膜形成時の放電ガス圧力を増加させたりすること
により、例えば「スパッタリング現象、東京大学出版
会、1984年、金原 粲 著、181頁」に記載のよ
うに「自己陰影効果」を生じ、常磁性体に比べ非晶質の
割合が多くなるものの、上部磁性層を形成する際に放電
ガス圧力を低下させることにより、上部磁性体と下部磁
性体の磁気的相互作用を低減できるようになった。
On the other hand, when a Co-30 at.% Cr alloy film having a higher Cr composition than Co-25 at.% Cr is formed under the thin film forming condition (1), it is a paramagnetic substance and a non-magnetic amorphous film. Was mixed. Compared to the thin film forming condition (1), by lowering the substrate temperature or increasing the discharge gas pressure during thin film formation, for example, “Sputtering Phenomenon, The University of Tokyo Press, 1984, Yu Kanehara, p. As described above, the "self-shading effect" is generated, and the proportion of amorphous is higher than that of the paramagnetic material. However, by lowering the discharge gas pressure when forming the upper magnetic layer, It became possible to reduce the magnetic interaction of the lower magnetic body.

【0021】前記非磁性下地層としてCr系薄膜からな
る下地層を用いる理由は、この上に連続して形成する面
内磁化膜の磁化容易軸を面内方向に高配向させるためで
ある。
The reason why the underlayer made of a Cr-based thin film is used as the non-magnetic underlayer is that the easy axis of magnetization of the in-plane magnetized film continuously formed on the underlayer is highly oriented in the in-plane direction.

【0022】磁気抵抗効果を用いた読み出し用磁気ヘッ
ドを用いて再生を行なう際に、本発明による媒体は、磁
性層の残留磁化Br[G]と膜厚t[μm]の積の値が100G・μ
m以上、400G・μm以下、より好ましくは150G・μm以上、2
80G・μm以下である必要がある。この理由は高いS/Nを得
るためである。残留磁化Brと膜厚tの積の値が400G・μ
m以上とした場合には、S/Nが低下する。一方、膜厚t
と残留磁化Brの積の値が100G・μm以下の場合には、出
力が低下してしまう。
When reproducing using a read magnetic head utilizing the magnetoresistive effect, in the medium according to the present invention, the product of the residual magnetization Br [G] of the magnetic layer and the film thickness t [μm] is 100 G.・ Μ
m or more, 400 G ・ μm or less, more preferably 150 G ・ μm or more, 2
It must be 80 G · μm or less. The reason for this is to obtain a high S / N. The product of remanent magnetization Br and film thickness t is 400G ・ μ
If it is set to m or more, the S / N decreases. On the other hand, the film thickness t
When the value of the product of the residual magnetization Br and the residual magnetization Br is 100 G · μm or less, the output decreases.

【0023】インダクティブヘッドを用いて再生を行な
う際に、本発明による媒体は前記磁性層の残留磁化Br
[G]と膜厚t[μm]の積の値が100G・μm以上、400G・μm以
下、より好ましくは300G・μm以上、400G・μm以下である
必要がある記磁性層の残留磁化Br[G]と膜厚t[μm]の
積の値が100G・μm以上であるのは、膜厚tと残留磁化B
rの積の値が100G・μm以下の場合には出力が低下してし
まうことによる。
When reproducing using an inductive head, the medium according to the present invention has a residual magnetization Br of the magnetic layer.
The value of the product of [G] and the film thickness t [μm] must be 100 G · μm or more and 400 G · μm or less, more preferably 300 G · μm or more and 400 G · μm or less. The value of the product of G] and the film thickness t [μm] is 100 G · μm or more because the film thickness t and the residual magnetization B
This is because the output decreases when the product of r is 100 G · μm or less.

【0024】[0024]

【実施例】本発明を以下の実施例により説明する。The present invention will be described with reference to the following examples.

【0025】実施例1 図1は、本実施例に置ける磁気記録媒体を示す断面図で
ある。図1において、11は強化ガラス、プラスチック、
Ni-PメッキしたAl合金等の基板、12、12’はNi-
P、Cr、Mo、W、Cr-Ti、Cr-Si、Cr-Wなどの金
属下地層、13、13’はCo-Ni-Cr、Co-Cr-Ta、Co-
Cr-Pt、Co-Cr-Zr、Co-Cr-Zr-Hf、Co-Ni-Z
r、Co-Ni-Ta、Co-Ni-Cr-Pt等の下部磁性層、1
4、14’は13、13’に比べ優位的にCr濃度が高くCo濃
度が低い領域、15、15’は13、13’と同様な上部磁性
層、16、16’はC、B、B4C、Si-C、Co34、Si
2、Si34、W-C、Zr-W-C、W-Mo-C-Ni等か
らなる保護層であり、それぞれは以下に示す例のように
形成される。
Example 1 FIG. 1 is a sectional view showing a magnetic recording medium according to this example. In FIG. 1, 11 is tempered glass, plastic,
Substrate such as Ni-P plated Al alloy, 12, 12 'is Ni-
Metal underlayers such as P, Cr, Mo, W, Cr-Ti, Cr-Si, Cr-W, 13 and 13 'are Co-Ni-Cr, Co-Cr-Ta, Co-
Cr-Pt, Co-Cr-Zr, Co-Cr-Zr-Hf, Co-Ni-Z
Lower magnetic layer of r, Co-Ni-Ta, Co-Ni-Cr-Pt, etc., 1
4, 14 'is a region having a higher Cr concentration and a lower Co concentration than 13, 13', 15, 15 'is an upper magnetic layer similar to 13, 13', 16, 16 'is C, B, B 4 C, Si-C, Co 3 O 4 , Si
A protective layer made of O 2 , Si 3 N 4 , WC, Zr-WC, W-Mo-C-Ni, etc., each of which is formed as in the following example.

【0026】直径130mm、内径40mm、厚さ1.9mmのマグネ
シウムを4%含むアルミニウム合金ディスク基板11の両
面に厚さ20μmのNi-12wt.%Pメッキを施した後、この
メッキ面にほぼ同心円状の微細な溝を形成する。中心線
平均面粗さは10nmであり、Ni-12wt.%Pメッキ膜厚を15
μmとなるように研磨した。この種の表面加工を一般に
テクスチャ−加工と称しているが、テクスチャ−の溝方
向は、円周方向だけではなく、偏心した加工であって
も、ヘッドの粘着を回避できる構造であれば、この基板
上に薄膜記録媒体を形成しても電磁変換特性上何ら問題
はない。
An aluminum alloy disk substrate 11 having a diameter of 130 mm, an inner diameter of 40 mm, and a thickness of 1.9 mm and containing 4% of magnesium is plated with Ni-12 wt.% P having a thickness of 20 μm on both surfaces, and then the plated surfaces are substantially concentric. To form fine grooves. The center line average surface roughness is 10 nm, and the Ni-12 wt.% P plating film thickness is 15
Polished to be μm. This kind of surface processing is generally called texture processing, but the groove direction of the texture is not limited to the circumferential direction, but if it is a structure that can avoid sticking of the head even with eccentric processing, Even if the thin film recording medium is formed on the substrate, there is no problem in electromagnetic conversion characteristics.

【0027】これらの基板を洗浄乾燥後、DCマグネト
ロンカソ−ド用いた枚葉式成膜装置を用いて、下地層1
2、12'となるNi-Pを厚さ50nmスパッタし、さらに下部
磁性層13、13'となるCo-15at.%Cr-8at.%Pt膜を厚さ1
2nm形成し、この磁性層表面にCo-20at.%Cr-4at.%
Ta-0.2at.%Nb合金膜14、14’を厚さ0.5nm形成した。
この上に上部磁性層15、15’として13、13'と同一組成
のCo-Cr-Pt膜を厚さ12nm形成し、保護層16、16’と
してC膜を形成した。このC保護膜上には、パ−フルオ
ロアルキルポリエ−テル等の潤滑剤を付着させた。
After washing and drying these substrates, the underlayer 1 was formed by using a single-wafer type film forming apparatus using a DC magnetron cathode.
Ni-P which becomes 2 and 12 'is sputtered to a thickness of 50 nm, and further Co-15at.% Cr-8at.% Pt film which becomes lower magnetic layers 13 and 13' is made to have thickness
2 nm is formed, and Co-20 at.% Cr-4 at.% Is formed on the surface of this magnetic layer.
Ta-0.2 at.% Nb alloy films 14 and 14 'were formed to a thickness of 0.5 nm.
A Co-Cr-Pt film having the same composition as 13 and 13 'was formed to a thickness of 12 nm as the upper magnetic layers 15 and 15', and a C film was formed as the protective layers 16 and 16 '. A lubricant such as perfluoroalkylpolyether was adhered on the C protective film.

【0028】比較例1 磁性膜を単層で形成したC/(Co-15at.%Cr-8at.%Pt)/
Cr媒体を形成し、磁気抵抗効果を利用したヘッドによ
り電磁変換特性を評価した。その結果、比較例1で形成
した媒体の孤立波再生出力の大きさは、実施例1で形成
した孤立波再生出力の大きさと同等であった。一方、比
較例1で形成した媒体において同じ記録密度で信号を記
録した場合、ディスクノイズは、実施例1で形成したデ
ィスクノイズに比べ22%大きかった。
Comparative Example 1 C / (Co-15at.% Cr-8at.% Pt) / where the magnetic film was formed as a single layer
A Cr medium was formed and the electromagnetic conversion characteristics were evaluated by a head utilizing the magnetoresistive effect. As a result, the magnitude of the solitary wave reproduction output of the medium formed in Comparative Example 1 was equal to the magnitude of the solitary wave reproduction output formed in Example 1. On the other hand, when signals were recorded at the same recording density on the medium formed in Comparative Example 1, the disk noise was 22% larger than the disk noise formed in Example 1.

【0029】実施例2 直径130mm、内径40mm、厚さ1.27mmのマグネシウムを4
%含むアルミニウム合金ディスク基板11の両面に厚さ20
μmのNi-12wt.%Pメッキを施した後、実施例1と同様
なテクスチャ−加工を施した。
Example 2 4 magnesium having a diameter of 130 mm, an inner diameter of 40 mm and a thickness of 1.27 mm was used.
% On both sides of aluminum alloy disc substrate 11 20
After applying Ni-12 wt.% P plating of μm, the same texture processing as in Example 1 was performed.

【0030】この基板を洗浄乾燥後、枚葉式成膜装置で
下地層12、12'としてCrを厚さ50nmで形成し、さらに下
部磁性層13、13'としてCo-10at.%Cr-4at.%Ta膜を13n
m形成し、この磁性層表面にCo-21at.%Cr-4at.%Ta-0.
4at.%Ti膜14、14’を4nm形成した。この後、さらに
上部磁性層15、15’として13、13'と同一組成のCo-10a
t.%Cr-4at.%Ta膜を13nm形成し、保護層16、16’とし
てC膜を形成した。C保護層の膜厚は25nmとした。この
C保護膜上にフェニキシアミン等の潤滑剤を付着させ
た。
After the substrate was washed and dried, Cr was formed to a thickness of 50 nm as the underlayers 12 and 12 'in a single wafer type film forming apparatus, and further Co-10at.% Cr-4at.% Was formed as the lower magnetic layers 13 and 13'. 13n Ta film
m, and on the surface of this magnetic layer Co-21at.% Cr-4at.% Ta-0.
4 at.% Ti films 14 and 14 'were formed to a thickness of 4 nm. After this, further Co-10a having the same composition as 13, 13 'is formed as the upper magnetic layers 15, 15'.
A t.% Cr-4at.% Ta film was formed to a thickness of 13 nm, and a C film was formed as the protective layers 16 and 16 ′. The thickness of the C protective layer was 25 nm. A lubricant such as phenoxyamine was adhered to the C protective film.

【0031】比較例2 直径130mm、内径40mm、厚さ1.27mmのマグネシウムを4
%含むアルミニウム合金ディスク基板11の両面に厚さ20
μmのNi-12wt.%Pメッキを施した後、実施例1と同様
なテクスチャ−加工を施した。
Comparative Example 2 4 magnesium having a diameter of 130 mm, an inner diameter of 40 mm and a thickness of 1.27 mm was used.
% On both sides of aluminum alloy disc substrate 11 20
After applying Ni-12 wt.% P plating of μm, the same texture processing as in Example 1 was performed.

【0032】この基板を洗浄乾燥後、枚葉式成膜装置で
下地層12、12'としてCrを厚さ50nmで形成し、さらに下
部磁性層13、13'としてCo-10at.%Cr-4at.%Ta膜を13
nm形成後、表面を酸化させること無くただちに非磁性C
r中間層を厚みで4nm形成した。さらに連続して上部磁
性層15、15’として13、13'と同一組成のCo-10at.%C
r-4at.%Ta膜を13nm形成し、保護層16、16’としてC
膜を形成した。C保護層の膜厚は実施例2と同様に25nm
とした。このC保護膜上にフェニキシアミン等の潤滑剤
を付着させた。これらの積層膜について、振動式磁力計
により測定した保磁力の値は、実施例2に記載した積層
膜で1430 Oeであったのに対し、非磁性Cr中間層を設け
た場合には1160 Oeまで減少していた。
After washing and drying this substrate, Cr was formed in a thickness of 50 nm as the underlayers 12 and 12 'by a single-wafer type film forming apparatus, and further Co-10at.% Cr-4at.% Was formed as the lower magnetic layers 13 and 13'. 13 Ta film
Non-magnetic C immediately after the formation of nm without oxidizing the surface
An intermediate layer having a thickness of 4 nm was formed. Further, successively, as the upper magnetic layers 15 and 15 ', Co-10 at.% C having the same composition as that of 13 and 13'
A r-4 at.% Ta film is formed to a thickness of 13 nm, and the protective layers 16 and 16 'are made of C
A film was formed. The thickness of the C protective layer is 25 nm as in the second embodiment.
And A lubricant such as phenoxyamine was adhered to the C protective film. The value of the coercive force of these laminated films measured by a vibrating magnetometer was 1430 Oe in the laminated film described in Example 2, whereas it was 1160 Oe in the case where a non-magnetic Cr intermediate layer was provided. Was decreasing.

【0033】実施例3 直径3.5インチで厚みが0.8mmのガラス円板11上に実施例
1と同様にして(Cr-Ti)合金下地層12、12'を形成し
た。磁性層13、13’を20nm形成する際にCo-15.4at.%
Cr-8at.%Pt合金を、中間層14、14'を4nm形成する際
にCo-23at.%Cr-4at.%Ta-0.3at.%Nb合金を、磁
性層15、15’を20nm形成する際にCo-12at.%Cr-4at.
%Ta合金を用いた他は、実施例1と同様にして磁気記
録媒体を形成した。
Example 3 (Cr-Ti) alloy underlayers 12 and 12 'were formed on a glass disk 11 having a diameter of 3.5 inches and a thickness of 0.8 mm in the same manner as in Example 1. Co-15.4 at.% When forming the magnetic layers 13 and 13 'to 20 nm
When a Cr-8 at.% Pt alloy is formed to a thickness of 4 nm for the intermediate layers 14 and 14 ', a Co-23 at.% Cr-4 at.% Ta-0.3 at.% Nb alloy is used to form a magnetic layer 15 and 15' for 20 nm. When doing Co-12 at.% Cr-4 at.
A magnetic recording medium was formed in the same manner as in Example 1 except that the% Ta alloy was used.

【0034】比較例3 実施例3に記載の磁性層として13、13’を形成後、Co-
25at.%Cr-4at.%Ta-0.3at.%Nb合金中間層のかわ
りに非磁性Cr中間層14、14'を4nm設け、その後磁性層1
5、15’を形成した。この他は、実施例3と同様にして
磁気記録媒体を形成した。これらの円板から8mm角の試
料を切り出し、X線ディフラクトメ−タでθ-2θ走査
を行ない、結晶性を評価した。その結果、実施例3で作
製した試料ではhcp構造をとるCo合金磁性層の11
0回折積分強度が比較例3で作製した試料に比べ1.8倍
以上大きく、強磁性体と同じ結晶構造をとる中間層を用
いることにより上部磁性層の結晶性も改善できることが
明らかになった。
Comparative Example 3 After forming 13 and 13 'as the magnetic layer described in Example 3, Co-
Non-magnetic Cr intermediate layers 14 and 14 'are provided at 4 nm in place of the 25 at.% Cr-4 at.% Ta-0.3 at.% Nb alloy intermediate layer, and then the magnetic layer 1 is formed.
Formed 5, 15 '. A magnetic recording medium was formed in the same manner as in Example 3 except this. Samples of 8 mm square were cut out from these discs and subjected to θ-2θ scanning with an X-ray diffractometer to evaluate crystallinity. As a result, in the sample manufactured in Example 3, 11 of the Co alloy magnetic layer having the hcp structure was obtained.
The 0 diffraction integrated intensity was 1.8 times or more higher than that of the sample prepared in Comparative Example 3, and it was revealed that the crystallinity of the upper magnetic layer can be improved by using the intermediate layer having the same crystal structure as the ferromagnetic material.

【0035】実施例4 図2に示すように、インラインスパッタ装置を用いて、
グラッシ−カ−ボン基板11上にDCマグネトロンスパッ
タ法で、厚さ50nmのCr下地膜12、12'、下部磁性膜13、
13'として厚さ9nmのCo-12at.%Cr-2at.%Ta膜を連
続して形成後、中間層14、14'として厚さ0.5nmのCo-23
at.%Cr-2at.%Ta-0.1at.%Fe-0.5at.%Nb膜を形
成する。さらに下部磁性層13、13'と同じ厚さの磁性層2
5、25'としてCo-12at.%Cr-2at.%Ta膜、中間層2
4、24'として厚さ0.5nmのCo-23at.%Cr-2at.%Ta-
0.1at.%Fe-0.5at.%Ti膜を形成後、さらに下部磁性
層13、13'と同じ厚さの上部磁性層15、15'としてCo-12
at.%Cr-2at.%Ta膜、保護膜16、16'としてC膜を形
成した。
Example 4 As shown in FIG. 2, using an in-line sputtering device,
A 50 nm thick Cr underlayer 12, 12 ', a lower magnetic film 13, a lower magnetic film 13, on the glass-carbon substrate 11 by DC magnetron sputtering.
After forming a Co-12 at.% Cr-2 at.% Ta film having a thickness of 9 nm as 13 ', a Co-23 having a thickness of 0.5 nm is used as the intermediate layers 14 and 14'.
At.% Cr-2 at.% Ta-0.1 at.% Fe-0.5 at.% Nb film is formed. Further, the magnetic layer 2 having the same thickness as the lower magnetic layers 13 and 13 '
5,12 'as Co-12at.% Cr-2at.% Ta film, intermediate layer 2
4,24 '0.5-nm thick Co-23 at.% Cr-2 at.% Ta-
After forming a 0.1 at.% Fe-0.5 at.% Ti film, Co-12 is formed as upper magnetic layers 15 and 15 'having the same thickness as the lower magnetic layers 13 and 13'.
At.% Cr-2 at.% Ta film and C film were formed as protective films 16 and 16 '.

【0036】実施例5 実施例1に記載の媒体に用いた磁性層の膜厚と残留磁化
の積の値が360G・μmの値をとるように媒体の膜厚を変
更した他は、実施例1と同様にしてインダクティブヘッ
ドを用いて電磁変換特性を評価した。その結果、磁性層
を単層膜として形成した場合に比べ、本実施例に記載の
媒体は孤立波再生出力は変化しないが、同じ記録密度で
信号を記録した場合、ディスクノイズは約20%低減し
た。この媒体を少なくとも1枚以上、磁気抵抗効果を用
いた読み出し用磁気ヘッドと書き込み用インダクティブ
ヘッドを同一素子上で組み合わせることにより、70kFCI
以上の高密度磁気記録が実現できた。
Example 5 Example 5 was repeated except that the medium thickness was changed so that the product of the magnetic layer thickness and the residual magnetization used in the medium described in Example 1 had a value of 360 G · μm. In the same manner as in No. 1, the electromagnetic conversion characteristics were evaluated using the inductive head. As a result, compared with the case where the magnetic layer is formed as a single layer film, the solitary-wave reproduction output does not change in the medium described in this example, but when a signal is recorded at the same recording density, the disk noise is reduced by about 20%. did. By combining at least one of this medium with a magnetic read head and a write inductive head using the magnetoresistive effect on the same element, a 70 kFCI
The above high-density magnetic recording was realized.

【0037】[0037]

【発明の効果】静磁気特性、結晶性を低下させることな
く高記録密度におけるディスクノイズを低減可能とす
る。また、本発明の磁気記録媒体を用いて、S/Nが良好
な大容量磁気記憶装置を提供できる。
The disk noise at high recording density can be reduced without deteriorating the magnetostatic characteristics and crystallinity. Further, by using the magnetic recording medium of the present invention, it is possible to provide a large-capacity magnetic storage device having a good S / N.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例の磁気記録媒体の断面
FIG. 1 is a sectional view of a magnetic recording medium according to an embodiment of the present invention.

【図2】図2は本発明の一実施例の磁気記録媒体の断面
FIG. 2 is a sectional view of a magnetic recording medium according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 基板 12、12' 金属下地層 13、13' 下部磁性層 14、14' 13、13’に比べ優位的にCr濃度が高い中間層 15、15' 上部磁性層 16、16' 保護層 24、24' 13、13’に比べ優位的にCr濃度が高い中間層 25、25' 磁性層 11 Substrate 12, 12 'Metal underlayer 13, 13' Lower magnetic layer 14, 14 'Intermediate layer 15/15' having a higher Cr concentration than that of 13, 13 'Upper magnetic layer 16, 16' Protective layer 24, 24 '13, 13' Intermediate layer with higher Cr concentration than 25, 25 'Magnetic layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米川 隆生 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 高垣 篤補 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 遠藤 直人 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 阿部 勝男 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Yonekawa 2880, Kozu, Odawara, Kanagawa Stock Company Hitachi Storage Systems Division (72) Inventor Atsushi Takagaki 2880, Kozu, Odawara, Kanagawa Hitachi, Ltd. Storage System Division (72) Inventor Naoto Endo 2880 Kozu, Odawara, Kanagawa Stock Company Hitachi Storage Systems Division (72) Inventor Katsuo Abe 2880 Kozu, Kanagawa Prefecture Storage Systems Division, Hitachi Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】基板上に、非磁性下地層、Coを主成分と
する薄膜合金磁性層が順次形成され、該磁性層内でCo
濃度の高い領域間にCo濃度が低くかつCr濃度が高く主
として常磁性体である領域を膜厚方向に一領域含んでお
り、媒体を構成する元素群Mの中で、主として常磁性体
である領域にのみ含有する合金成分Tを少なくとも一つ
含有していることを特徴とする磁気記録媒体。
1. A nonmagnetic underlayer and a thin film alloy magnetic layer containing Co as a main component are sequentially formed on a substrate, and Co is formed in the magnetic layer.
A region having a low Co concentration and a high Cr concentration between the high-concentration regions mainly includes a paramagnetic substance in the film thickness direction, and is mainly a paramagnetic substance in the element group M constituting the medium. A magnetic recording medium comprising at least one alloy component T contained only in a region.
【請求項2】基板上に、非磁性下地層、Coを主成分と
する薄膜合金磁性層が順次形成され、該磁性層内でCo
濃度の高い領域間にCo濃度が低くかつCr濃度が高く主
として常磁性体である領域を膜厚方向に複数領域含んで
おり、媒体を構成する元素群Mの中で、主として常磁性
体である領域にのみ含有する合金成分Tを少なくとも一
つ含有していることを特徴とする磁気記録媒体。
2. A nonmagnetic underlayer and a thin film alloy magnetic layer containing Co as a main component are sequentially formed on a substrate, and Co is formed in the magnetic layer.
A plurality of regions having a low Co concentration and a high Cr concentration, which are mainly paramagnetic substances, are included in the film thickness direction between the high concentration regions, and are mainly paramagnetic substances in the element group M constituting the medium. A magnetic recording medium comprising at least one alloy component T contained only in a region.
【請求項3】前記の主として常磁性体にのみ含有する合
金成分TがNb、Tiからなる元素群から少なくとも一元
素選ばれていることを特徴とする請求項1ないし2に記
載の磁気記録媒体。
3. The magnetic recording medium according to claim 1 or 2, wherein the alloy component T mainly contained only in the paramagnetic material is selected from at least one element group consisting of Nb and Ti. .
【請求項4】前記の非磁性下地層がCrあるいはCrを主
成分とする薄膜からなることを特徴とする請求項1ない
し3に記載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the non-magnetic underlayer is made of Cr or a thin film containing Cr as a main component.
【請求項5】前記磁性層の残留磁化Brと膜厚tの積の
値が100G・μm以上400G・μm以下であることを特徴とする
請求項1乃至4に記載の磁気記録媒体。
5. The magnetic recording medium according to claim 1, wherein a value of a product of the residual magnetization Br and the film thickness t of the magnetic layer is 100 G · μm or more and 400 G · μm or less.
【請求項6】前記磁性層の残留磁化Brと膜厚tの積の
値が150G・μm以上280G・μm以下であることを特徴とする
請求項1乃至4に記載の磁気記録媒体。
6. The magnetic recording medium according to claim 1, wherein the value of the product of the residual magnetization Br and the film thickness t of the magnetic layer is 150 G · μm or more and 280 G · μm or less.
JP20492393A 1993-08-19 1993-08-19 Magnetic recording medium Pending JPH0757233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20492393A JPH0757233A (en) 1993-08-19 1993-08-19 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20492393A JPH0757233A (en) 1993-08-19 1993-08-19 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0757233A true JPH0757233A (en) 1995-03-03

Family

ID=16498610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20492393A Pending JPH0757233A (en) 1993-08-19 1993-08-19 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0757233A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004058A1 (en) * 1997-07-18 1999-01-28 Shibaura Mechatronics Corporation Sheet-form magnetron sputtering device
US6383667B1 (en) 1998-10-09 2002-05-07 Hitachi, Ltd. Magnetic recording medium
WO2018182046A1 (en) * 2017-03-31 2018-10-04 Hoya株式会社 Non-magnetic substrate for magnetic disk, and magnetic disk
CN113362863A (en) * 2017-06-30 2021-09-07 Hoya株式会社 Magnetic disk substrate and magnetic disk

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004058A1 (en) * 1997-07-18 1999-01-28 Shibaura Mechatronics Corporation Sheet-form magnetron sputtering device
US6083364A (en) * 1997-07-18 2000-07-04 Shibaura Mechatronics Kabushiki Kaisha Magnetron sputtering apparatus for single substrate processing
US6383667B1 (en) 1998-10-09 2002-05-07 Hitachi, Ltd. Magnetic recording medium
US6541125B2 (en) 1998-10-09 2003-04-01 Hitachi, Ltd. Magnetic recording medium
JPWO2018182046A1 (en) * 2017-03-31 2019-11-07 Hoya株式会社 Non-magnetic substrate for magnetic disk and magnetic disk
CN110326042A (en) * 2017-03-31 2019-10-11 Hoya株式会社 Disk non-magnetic substrate and disk
WO2018182046A1 (en) * 2017-03-31 2018-10-04 Hoya株式会社 Non-magnetic substrate for magnetic disk, and magnetic disk
JP2019215951A (en) * 2017-03-31 2019-12-19 Hoya株式会社 Non-magnetic substrate for magnetic disk, and magnetic disk
US11031036B2 (en) 2017-03-31 2021-06-08 Hoya Corporation Non-magnetic substrate for magnetic disk, and magnetic disk
US11545178B2 (en) 2017-03-31 2023-01-03 Hoya Corporation Substrate for magnetic disk and magnetic disk
US11955151B2 (en) 2017-03-31 2024-04-09 Hoya Corporation Substrate for magnetic disk and magnetic disk
CN113362863A (en) * 2017-06-30 2021-09-07 Hoya株式会社 Magnetic disk substrate and magnetic disk
CN113362863B (en) * 2017-06-30 2022-09-30 Hoya株式会社 Magnetic disk substrate and magnetic disk
US11694718B2 (en) 2017-06-30 2023-07-04 Hoya Corporation Substrate for magnetic disk, magnetic disk, and hard disk drive apparatus

Similar Documents

Publication Publication Date Title
US6899959B2 (en) Magnetic media with improved exchange coupling
US8685547B2 (en) Magnetic recording media with enhanced writability and thermal stability
US9728216B2 (en) Feromagnetically coupled magnetic recording media
KR100796334B1 (en) Magnetic recording media
KR100378495B1 (en) High areal density magnetic recording medium with dual magnetic layers
US6440589B1 (en) Magnetic media with ferromagnetic overlay materials for improved thermal stability
KR100630583B1 (en) Magnetic recording medium
EP1309969B1 (en) Antiferromagnetically coupled magnetic recording media
US5587235A (en) Magnetic recording medium and magnetic recording apparatus
JP2004111040A (en) Perpendicular magnetic recording medium
KR20080052376A (en) Perpendicular magnetic recording medium with multilayer recording structure including intergranular exchange enhancement layer
US6852426B1 (en) Hybrid anti-ferromagnetically coupled and laminated magnetic media
JPH0573881A (en) Magnetic recording medium and production thereof
KR101797605B1 (en) Magnetic recording media with reliable writability and erasure
US5738945A (en) Multilayer magnetic medium with soft magnetic interlayer
JP2003317221A (en) Perpendicular magnetic recording medium
US7919201B2 (en) Method of making a multilayered magnetic structure
US20020114978A1 (en) Novel magnetic recording media compose of dual non-magnetic spacer layers
US20010019786A1 (en) Magnetic recording medium and magnetic recording apparatus
JPH0757233A (en) Magnetic recording medium
US6168861B1 (en) High coercivity, high signal-to-noise ratio dual magnetic layer media
US6045931A (en) Magnetic recording medium comprising a cobalt-samarium magnetic alloy layer and method
JP3390957B2 (en) In-plane magnetic recording medium, method of manufacturing the in-plane magnetic recording medium, and magnetic storage device
JP3434845B2 (en) Magnetic recording medium, method for manufacturing the magnetic recording medium, and magnetic storage device
JP2001250223A (en) Magnetic recording medium and magnetic recorder