JPH0756049B2 - Manufacturing method of high strength cold rolled steel sheet - Google Patents

Manufacturing method of high strength cold rolled steel sheet

Info

Publication number
JPH0756049B2
JPH0756049B2 JP61046815A JP4681586A JPH0756049B2 JP H0756049 B2 JPH0756049 B2 JP H0756049B2 JP 61046815 A JP61046815 A JP 61046815A JP 4681586 A JP4681586 A JP 4681586A JP H0756049 B2 JPH0756049 B2 JP H0756049B2
Authority
JP
Japan
Prior art keywords
cold
hot rolling
rolling
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61046815A
Other languages
Japanese (ja)
Other versions
JPS62205231A (en
Inventor
志郎 佐柳
彪 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61046815A priority Critical patent/JPH0756049B2/en
Publication of JPS62205231A publication Critical patent/JPS62205231A/en
Publication of JPH0756049B2 publication Critical patent/JPH0756049B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は薄鋳片を直接冷延もしくは、熱間圧延後冷延す
ることからなる高強度冷延鋼板の製造法に関するもので
ある。
The present invention relates to a method for producing a high-strength cold-rolled steel sheet, which comprises directly cold-rolling a thin slab or cold-rolling after hot rolling.

〈従来の技術〉 従来、冷延鋼板は例えば鉄鋼便覧III−1(昭和55年,34
9頁,520頁)に示すように130〜300mm厚みの連続鋳造ス
ラブまたは分塊スラブを用い、熱間圧延により、1.6〜
6.0mm厚みとし、酸洗−冷延−焼鈍工程で製造されてい
る。
<Prior Art> Conventionally, cold-rolled steel sheets are, for example, Iron and Steel Handbook III-1 (Showa 55, 34
As shown in pages 9 and 520), using a continuously cast slab or slab of 130 to 300 mm thickness, by hot rolling, 1.6 ~
It has a thickness of 6.0 mm and is manufactured in the pickling-cold rolling-annealing process.

〈発明が解決しようとする問題点〉 そのため強大な熱間圧延機列を必要とするが、その操業
設備コストが過大である。また、従来工程で高強度冷延
鋼板を製造する場合、鋼の組成にSi,P,Mn,Nb,Ti等の添
加量を増加する必要があり、合金コストの上昇を伴なう
という欠点がある。
<Problems to be Solved by the Invention> Therefore, a large hot rolling mill train is required, but its operating facility cost is excessive. Further, when manufacturing a high-strength cold-rolled steel sheet in the conventional process, it is necessary to increase the amount of Si, P, Mn, Nb, Ti, etc. added to the composition of the steel, which has the drawback of increasing the alloy cost. is there.

〈問題点を解決するための手段〉 本発明は上記従来技術の問題点を解決し、低コストの高
強度冷延鋼板の製造方法を提供しようとするものであ
り、その要旨は、重量%で、C:0.0010〜0.150%,Si:0.3
0%以下,Mn:1.5%以下,P:0.080%以下,S:0.005〜0.020
%,Al:0.005〜0.080%を含有し、更に必要によりTi,Nb,
Bのうち選ばれた1種または2種を0.001〜0.100%を含
有し、残部が鉄および不可避的不純物からなる溶鋼を連
続鋳造し、その鋳片を1400〜1000℃範囲での平均冷速が
2℃/sec以上で冷却する過程で圧下比(鋳片厚み/熱延
終了厚み)が1.0〜20の熱間圧延を行い、引続いて、冷
延,焼鈍することを特徴とする高強度冷延鋼板の製造法
にある。
<Means for Solving Problems> The present invention intends to solve the problems of the above-mentioned conventional techniques and provide a method for manufacturing a low-cost high-strength cold-rolled steel sheet, the gist of which is% by weight. , C: 0.0010 to 0.150%, Si: 0.3
0% or less, Mn: 1.5% or less, P: 0.080% or less, S: 0.005 to 0.020
%, Al: 0.005 to 0.080%, and if necessary, Ti, Nb,
Continuous casting of molten steel containing 0.001 to 0.100% of one or two selected from B, the balance of which is iron and inevitable impurities, and the slab has an average cooling rate in the range of 1400 to 1000 ° C. In the process of cooling at 2 ° C / sec or more, hot rolling with a reduction ratio (thickness of slab / thickness of hot rolling) of 1.0 to 20 is performed, followed by cold rolling and annealing. It is in the method of manufacturing rolled steel sheets.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

高強度鋼板を従来技術で製造すると、合金コストが高く
なることは前記のとおりであるが、本発明者は低合金化
で高強度冷延鋼板の製造方法について種々の研究を行っ
た結果、連続鋳造時の鋳片厚みを薄くし、その鋳片の冷
却速度をコントロールすることにより、低合金化で、し
かも操業コストの低い、高強度冷延鋼板の製造が可能で
あることを知見し、本発明を完成させたものである。
As described above, when the high-strength steel sheet is manufactured by the conventional technique, the alloy cost is increased, but as a result of various studies on the method for producing the high-strength cold-rolled steel sheet with low alloying, the present inventor continuously We have found that it is possible to manufacture high-strength cold-rolled steel sheets with low alloying cost and low operating cost by reducing the thickness of the slab during casting and controlling the cooling rate of the slab. The invention was completed.

先ず、本発明の鋼板の成分限定について説明する。First, the component limitation of the steel sheet of the present invention will be described.

Cはその含有量が多いほど硬質化、高強度化することが
知られている。しかし、冷延鋼板はプレス加工されるこ
とが多く、単に高強度化のみでなく加工性も兼備させる
必要がある。そのため、C量が0.150%を超えると、加
工性、溶接性に問題が生じる。そのためC量の上限を0.
150%に限定した。一方C量が低くなっても本発明の特
徴を損なわない。したがって、C量の下限は現在の製鉄
技術で可能な0.0010%とした。
It is known that the higher the content of C, the harder and the higher the strength. However, cold-rolled steel sheets are often pressed, and it is necessary to have not only high strength but also workability. Therefore, if the C content exceeds 0.150%, problems occur in workability and weldability. Therefore, the upper limit of C amount is 0.
Limited to 150%. On the other hand, even if the amount of C becomes low, the characteristics of the present invention are not impaired. Therefore, the lower limit of the amount of C is set to 0.0010%, which is possible with the current steelmaking technology.

SiもCと同様に添加量の増加とともに高強度化する元素
であることが、良く知られている。しかし、0.30%を超
えると鋼板の化成処理性を劣化する。そのためSi量の上
限を0.30%と限定した。また、0.01%以下になると強度
上昇に効果が少くなるので好ましくはSi量を0.30〜0.01
の範囲がよい。
It is well known that Si, like C, is an element that increases in strength as the amount of addition increases. However, if it exceeds 0.30%, the chemical conversion treatability of the steel sheet deteriorates. Therefore, the upper limit of the amount of Si is limited to 0.30%. Further, if it is 0.01% or less, the effect of increasing the strength becomes small, so the Si content is preferably 0.30 to 0.01.
The range is good.

Mnも高強度化に有効な元素である。1.5%以上ではその
効果が飽和し、コスト上昇になる。またSによる熱間加
工ワレを防ぐため、0.05%以上が好ましい。
Mn is also an effective element for increasing strength. If it exceeds 1.5%, the effect will be saturated and the cost will increase. Further, in order to prevent the hot working crack due to S, 0.05% or more is preferable.

Pは固溶体強化型の元素であることが良く知られてい
る。しかしP量が増加すると、Pが粒界に偏析し、加工
時に二次加工割れといわれている脆性破壊が生じる。そ
のため、上限を0.080%と限定した。下限については特
に限定する必要なく、不純物の範囲であっても、本発明
の効果にはなんらの影響を与えない。
It is well known that P is a solid solution strengthening type element. However, when the amount of P increases, P segregates at the grain boundaries, causing brittle fracture called secondary work cracking during working. Therefore, the upper limit was limited to 0.080%. The lower limit does not need to be particularly limited, and the effect of the present invention is not affected even if it is within the range of impurities.

Sは従来、鋼板の高強度化に寄与しないとされていた。
しかし、本発明の方法では、Sも高強度化に有効な元素
である。S量が0.013%以下では本発明の特徴である高
強度化に寄与しない。そのためS量の下限を0.013%に
限定した。S量が高くなると、良く知られているよう
に、赤熱脆性による表面欠陥が生じる。この理由によ
り、S量の上限を0.025%に限定した。
It has been conventionally said that S does not contribute to the strengthening of the steel sheet.
However, in the method of the present invention, S is also an element effective for increasing the strength. When the S content is 0.013% or less, it does not contribute to the high strength which is a feature of the present invention. Therefore, the lower limit of the amount of S is limited to 0.013%. As is well known, when the amount of S is high, surface defects due to red heat embrittlement occur. For this reason, the upper limit of the amount of S is limited to 0.025%.

Alはキルド鋼とするため、0.005%は必要である。0.08
%を超えると、鋳造時の鋳片欠陥や、鋼板の表面疵の原
因となる。従って、Al量を0.005〜0.070%に限定した。
Since Al is killed steel, 0.005% is necessary. 0.08
If it exceeds%, it causes a slab defect during casting and a surface flaw of the steel sheet. Therefore, the amount of Al is limited to 0.005 to 0.070%.

以上が本発明の基本組成であるが、必要により更に他の
特性を附与するために、Ti≦0.10%,Nb≦0.10%,B≦0.0
050%を単独もしくは合計で0.0010〜0.100%添加するこ
とができる。これらの元素はいずれも加工性を向上する
のに有利なN,Cを固定させる炭窒化物形成元素である。
0.0010%未満では、その効果がない。またTi,Nbは本発
明にあっては、強化元素として極めて有効に作用する
が、Ti,Nb,Bの単独または複合で0.100%を超えると、逆
に加工性を劣化させ、また再結晶温度上昇を招き、焼鈍
温度上昇によるコストアップにもなる。
The above is the basic composition of the present invention, but in order to add other properties as necessary, Ti ≦ 0.10%, Nb ≦ 0.10%, B ≦ 0.0
050% can be added alone or in total of 0.0010 to 0.100%. All of these elements are carbonitride forming elements that fix N and C, which are advantageous for improving workability.
If it is less than 0.0010%, it has no effect. Further, in the present invention, Ti, Nb acts extremely effectively as a strengthening element, but if Ti, Nb, B alone or in combination exceeds 0.100%, the workability is adversely deteriorated, and the recrystallization temperature is also increased. This leads to an increase in the temperature, which also increases the cost due to the increase in the annealing temperature.

その他の鋼中に含まれる不可避的不純物は極力避けるこ
とが望ましいが、特に限定しない。
It is desirable to avoid unavoidable impurities contained in other steels as much as possible, but it is not particularly limited.

次に上記の如き限定成分の高強度鋼板の製造方法につい
て説明する。まず鋳片の冷却速度の限定理由について述
べる。
Next, a method for manufacturing the high strength steel sheet having the above-described limited components will be described. First, the reasons for limiting the cooling rate of the slab will be described.

組成が、C:0.040%,Si:0.010%,Mn:0.25%,P:0.010%,
S:0.015%,Al:0.03%,の鋼A;C:0.10%,Si:0.10%,Mn:
0.50%,P:0.020%,S:0.013%,Al:0.05%,の鋼B;C:0.00
25%,Si:0.10%,Mn:0.35%,P:0.055%,S:0.013%,Al:0.
035%,Ti:0.030%,Nb:0.010%,B:0.0010%の鋼Cについ
て、鋳片厚み、40mmおよび8.0mmを有する鋳造後の高温
鋳片を直ちに冷却速度を種々変え、厚み8.0mm材は4.0mm
まで熱間圧延を行ない、厚み4.0mm材は熱延を行なわな
いで鋼帯とした。
The composition is C: 0.040%, Si: 0.010%, Mn: 0.25%, P: 0.010%,
S: 0.015%, Al: 0.03%, Steel A; C: 0.10%, Si: 0.10%, Mn:
0.50%, P: 0.020%, S: 0.013%, Al: 0.05%, Steel B; C: 0.00
25%, Si: 0.10%, Mn: 0.35%, P: 0.055%, S: 0.013%, Al: 0.
For steel C of 035%, Ti: 0.030%, Nb: 0.010%, B: 0.0010%, the high-temperature slabs after casting with slab thicknesses of 40 mm and 8.0 mm were immediately changed in various cooling rates to obtain 8.0 mm thick materials. Is 4.0 mm
Hot rolling was performed until 4.0 mm thick material was used as a steel strip without hot rolling.

この鋼帯を脱スケール後に0.80mmまで冷延し、鋼A,Bは7
25℃×1分、鋼Cは775℃×1分の焼純を行ない、1.0%
の調質圧延後に材質特性を調査した。
After descaling this steel strip, it was cold rolled to 0.80 mm and steel A and B were
25 ℃ × 1min, Steel C 775 ℃ × 1min
Material properties were investigated after temper rolling.

鋳片の冷却速度と引張強さの関係を第1図に示した。第
1図より鋳片の冷却速度(1400〜1000℃までの平均速
度)が2℃/sec以上になれば、鋼板の引張強さが高くな
ることが判る。なお、上記冷却速度の上限を1400℃に決
めたのは鋳造温度より定め、また、下限はこれ以下で析
出物形成元素が析出すると粗大析出物となり冷延,焼鈍
後の強度上昇に寄与しないので1000℃と定めた。また図
中の実線は、熱間圧延が無く、直接冷間圧延に供したも
のであり、破線は熱間圧延を行ない、冷間圧延を行なっ
たものである。鋳片の冷却過程で50%の圧延では熱間圧
延の有無によって鋼板の強度がほとんど変っておらず、
また鋳片の冷却速度の影響も熱延の有無によってあまり
変っていない。
The relationship between the cooling rate of the slab and the tensile strength is shown in FIG. It can be seen from FIG. 1 that the tensile strength of the steel sheet increases when the cooling rate of the slab (average rate from 1400 to 1000 ° C) is 2 ° C / sec or more. The upper limit of the cooling rate is set to 1400 ° C. by the casting temperature, and the lower limit is less than this, and when the precipitate-forming element is deposited, it becomes a coarse precipitate and does not contribute to the strength increase after cold rolling and annealing. It was set to 1000 ℃. Further, the solid line in the figure is the one directly subjected to cold rolling without hot rolling, and the broken line is the one subjected to hot rolling and cold rolling. In the cooling process of the slab, at 50% rolling, the strength of the steel sheet hardly changes depending on the presence or absence of hot rolling,
Further, the influence of the cooling rate of the slab does not change much depending on the presence or absence of hot rolling.

次に鋳片の冷却速度を50℃/secと一定とし、鋳片の厚み
を変え、冷却途中の熱間圧下比(鋳片厚み/熱延終了厚
み)を種々変えて、熱延板とし、脱スケール後、0.80mm
まで冷延し、鋼A,Bは725℃×1分、鋼Cは775℃×1分
の焼鈍後、1.0%の調質圧延後に材質特性を調査した。
その引張強度と熱間圧延比の関係を第2図に示した。第
2図より判るように、圧下比:1.0即ち熱延なし材も含め
て、熱間圧延比が小さい領域では引張強さが高い水準と
なるが、圧下比が20を越えると、強度が低下する。第1
図および第2図に示す事実より鋳片の冷却速度(1400〜
1000℃の平均冷却速度)を2℃/sec以上、熱間圧下比を
1.0〜20に限定した。
Next, the cooling rate of the slab is kept constant at 50 ° C / sec, the thickness of the slab is changed, and the hot rolling reduction ratio (cast slab thickness / hot rolling end thickness) is variously changed to form a hot rolled sheet, 0.80mm after descaling
After cold rolling, steels A and B were annealed at 725 ° C. for 1 minute, and steel C was annealed at 775 ° C. for 1 minute and tempered at 1.0%, and the material properties were investigated.
The relationship between the tensile strength and the hot rolling ratio is shown in FIG. As can be seen from Fig. 2, when the rolling ratio is 1.0, that is, including the material without hot rolling, the tensile strength is high in the region where the hot rolling ratio is small, but when the rolling ratio exceeds 20, the strength decreases. To do. First
From the facts shown in Fig. 2 and Fig. 2, the cooling rate of the slab (1400 ~
1000 ℃ average cooling rate) 2 ℃ / sec or more, hot reduction ratio
Limited to 1.0 to 20.

熱延を行なわずに、鋳片の冷却速度の制御のみにより高
強度鋼板が得られるが、熱延を行う場合も鋳片の冷却速
度の制御を行えば同様の効果がある。
A high-strength steel sheet can be obtained only by controlling the cooling rate of the slab without hot rolling, but the same effect can be obtained by controlling the cooling rate of the slab when hot rolling is performed.

熱延を行う時は、その仕上温度がAr3点以下となると、
加工性の劣化、面内異方性が大きくなるので、Ar3点以
上で熱延を終了することが望ましい。
When performing hot rolling, if the finishing temperature is less than Ar 3 points,
Since workability deteriorates and in-plane anisotropy increases, it is desirable to finish hot rolling at the Ar 3 point or higher.

Ar3点通過時の冷却速度は、通常のホット・ストリップ
工程で行なわれている場合と同様に強制冷却を行うこと
が望ましい。またコイルとして捲取る温度は本発明では
700℃以下で行っている。続いて、脱スケール後冷間圧
延を行う。その時の冷間圧下率は通常の従来工程と同様
に60〜90%の範囲で行う。
As for the cooling rate when passing through the Ar 3 points, it is desirable to carry out forced cooling as in the case of being carried out in a normal hot strip process. In the present invention, the temperature at which the coil is wound is
The temperature is below 700 ℃. Then, after descaling, cold rolling is performed. The cold reduction at that time is performed in the range of 60 to 90% as in the usual conventional process.

焼鈍は、箱焼鈍方式、連続焼鈍方式でも本発明の効果を
損うことはなく、再結晶温度以上Ar3点以下の温度範囲
内で実施される。焼純板は必要に応じ、調質圧延後に成
品に供される。
The box annealing method or the continuous annealing method does not impair the effects of the present invention, and the annealing is performed within a temperature range of the recrystallization temperature or higher and the Ar 3 point or lower. If necessary, the baked pure plate is subjected to temper rolling and then provided as a product.

本発明の方法で製造された冷延鋼板は、亜鉛メッキ、Al
メッキ、Snメッキ、その他の合金メッキ等の表面処理原
板として使用しても本発明の特徴を有する。
The cold-rolled steel sheet produced by the method of the present invention is galvanized, Al
Even when it is used as a surface-treated original plate for plating, Sn plating, other alloy plating, etc., it has the features of the present invention.

実施例 第1表に示す、成分および製造条件で冷延鋼板を製造
し、その材質特性を同表に示した。すなわち、鋳片の板
厚および冷却速度を変え、熱延の有無材および、従来の
スラブー熱延工程を経て製造された熱延板を酸洗後、76
%の冷延率で0.80mmまで冷延し、第1表記載の焼鈍を行
い、1.0%の調質圧延を行い、材質特性を調査した。
Example Cold-rolled steel sheets were manufactured under the components and manufacturing conditions shown in Table 1, and the material properties are shown in the table. That is, the thickness of the slab and the cooling rate are changed, and the hot-rolled sheet with or without hot-rolling and the hot-rolled sheet manufactured through the conventional slavu hot-rolling process are pickled,
% Cold rolling to 0.80 mm, annealing as shown in Table 1 and temper rolling of 1.0% were performed, and the material properties were investigated.

第1表の結果から、本発明の方法で製造したものは、本
発明以外の方法で製造されたものより、高い引張強度
(TS≧35kgf/mm2)が容易に得られていることがわか
る。特にコイルNo.B2,B3は従来工程で製造されたもの
より強度が高いのみでなく、絞り性の指標である、値
も若干すぐれていることがわかる。
From the results shown in Table 1, it can be seen that higher tensile strength (TS ≧ 35 kgf / mm 2 ) can be easily obtained by the method produced by the method of the present invention than by the method produced by other methods. . In particular, coil Nos. B 2 and B 3 are not only stronger than those manufactured by the conventional process, but also have a slightly superior value, which is an index of drawability.

本発明は上記実施例からも明らかなごとく、限定成分の
溶鋼を従来技術の如く、強力な熱間圧延機列による累積
の大圧下の熱延を行うことなく、少しの熱間圧延、もし
くは熱延を行なわなくても、鋳造後の冷却速度のコント
ロールにより従来に比して、低合金で35kgf/mm2以上の
高強度冷延鋼板の製造が可能となった。この結果は工程
の省力化にともなう省エネルギー、コストの大幅な低減
を可能とし、工業的に著しく有用な発明である。
The present invention, as is clear from the above examples, does not perform hot rolling under a cumulative large reduction by a row of strong hot rolling mills, as in the prior art, with molten steel having a limited component, or a small amount of hot rolling or hot rolling. Even without rolling, control of the cooling rate after casting made it possible to manufacture high-strength cold-rolled steel sheets of 35 kgf / mm 2 or more with a lower alloy than before. As a result, it is possible to save energy with the labor saving of the process and to significantly reduce the cost, which is an industrially extremely useful invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は鋳造後の鋳片の冷却速度と鋼板の引張強さの関
係を示す図、第2図は熱延圧下比と引張強さとの関係を
示す図である。
FIG. 1 is a diagram showing the relationship between the cooling rate of the cast slab after casting and the tensile strength of the steel sheet, and FIG. 2 is a diagram showing the relationship between the hot rolling reduction ratio and the tensile strength.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.0010〜0.150%、Si:0.30%
以下、Mn:1.5%以下、P:0.080%以下、S:0.013〜0.25
%、Al:0.005〜0.070%を含有し、残部が鉄および不可
避的不純物からなる溶鋼を連続鋳造して薄鋳片とし、得
られた鋳片を1400〜1000℃範囲での平均冷速が2℃/sec
以上で冷却する過程で圧下比(鋳片厚み/熱延終了厚
み)が1.0〜20の熱間圧延を行い、次いで冷延、焼鈍す
ることを特徴とする高強度冷延鋼板の製造法。
1. By weight%, C: 0.0010 to 0.150%, Si: 0.30%
Below, Mn: 1.5% or less, P: 0.080% or less, S: 0.013 to 0.25
%, Al: 0.005 to 0.070%, with the balance being iron and unavoidable impurities, the molten steel is continuously cast into thin cast pieces, and the obtained cast pieces have an average cold speed of 2 in the range of 1400 to 1000 ° C. ° C / sec
A method for producing a high-strength cold-rolled steel sheet, comprising performing hot rolling with a reduction ratio (thickness of slab / thickness of hot rolling) of 1.0 to 20 in the cooling process, followed by cold rolling and annealing.
【請求項2】重量%で、C:0.0010〜0.150%、Si:0.30%
以下、Mn:1.5%以下、P:0.080%以下、S:0.013〜0.025
%、Al:0.005〜0.070%を含有し、更にTi:0.10%以下、
Nb:0.050%以下、B:0.0050%以下を単独又は合計で0.00
10〜0.100%を含有し、残部が鉄および不可避的不純物
からなる溶鋼を連続鋳造して薄鋳片とし、得られた鋳片
を1400〜1000℃範囲での平均冷速が2℃/sec以上で冷却
する過程で圧下比(鋳片厚み/熱延終了厚み)が1.0〜2
0の熱間圧延を行い、次いで、冷延、焼鈍することを特
徴とする高強度冷延鋼板の製造法。
2. C: 0.0010 to 0.150%, Si: 0.30% by weight
Below, Mn: 1.5% or less, P: 0.080% or less, S: 0.013 to 0.025
%, Al: 0.005 to 0.070%, and Ti: 0.10% or less,
Nb: 0.050% or less, B: 0.0050% or less alone or in total 0.00
Molten steel containing 10 to 0.100% and the balance iron and unavoidable impurities is continuously cast into thin slabs, and the obtained slabs have an average cold speed of 2 ° C / sec or more in the range of 1400 to 1000 ° C. Reduction ratio (thickness of slab / thickness of hot rolling) is 1.0 to 2 in the process of cooling with
A method for producing a high-strength cold-rolled steel sheet, which comprises hot rolling at 0, followed by cold rolling and annealing.
JP61046815A 1986-03-04 1986-03-04 Manufacturing method of high strength cold rolled steel sheet Expired - Lifetime JPH0756049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046815A JPH0756049B2 (en) 1986-03-04 1986-03-04 Manufacturing method of high strength cold rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046815A JPH0756049B2 (en) 1986-03-04 1986-03-04 Manufacturing method of high strength cold rolled steel sheet

Publications (2)

Publication Number Publication Date
JPS62205231A JPS62205231A (en) 1987-09-09
JPH0756049B2 true JPH0756049B2 (en) 1995-06-14

Family

ID=12757829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046815A Expired - Lifetime JPH0756049B2 (en) 1986-03-04 1986-03-04 Manufacturing method of high strength cold rolled steel sheet

Country Status (1)

Country Link
JP (1) JPH0756049B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110296A (en) * 1998-04-28 2000-08-29 Usx Corporation Thin strip casting of carbon steels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725203A (en) * 1980-07-18 1982-02-10 Nippon Steel Corp Production of stainless steel plate and wire
JPS5943825A (en) * 1982-09-07 1984-03-12 Sumitomo Metal Ind Ltd Manufacture of cold rolled steel plate for press forming

Also Published As

Publication number Publication date
JPS62205231A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
JP2001288543A (en) Ferritic stainless steel excellent in surface property and corrosion resistance, and its production method
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JPH0681036A (en) Production of ferritic stainless steel sheet excellent in ridging characteristic and workability
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JP2830745B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent surface properties
JP3293424B2 (en) Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet
JPH0756049B2 (en) Manufacturing method of high strength cold rolled steel sheet
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
KR100613472B1 (en) Method for producing cold-rolled bands or sheets
JPH0557332B2 (en)
JPH09256065A (en) Production of ferritic stainless steel thin sheet excellent in surface property
JPH09256064A (en) Production of ferritic stainless steel thin sheet excellent in roping characteristic
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JPH1017994A (en) High strength alloyed galvanized steel sheet for deep drawing excellent in secondary working embrittlement resistance
JP3366661B2 (en) Manufacturing method of high tensile cold rolled steel sheet with excellent deep drawability
JPH09310155A (en) Austenitic stainless steel excellent in surface characteristic after working
JPH0137454B2 (en)
JP4360009B2 (en) Cold rolled steel sheet for enamel and manufacturing method
JPH05230542A (en) Production of high tensile strength hot dip plated steel sheet excellent in workability
JPH03111519A (en) Production of high strength hot dip galvanized steel sheet having high r-value
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
JPH05339643A (en) Production of high strength cold rolled steel sheet excellent in deep drawability and galvanized steel sheet
JPH10287929A (en) Production of cold rolled steel sheet for deep drawing small in plane anisotropy of r value

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term