JPH0755901A - Discharge capacity testing method for series connection set battery - Google Patents

Discharge capacity testing method for series connection set battery

Info

Publication number
JPH0755901A
JPH0755901A JP5217992A JP21799293A JPH0755901A JP H0755901 A JPH0755901 A JP H0755901A JP 5217992 A JP5217992 A JP 5217992A JP 21799293 A JP21799293 A JP 21799293A JP H0755901 A JPH0755901 A JP H0755901A
Authority
JP
Japan
Prior art keywords
secondary battery
battery cell
assembled battery
discharge capacity
cell array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5217992A
Other languages
Japanese (ja)
Other versions
JP3199202B2 (en
Inventor
Mikio Yamazaki
幹夫 山▲崎▼
Nobuhiro Takahashi
信浩 高橋
Kazuhiko Takeno
和彦 竹野
Takashi Yamashita
隆司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21799293A priority Critical patent/JP3199202B2/en
Publication of JPH0755901A publication Critical patent/JPH0755901A/en
Application granted granted Critical
Publication of JP3199202B2 publication Critical patent/JP3199202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To test without trouble in a backup function by connecting redundantly one or more secondary cell rows to constitute a set battery, and providing bypass routes in the respective rows. CONSTITUTION:A set battery B1 having one redundant secondary cell row (hereinafter referred to as 'a row') is fully charged. When a switch SW S1 is switched from a terminal X to a terminal Y from this state, a charge current of the row A1 flows to a discharge capacity measuring circuit J, and a retained electric energy of the row A1 is measured. After a discharge test is finished, the SW S1 is switched to the terminal X, and the row A1 is again charged from a charging circuit C. Then, when SWs S2a and S2b are switched to the terminal Y, a current of a row A2 flows to the circuit J, and a retained electric energy of the row A2 is measured. The SWs S2a and S2b are switched to the terminal X, and the row A2 is again charged. Similarly, rows A3-An are sequentially conducted in series of operations, and a discharge capacity test of the entire battery B1 is conducted. When a sum total of the power capacity of the rows A1-An is obtained, the power capacity of the entire battery B1 can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、停電バックアップ電源
の組電池構成法に係わり、特にバックアップ機能を継続
したまま電池の保有電力量を自動的に計測する直列接続
組電池の放電容量試験方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of constructing a battery pack for a power failure backup power supply, and more particularly to a method for testing the discharge capacity of a series-connected battery pack that automatically measures the amount of power stored in the battery while continuing the backup function. It is a thing.

【0002】[0002]

【従来の技術】図5は、従来の停電バックアップ電源の
一例を示す回路図である。
2. Description of the Related Art FIG. 5 is a circuit diagram showing an example of a conventional power failure backup power supply.

【0003】この従来例において、2次電池セルが直列
接続されて2次電池セル列A1、A2、A3を構成し、
2次電池セル列A1、A2、A3が直列接続されて組電
池Bを構成している。充電回路Cは、入力電源Eの電圧
を、2次電池セル列A1、A2、A3を充電する電圧に
整合するものであり、負荷Lに供給する電圧を出力電圧
安定化回路Sが安定化している。
In this conventional example, secondary battery cells are connected in series to form a secondary battery cell array A1, A2, A3,
Secondary battery cell rows A1, A2, A3 are connected in series to form an assembled battery B. The charging circuit C matches the voltage of the input power source E with the voltage for charging the secondary battery cell arrays A1, A2, A3, and the output voltage stabilizing circuit S stabilizes the voltage supplied to the load L. There is.

【0004】この従来例において、通常状態(入力電源
Eの電圧が正常な状態)では、充電回路Cによって、組
電池B内の2次電池セル列A1〜A3を充電するに適当
な電圧に入力電源Eの出力電圧が整合され、組電池Bの
充電を行い、停電状態(入力電源Eが停止した状態)で
は、組電池Bから負荷Lに電力が供給されるとともに、
出力電圧安定化回路Sが、負荷Lが必要とする電圧に組
電池Bの端子電圧を整合させて出力する。
In this conventional example, in a normal state (a state in which the voltage of the input power source E is normal), the charging circuit C inputs a voltage suitable for charging the secondary battery cell rows A1 to A3 in the assembled battery B. The output voltage of the power source E is matched, the assembled battery B is charged, and in the power failure state (the state where the input power source E is stopped), the assembled battery B supplies power to the load L, and
The output voltage stabilizing circuit S matches the terminal voltage of the assembled battery B with the voltage required by the load L and outputs the voltage.

【0005】また、組電池Bは、負荷Lが必要とする電
力と、出力電圧安定化回路Sで消費される電力損失との
和の電力に、保証すべき許容停電継続時間を乗じて得ら
れる必要電力容量を保有している必要がある。さらに、
組電池Bを構成する2次電池セルは時間の経過とともに
生じる経年劣化によってその最大保有電力容量が減少す
るので、必要期間に劣化して減少する電力容量分を当初
から余分に含んだ初期電力容量を、組電池Bに準備して
おく必要がある。このように組電池を構成することによ
って、バックアップ電源は、必要期間において許容停電
継続時間、停電バックアップを持続することが可能とな
る。
The battery pack B is obtained by multiplying the sum of the power required by the load L and the power loss consumed by the output voltage stabilizing circuit S by the allowable blackout duration to be guaranteed. Must have the required power capacity. further,
Since the maximum power capacity of the secondary battery cells that form the battery pack B decreases over time due to deterioration over time, the initial power capacity that includes an extra amount of power capacity that deteriorates and decreases during the required period from the beginning. Must be prepared in the assembled battery B. By configuring the assembled battery in this way, the backup power supply can continue the allowable power outage duration and the power outage backup in the required period.

【0006】[0006]

【発明が解決しようとする課題】ところで、2次電池セ
ルが劣化する特性は、その2次電池セルが置かれている
温湿度環境条件、充放電回数等に影響されるので、ある
時点において組電池Bの保有電力が必要電力容量を実際
に保有しているか否かについては、その組電池Bを実際
に放電することによって、放電容量試験(保有電力量の
計測)を実施しなければ確定できない。この場合、放電
容量試験のために組電池Bを放電すると、組電池Bの再
充電が完了するまでの間は、バックアップ機能が低下ま
たは停止することになる。
By the way, since the characteristics of the deterioration of the secondary battery cell are affected by the temperature and humidity environmental conditions in which the secondary battery cell is placed, the number of times of charging and discharging, etc. Whether or not the power held by the battery B actually holds the required power capacity cannot be determined unless the discharge capacity test (measurement of the amount of power held) is performed by actually discharging the battery pack B. . In this case, when the assembled battery B is discharged for the discharge capacity test, the backup function is lowered or stopped until the recharge of the assembled battery B is completed.

【0007】上記従来例においては、放電容量試験時に
バックアップ機能の低下または停止を阻止するために、
放電容量試験中またはその試験の直後であって組電池B
が再充電されていない間に、停電が発生しても支障が生
じないように、組電池Bと同等以上の電力容量を有する
充電された組電池を予備として事前に用意し、この予備
の組電池と実際の組電池Bとを交換または並列接続した
後に、放電容量試験を実施している。しかし、上記のよ
うに予備の組電池と実際の組電池Bとを交換または並列
接続した後に、放電容量試験を実施するようにすると、
予備の組電池分のコストの上昇、設置スペースの増大と
いう問題が生じる。
In the above conventional example, in order to prevent the backup function from being deteriorated or stopped during the discharge capacity test,
Battery B during the discharge capacity test or immediately after that test
In order not to cause trouble even if a power failure occurs while the battery pack is not recharged, a charged battery pack having a power capacity equal to or higher than that of the battery pack B is prepared in advance as a spare, and this spare battery pack is used. The discharge capacity test is performed after the battery and the actual assembled battery B are exchanged or connected in parallel. However, when the spare battery pack and the actual battery pack B are exchanged or connected in parallel as described above and then the discharge capacity test is carried out,
There is a problem that the cost of the spare assembled battery increases and the installation space increases.

【0008】本発明は、予備の組電池を設けなくても、
バックアップ機能を確保することができる直列接続組電
池の放電容量試験方法を提供することを目的とするもの
である。
According to the present invention, even if a spare assembled battery is not provided,
An object of the present invention is to provide a discharge capacity test method for series-connected assembled batteries that can ensure a backup function.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、2次電池セル列を少なくとも1つ冗長に直列に接続
するように組電池を構成し、組電池を充電した後、組電
池内の冗長な数以下の2次電池セル列を選択し、組電池
から出力される電流の通路を形成するように、選択され
た2次電池セル列をバイパスする経路を設け、選択され
た2次電池セル列を組電池から切り離し、選択された2
次電池セル列を放電したときの放電電力量を計測するこ
とによって、選択された2次電池セル列の保有電力量を
求める方法である。
According to a first aspect of the present invention, an assembled battery is constructed so that at least one secondary battery cell column is redundantly connected in series, and the assembled battery is charged and then the assembled battery is charged. A secondary battery cell array of a number equal to or less than the redundant number is selected, and a path that bypasses the selected secondary battery cell array is provided so as to form a path for the current output from the assembled battery. The next battery cell row is disconnected from the assembled battery and selected
This is a method of obtaining the amount of electric power held by the selected secondary battery cell row by measuring the amount of electric power discharged when the secondary battery cell row is discharged.

【0010】請求項2に記載の発明は、請求項1に記載
の発明にさらに、放電した2次電池セル列について、組
電池内への接続、バイパス経路の解除、再充電を行った
後に、上記保有電力量を求めた2次電池セル列以外の2
次電池セル列のそれぞれについて、バイパス経路の設
置、組電池からの切り離し、放電、放電電力量の計測、
組電池内への接続、バイパス経路の解除、再充電の一連
の動作を、順次実行することによって、組電池全体の放
電容量試験を行う方法である。
According to a second aspect of the present invention, in addition to the first aspect of the invention, after the discharged secondary battery cell array is connected to the assembled battery, the bypass route is released, and recharged, 2 other than the rechargeable battery cell row for which the above-mentioned stored power amount was obtained
For each secondary battery cell row, installation of a bypass path, disconnection from the assembled battery, discharge, measurement of discharge electric energy,
This is a method of performing a discharge capacity test of the entire assembled battery by sequentially performing a series of operations of connecting into the assembled battery, releasing the bypass path, and recharging.

【0011】[0011]

【作用】請求項1に記載の発明は、2次電池セル列を少
なくとも1つ冗長に直列に接続するように組電池を構成
し、組電池を充電した後、組電池内の冗長な数以下の2
次電池セル列を選択し、この選択された2次電池セル列
をバイパスする経路を設け、選択された2次電池セル列
を組電池から切り離し、選択された2次電池セル列を放
電したときの放電電力量を計測することによって、選択
された2次電池セル列の保有電力量を求めるので、予備
の組電池を設けなくても、組電池のバックアップ機能を
確保することができ、しかも、組電池を構成する複数の
2次電池セル列を同時期に設置すれば、各2次電池セル
列の放電容量は互いにほぼ同じであることが多いことか
ら、1つの2次電池セル列のみを放電させ、その放電量
を測定し、他の2次電池セル列の放電量もそれと同じで
あると仮定すれば、組電池全体の放電容量の測定操作が
容易である。
According to the first aspect of the present invention, the assembled battery is configured so that at least one secondary battery cell row is redundantly connected in series, and after the assembled battery is charged, the number of redundant batteries in the assembled battery is equal to or less than the redundant number. Of 2
When a secondary battery cell row is selected, a path that bypasses the selected secondary battery cell row is provided, the selected secondary battery cell row is disconnected from the assembled battery, and the selected secondary battery cell row is discharged Since the amount of electric power possessed by the selected secondary battery cell row is obtained by measuring the amount of electric power discharged, the backup function of the assembled battery can be ensured without providing a spare assembled battery. If a plurality of rechargeable battery cell arrays that form an assembled battery are installed at the same time, the discharge capacities of the rechargeable battery cell arrays are often almost the same, so that only one rechargeable battery cell array is installed. If the discharge amount is measured, the discharge amount is measured, and the discharge amounts of the other secondary battery cell rows are also the same, it is easy to measure the discharge capacity of the entire assembled battery.

【0012】請求項2に記載の発明は、全ての2次電池
セル列について、バイパス経路の設置、組電池からの切
り離し、放電、放電電力量の計測、組電池内への接続、
バイパス経路の解除、再充電の一連の動作を、順次実行
することによって、組電池全体の放電容量試験を行うの
で、予備の組電池を設けなくても、組電池のバックアッ
プ機能を確保することができ、しかも、より確実な放電
容量測定データを得ることができる。
According to a second aspect of the present invention, for all the secondary battery cell rows, installation of bypass paths, disconnection from the assembled battery, discharge, measurement of discharged power amount, connection to the assembled battery,
Since the discharge capacity test of the entire assembled battery is performed by sequentially performing a series of operations of releasing the bypass path and recharging, it is possible to secure the backup function of the assembled battery without providing a spare assembled battery. In addition, more reliable discharge capacity measurement data can be obtained.

【0013】[0013]

【実施例】図1は、本発明の第1実施例を示す回路図で
ある。
1 is a circuit diagram showing a first embodiment of the present invention.

【0014】この第1実施例は、互いに直列接続された
複数の2次電池セルで構成された2次電池セル列A1、
A2、A3〜Anが直列接続されることによって組電池
B1が構成され、この組電池B1に蓄積された電力によ
って、電源の持続性を保証する停電バックアップ電源で
あり、2次電池セル列A1〜Anの1つを除外しても所
定時間のバックアップ動作が可能なように、1つの2次
電池セル列が冗長なものである。
In the first embodiment, a secondary battery cell array A1 composed of a plurality of secondary battery cells connected in series with each other,
The assembled battery B1 is configured by connecting A2 and A3 to An in series, and the power accumulated in the assembled battery B1 is a power failure backup power source that guarantees the continuity of the power source. One secondary battery cell column is redundant so that a backup operation for a predetermined time can be performed even if one of An is excluded.

【0015】充電回路Cは、入力電源Eの出力電圧を昇
圧したり降圧することによって、入力電源Eの出力電圧
を、2次電池セル列A1〜Anを充電する電圧に整合す
る回路であり、出力電圧安定化回路Sは、負荷Lに供給
する電圧を安定化する回路である。放電容量測定回路J
は、放電している2次電池セル列の放電容量を測定する
回路であり、たとえば、図示しない所定の負荷に放電電
流を流したときの電流値と、この負荷の両端電圧と、放
電時間とに基づいて電力容量を計測し、この測定データ
を出力するものである。
The charging circuit C is a circuit for matching the output voltage of the input power source E with the voltage for charging the secondary battery cell arrays A1 to An by raising or lowering the output voltage of the input power source E. The output voltage stabilizing circuit S is a circuit that stabilizes the voltage supplied to the load L. Discharge capacity measuring circuit J
Is a circuit for measuring the discharge capacity of the secondary battery cell row being discharged. For example, the current value when a discharge current is applied to a predetermined load (not shown), the voltage across the load, and the discharge time. The power capacity is measured based on the above, and this measurement data is output.

【0016】バイパスダイオードD1、D2、D3〜D
nは、それぞれ、2次電池セル列A1、A2、A3〜A
nと並列に接続されるべきダイオードであり、2次電池
セル列A1〜Anのうちで1つの2次電池セル列が組電
池B1から切り離されたときに、この切り離された2次
電池セル列を除く2次電池セル列が負荷Lに電流を供給
することができるように、組電池B1から出力される電
流の通路を形成するものである。
Bypass diodes D1, D2, D3 to D
n is the secondary battery cell row A1, A2, A3 to A, respectively.
n is a diode to be connected in parallel, and when one of the secondary battery cell arrays A1 to An is separated from the assembled battery B1, the separated secondary battery cell array The secondary battery cell rows except for form a passage for the current output from the assembled battery B1 so that the secondary battery cell row can supply the current to the load L.

【0017】スイッチS1は、2次電池セル列A1を組
電池B1から切り離し、切り離された2次電池セル列A
1を放電容量測定回路Jに接続させるものであり、スイ
ッチS2a、S2bは、2次電池セル列A2を組電池B
1から切り離し、切り離された2次電池セル列A2を放
電容量測定回路Jに接続させるものであり、スイッチS
3a、S3bは、2次電池セル列A3を組電池B1から
切り離し、切り離された2次電池セル列A3を放電容量
測定回路Jに接続させるものであり、スイッチSna、
Snbは、2次電池セル列Anを組電池B1から切り離
し、切り離された2次電池セル列Anを放電容量測定回
路Jに接続させるものである。
The switch S1 disconnects the secondary battery cell array A1 from the assembled battery B1 and separates the secondary battery cell array A.
1 is connected to the discharge capacity measuring circuit J, and the switches S2a and S2b connect the secondary battery cell row A2 to the assembled battery B.
1 and the secondary battery cell array A2 that has been separated is connected to the discharge capacity measuring circuit J.
3a and S3b disconnect the secondary battery cell array A3 from the assembled battery B1 and connect the separated secondary battery cell array A3 to the discharge capacity measuring circuit J.
Snb disconnects the secondary battery cell array An from the assembled battery B1 and connects the separated secondary battery cell array An to the discharge capacity measuring circuit J.

【0018】すなわち、スイッチS1の切換接片が2次
電池セル列A1の+端子に接続され、スイッチS1の接
点XがダイオードD1のカソード端子に接続され、スイ
ッチS1の接点Yが放電容量測定回路Jに接続されてい
る。また、スイッチS2aの切換接片が2次電池セル列
A2のプラス端子に接続され、スイッチS2aの接点X
がダイオードD2のカソード端子とダイオードD3のア
ノード端子とに接続され、スイッチS2aの接点Yが放
電容量測定回路Jに接続され、スイッチS2bの切換接
片が2次電池セル列A2のマイナス端子に接続され、ス
イッチS2bの接点XがダイオードD2のアノード端子
とダイオードD4のアノード端子とに接続され、スイッ
チS2bの接点Yが入力電源Eのマイナス側端子に接続
されている。
That is, the switching contact of the switch S1 is connected to the + terminal of the secondary battery cell array A1, the contact X of the switch S1 is connected to the cathode terminal of the diode D1, and the contact Y of the switch S1 is the discharge capacity measuring circuit. It is connected to J. Further, the switching contact of the switch S2a is connected to the positive terminal of the secondary battery cell array A2, and the contact X of the switch S2a is connected.
Is connected to the cathode terminal of the diode D2 and the anode terminal of the diode D3, the contact Y of the switch S2a is connected to the discharge capacity measuring circuit J, and the switching contact of the switch S2b is connected to the negative terminal of the secondary battery cell row A2. The contact X of the switch S2b is connected to the anode terminal of the diode D2 and the anode terminal of the diode D4, and the contact Y of the switch S2b is connected to the negative side terminal of the input power source E.

【0019】スイッチS3a〜S3nは、スイッチS2
aと同様に接続され、スイッチS3b〜Snbは、スイ
ッチS2bと同様に接続されている。なお、スイッチS
3aとS3bとのように、「S」の次に続く数字が同じ
スイッチは同時に切り換わり、しかも、一方のスイッチ
がX接点に接続されれば他方のスイッチもX接点に接続
されようになっている。
The switches S3a to S3n are the switches S2.
The switches S3b to Snb are connected in the same manner as a, and the switches S3b to Snb are connected in the same manner as the switch S2b. The switch S
Switches such as 3a and S3b that have the same number following "S" are switched at the same time, and if one switch is connected to the X contact, the other switch is also connected to the X contact. There is.

【0020】なお、2次電池セル列A1を切り換えるス
イッチはスイッチS1のみであるが、これは上記回路構
成における電位関係からマイナス側のスイッチを省略し
たためである。
The switch for switching the secondary battery cell array A1 is only the switch S1. This is because the switch on the minus side is omitted due to the potential relationship in the above circuit configuration.

【0021】次に、上記実施例の動作について説明す
る。
Next, the operation of the above embodiment will be described.

【0022】まず、スイッチS1、S2a〜Sna、S
2b〜Snの全てを、端子Xに切り換えておき、入力電
源Eの出力電圧が正常であれば、この出力電圧を充電回
路Cが、組電池B1内の2次電池セル列A1〜Anを充
電するに適当な電圧に整合して充電する。この結果、最
終的には組電池B1が満充電になる(組電池B1が完全
に充電された状態になる)。
First, the switches S1, S2a to Sna, S.
All of 2b to Sn are switched to the terminal X, and if the output voltage of the input power source E is normal, the charging circuit C charges this output voltage to the secondary battery cell rows A1 to An in the assembled battery B1. Charge to match the appropriate voltage. As a result, the assembled battery B1 is finally fully charged (the assembled battery B1 is in a fully charged state).

【0023】この満充電状態において、組電池B1内の
任意の1つの2次電池セル列、たとえば2次電池セル列
A1について放電容量試験を行う。つまり、スイッチS
1のみを、端子Xから端子Yに切り換える。これによっ
て、2次電池セル列A1の充電電流が放電容量測定回路
Jに流れ、放電容量測定回路Jによって、2次電池セル
列A1の保有電力量が計測される。
In this fully charged state, a discharge capacity test is performed on any one secondary battery cell array in the assembled battery B1, for example, the secondary battery cell array A1. That is, the switch S
Only 1 is switched from terminal X to terminal Y. As a result, the charging current of the secondary battery cell array A1 flows into the discharge capacity measuring circuit J, and the discharge capacity measuring circuit J measures the amount of power held in the secondary battery cell array A1.

【0024】この放電容量試験中には、2次電池セル列
A1が組電池B1から切り離されているが、ダイオード
D1によって組電池B1の負荷Lへの放電電流路が形成
され、しかも1つの2次電池セル列が冗長なものである
ように設定されているので、停電バックアップには支障
がない。
During this discharge capacity test, the secondary battery cell array A1 is separated from the assembled battery B1, but the diode D1 forms a discharge current path to the load L of the assembled battery B1, and one Since the next battery cell row is set to be redundant, there is no problem in backup of power failure.

【0025】そして、2次電池セル列A1の放電試験が
終了した後に、スイッチS1をX端子に切り換え、充電
回路Cから2次電池セル列A1に再び充電を行う。組電
池B1をたとえばトリクル充電によって充電するのであ
れば、2次電池セル列A1の接続を組電池B1に戻す前
に充電する必要がないので、スイッチS1をX接点に切
り換えるだけで、充電電流路が形成され、ダイオードD
1が逆バイアスされて放電バイパス電流路が遮断され、
充電回路Cからの充電電流の供給が再開し、2次電池セ
ル列A1への充電を開始する。
After the discharging test of the secondary battery cell array A1 is completed, the switch S1 is switched to the X terminal, and the charging circuit C charges the secondary battery cell array A1 again. If the assembled battery B1 is charged by, for example, trickle charging, it is not necessary to charge the connection of the secondary battery cell array A1 before returning to the assembled battery B1. Is formed, the diode D
1 is reverse biased and the discharge bypass current path is cut off,
The supply of the charging current from the charging circuit C is restarted, and the charging of the secondary battery cell array A1 is started.

【0026】なお、放電容量試験に供した2次電池セル
列A1を組電池B1に戻した直後であって、この2次電
池セル列A1の充電が未完了な時点で停電が生じた場
合、その2次電池セル列A1は完全に放電し、両端電圧
が零になるまでは電流を通過させるが、それ以後はダイ
オードD1が導通し、放電電流を2次電池セル列A1か
らバイパスするので、他の2次電池セル列A2〜Anの
放電によって2次電池セル列A1が逆充電される危険は
ない。
Immediately after the secondary battery cell array A1 used in the discharge capacity test is returned to the assembled battery B1, and when the secondary battery cell array A1 is not completely charged, a power failure occurs, The secondary battery cell array A1 is completely discharged, and a current is passed until the voltage across the secondary battery cell becomes zero. After that, the diode D1 conducts and the discharge current is bypassed from the secondary battery cell array A1. There is no danger that the secondary battery cell array A1 is reversely charged by discharging the other secondary battery cell arrays A2 to An.

【0027】この2次電池セル列A1への充電が完了し
た後に、別の2次電池セル列、たとえば2次電池セル列
A2について、放電容量試験を行う。この場合は、スイ
ッチS2aとS2bとをともに、端子Xから端子Yに切
り換える。これによって、2次電池セル列A2の充電電
流が放電容量測定回路Jに流れ、放電容量測定回路Jに
よって、2次電池セル列A2の保有電力量が計測され
る。
After the charging of the secondary battery cell array A1 is completed, another secondary battery cell array, for example, the secondary battery cell array A2, is subjected to a discharge capacity test. In this case, both the switches S2a and S2b are switched from the terminal X to the terminal Y. As a result, the charging current of the secondary battery cell array A2 flows into the discharge capacity measuring circuit J, and the discharge capacity measuring circuit J measures the amount of power held in the secondary battery cell array A2.

【0028】次に、2次電池セル列A3について、対応
する2つのスイッチS3a、S3bを切り換えて、2次
電池セル列A3を組電池B1から切り離し、放電し、放
電電力量を計測し、組電池B1内へ接続し、再充電する
という一連の動作を実行し、2次電池セル列A4〜An
のそれぞれについても、2次電池セル列A2、A3と同
様に、対応する2つのスイッチを切り換えて、2次電池
セル列を組電池B1から切り離し、放電し、放電電力量
を計測し、組電池B1内へ接続し、再充電するという一
連の動作を実行することによって、組電池B1の全体の
放電容量試験を行う。
Next, for the secondary battery cell array A3, the corresponding two switches S3a and S3b are switched to disconnect the secondary battery cell array A3 from the assembled battery B1, discharge the battery, measure the discharged power amount, and A series of operations of connecting to the battery B1 and recharging is executed, and the secondary battery cell rows A4 to An are executed.
Similarly to each of the secondary battery cell arrays A2 and A3, the corresponding two switches are switched to disconnect the secondary battery cell array from the assembled battery B1, discharge the battery, measure the discharged power amount, and The entire discharge capacity test of the assembled battery B1 is performed by executing a series of operations of connecting to the inside of B1 and recharging.

【0029】このようにして、最終的に組電池B1内の
全ての2次電池セル列A1〜Anの各電力容量を計測
し、2次電池セル列A1〜Anの電力容量の総和を求め
ることによって、組電池B1全体の電力容量を計測する
ことができる。
In this way, finally, the power capacities of all the secondary battery cell arrays A1 to An in the assembled battery B1 are measured and the total power capacities of the secondary battery cell arrays A1 to An are obtained. Thus, the power capacity of the entire assembled battery B1 can be measured.

【0030】したがって、上記第1実施例においては、
組電池B1内の全ての2次電池セル列について放電容量
測定を確実に行うことができ、放電容量測定を行う2次
電池セル列が冗長構成分であるので、放電容量試験中ま
たはその直後であって再充電が未了状態のときに入力電
源Eが停止したとしても、必要期間の間はバックアップ
機能を保証でき、しかも予備の組電池分ほどのコストの
上昇がなく、設置スペースの増大が少ない。
Therefore, in the first embodiment described above,
The discharge capacity can be reliably measured for all the secondary battery cell rows in the assembled battery B1, and the secondary battery cell row for which the discharge capacity measurement is performed has a redundant configuration. Therefore, during or immediately after the discharge capacity test. Therefore, even if the input power supply E is stopped when recharging is not completed, the backup function can be guaranteed for the required period, and the cost does not increase as much as the spare battery pack, and the installation space does not increase. Few.

【0031】上記実施例においては、組電池B1が満充
電となったときに、組電池B1内の1つの2次電池セル
列についてのみ放電容量試験を行っているが、組電池B
1が満充電となったときに、2つ以上の2次電池セル列
について同時に放電容量試験を行うようにしてもよい。
ただし、同時に放電容量試験を行う2次電池セル列の数
は、2次電池セル列の冗長な数以下である必要がある。
In the above embodiment, when the assembled battery B1 is fully charged, the discharge capacity test is conducted only for one secondary battery cell row in the assembled battery B1.
When 1 is fully charged, the discharge capacity test may be simultaneously performed on two or more secondary battery cell rows.
However, the number of secondary battery cell rows that are simultaneously subjected to the discharge capacity test needs to be equal to or less than the redundant number of secondary battery cell rows.

【0032】上記実施例において、複数の2次電池セル
を互いに直列接続することによって2次電池セル列を構
成しているが、複数の2次電池セルを直並列接続するこ
とによって2次電池セル列を構成するようにしてもよ
い。上記実施例において、複数の2次電池セルによって
2次電池セル列を構成しているが、1つの2次電池セル
によって2次電池セル列を構成するようにしてもよい。
また、上記実施例では、2次電池セル列A1〜Anまで
n個設けられているが、このnは任意の数であり、2次
電池セル列を2つ設けてもよく、3つ設けるようにして
もよく、また、2次電池セル列の冗長な数を2以上とし
てもよい。
In the above embodiment, a plurality of secondary battery cells are connected in series to form a secondary battery cell array, but a plurality of secondary battery cells are connected in series and parallel to each other. You may make it comprise a row. In the above-described embodiment, the secondary battery cell array is composed of a plurality of secondary battery cells, but one secondary battery cell may be composed of the secondary battery cell array.
Further, in the above embodiment, n secondary battery cell rows A1 to An are provided, but this n is an arbitrary number, and two secondary battery cell rows may be provided, or three secondary battery cell rows may be provided. Alternatively, the redundant number of secondary battery cell rows may be two or more.

【0033】すなわち、上記第1実施例は、2次電池セ
ル列を1つ以上冗長に直列に接続するように組電池を構
成し、この組電池を充電した後、組電池内の冗長な数以
下の2次電池セル列を選択し、組電池から出力される電
流の通路を形成するように、選択された2次電池セル列
をバイパスする経路を設け、選択された2次電池セル列
を組電池から切り離し、選択された2次電池セル列を放
電したときの放電電力量を計測することによって、選択
された2次電池セル列の保有電力量を求め、放電した2
次電池セル列について、組電池内への接続、バイパス経
路の解除、再充電を行った後に、保有電力量を求めた2
次電池セル列以外の2次電池セル列のそれぞれについ
て、上記バイパス経路の設置、上記組電池からの切り離
し、上記放電、上記放電電力量の計測、上記組電池内へ
の接続、上記バイパス経路の解除、上記再充電の一連の
動作を、順次実行することによって、組電池全体の放電
容量試験を行うものである。
That is, in the first embodiment, the assembled battery is constructed so that one or more secondary battery cell rows are redundantly connected in series, and after the assembled battery is charged, the redundant number in the assembled battery is increased. The following secondary battery cell array is selected, and a path that bypasses the selected secondary battery cell array is provided so as to form a passage for the current output from the assembled battery, and the selected secondary battery cell array is connected. By measuring the discharge power amount when the selected secondary battery cell column is discharged after being separated from the assembled battery, the stored power amount of the selected secondary battery cell column is obtained, and the stored secondary battery cell column is discharged.
Regarding the next battery cell row, after the connection to the assembled battery, the release of the bypass route, and the recharging, the stored electric energy was calculated 2
For each of the secondary battery cell rows other than the secondary battery cell row, installation of the bypass path, disconnection from the assembled battery, discharge, measurement of the discharged power amount, connection into the assembled battery, connection of the bypass path The discharge capacity test of the entire assembled battery is performed by sequentially executing a series of operations of releasing and recharging.

【0034】さらに、上記実施例においては、スイッチ
S1、S2a〜Sna、S2b〜Snbは機械的なスイ
ッチであるとして表示してあるが、これらのスイッチS
1、S2a〜Sna、S2b〜Snbをトランジスタ等
で構成した電子的なスイッチとし、マイクロコンピュー
タ等の指令によって切り換え制御されるものであるとし
てもよい。
Further, in the above embodiment, the switches S1, S2a to Sna, S2b to Snb are shown as mechanical switches, but these switches S
1, S2a to Sna, S2b to Snb may be electronic switches configured by transistors or the like, and may be switched and controlled by a command from a microcomputer or the like.

【0035】図2は、本発明の第2実施例を示す回路図
である。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【0036】この第2実施例は、図1に示す第1実施例
と基本的には同じであるが、第1実施例におけるスイッ
チS1、S3a〜Sna、S3b〜Snbとダイオード
D1、D3〜Dnが削除され、2次電池セル列A3〜A
nが直列接続され、スイッチS2a、S2bを介して2
次電池セル列A1とA2とA3とが直列接続され、放電
容量測定回路JがスイッチS2a、S2bを介して2次
電池セル列A2にのみ接続されている点が異なる。
This second embodiment is basically the same as the first embodiment shown in FIG. 1, but switches S1, S3a to Sna, S3b to Snb and diodes D1, D3 to Dn in the first embodiment. Are deleted, and the secondary battery cell rows A3 to A
n are connected in series, and are connected via switches S2a and S2b.
The difference is that the secondary battery cell arrays A1, A2, and A3 are connected in series, and the discharge capacity measuring circuit J is connected only to the secondary battery cell array A2 via the switches S2a and S2b.

【0037】図2に示す第2実施例においては、まず、
スイッチS2aとS2bとをX端子に切り換えておき、
入力電源Eの出力電圧が正常であれば、この出力電圧が
充電回路Cによって適当な電圧に変圧され、2次電池セ
ル列A1〜Anを充電し、組電池B1が満充電になる。
この満充電状態で、2次電池セル列A2について放電容
量試験を行うために、スイッチS2aとS2bとをY端
子に切り換える。これによって、2次電池セル列A2の
充電電流が放電容量測定回路Jに流れ、放電容量測定回
路Jによって、2次電池セル列A2の保有電力量が計測
される。
In the second embodiment shown in FIG. 2, first,
Switch S2a and S2b to the X terminal,
If the output voltage of the input power source E is normal, this output voltage is transformed into an appropriate voltage by the charging circuit C, the secondary battery cell arrays A1 to An are charged, and the assembled battery B1 is fully charged.
In this fully charged state, the switches S2a and S2b are switched to the Y terminal in order to perform the discharge capacity test on the secondary battery cell array A2. As a result, the charging current of the secondary battery cell array A2 flows into the discharge capacity measuring circuit J, and the discharge capacity measuring circuit J measures the amount of power held in the secondary battery cell array A2.

【0038】この場合、組電池B1を構成する2次電池
セル列A1〜Anを同時期に設置すれば、2次電池セル
列A1〜Anのそれぞれの放電容量は互いにほぼ同じで
あることが多いことから、1つの2次電池セル列A2の
みを放電させ、その放電量を測定し、他の2次電池セル
列の放電量もそれと同じであると考えれば、放電容量の
測定操作が容易である。しかも、組電池B1内の2次電
池セル列A2は冗長構成分であるから、放電容量試験
中、またはその直後であって再充電が未了状態のときに
入力電源Eが停止したとしても、バックアップ機能を保
証できる。
In this case, if the secondary battery cell arrays A1 to An forming the assembled battery B1 are installed at the same time, the discharge capacities of the secondary battery cell arrays A1 to An are often substantially the same. Therefore, if only one secondary battery cell array A2 is discharged, the discharge amount is measured, and the discharge amounts of the other secondary battery cell arrays are also the same, it is easy to measure the discharge capacity. is there. Moreover, since the secondary battery cell array A2 in the assembled battery B1 has a redundant configuration, even if the input power supply E is stopped during the discharge capacity test or immediately after that, and when recharging is not completed, The backup function can be guaranteed.

【0039】すなわち、上記第2実施例は、2次電池セ
ル列を1つ以上冗長に直列に接続するように組電池を構
成し、この組電池を充電した後、組電池内の冗長な数以
下の2次電池セル列を選択し、組電池から出力される電
流の通路を形成するように、選択された2次電池セル列
をバイパスする経路を設け、選択された2次電池セル列
を組電池から切り離し、選択された2次電池セル列を放
電したときの放電電力量を計測することによって、選択
された2次電池セル列の保有電力量を求めるものであ
る。
That is, in the second embodiment, the assembled battery is constructed so that one or more secondary battery cell rows are redundantly connected in series, and after the assembled battery is charged, the redundant number in the assembled battery is increased. The following secondary battery cell array is selected, and a path that bypasses the selected secondary battery cell array is provided so as to form a passage for the current output from the assembled battery, and the selected secondary battery cell array is connected. By measuring the discharge power amount when the selected secondary battery cell column is discharged after being separated from the assembled battery, the retained power amount of the selected secondary battery cell column is obtained.

【0040】図3は、図1に示す第1実施例の変形例を
示す回路図である。
FIG. 3 is a circuit diagram showing a modification of the first embodiment shown in FIG.

【0041】この変形例は、2次電池セル列A1〜An
を放電容量試験している途中でも、放電容量試験に供す
る2次電池セル列以外の2次電池セル列の充電を継続で
きるように改良した例である。つまり、図1におけるダ
イオードD1〜Dnの代わりに、2次電池セル列A1〜
Anの最大端子電圧よりも高い降伏電圧を有する定電圧
ダイオードD1z〜Dnzを設けたものである。
In this modification, the secondary battery cell rows A1 to An are used.
This is an example improved so that charging of secondary battery cell rows other than the secondary battery cell row subjected to the discharge capacity test can be continued even during the discharge capacity test. That is, instead of the diodes D1 to Dn in FIG. 1, the secondary battery cell rows A1 to
The constant voltage diodes D1z to Dnz having a breakdown voltage higher than the maximum terminal voltage of An are provided.

【0042】これによって、たとえば2次電池セル列A
2が放電容量試験のために、スイッチS2a、S2bに
よって切り離されても、定電圧ダイオードD2zの降伏
電圧と、定電圧ダイオードD2zに直列に接続される2
次電池セル列A1、A3〜Anの端子電圧との総和を越
える電圧を、充電回路Cが供給すれば、定電圧ダイオー
ドD2zを介して充電電流通路が確保される。したがっ
て、2次電池セル列A2を放電容量試験している途中で
も、放電容量試験に供する2次電池セル列A2以外の2
次電池セル列A1、A3〜Anへの充電を継続できる。
なお、2次電池セル列A2以外の2次電池セル列が放電
容量試験のために組電池B1から切り離された場合も、
上記と同様である。また、上記動作以外の動作は、図1
に示す第1実施例の動作と同じである。
Thereby, for example, the secondary battery cell array A
2 is connected in series to the breakdown voltage of the constant voltage diode D2z and the constant voltage diode D2z even if 2 is separated by the switches S2a and S2b for the discharge capacity test.
If the charging circuit C supplies a voltage exceeding the sum of the terminal voltages of the secondary battery cell arrays A1, A3 to An, the charging current path is secured via the constant voltage diode D2z. Therefore, even when the secondary battery cell array A2 is being tested for discharge capacity, the battery packs other than the secondary battery cell array A2 that are to be subjected to the discharge capacity test cannot
The charging of the next battery cell row A1, A3 to An can be continued.
In addition, when a secondary battery cell array other than the secondary battery cell array A2 is disconnected from the assembled battery B1 for the discharge capacity test,
The same as above. In addition, the operation other than the above-mentioned operation is shown in FIG.
The operation is the same as that of the first embodiment shown in FIG.

【0043】図4は、図2に示す第2実施例の変形例を
示す回路図である。
FIG. 4 is a circuit diagram showing a modification of the second embodiment shown in FIG.

【0044】この変形例は、2次電池セル列A2を放電
容量試験している途中でも、放電容量試験に供する2次
電池セル列以外の2次電池セル列の充電を継続できるよ
うに改良した例である。つまり、図2におけるダイオー
ドD2の代わりに、2次電池セル列A1〜Anの最大端
子電圧よりも高い降伏電圧を有する定電圧ダイオードD
2zを設けたものである。
This modification is improved so that the secondary battery cell rows other than the secondary battery cell row subjected to the discharge capacity test can be continuously charged even during the discharge capacity test of the secondary battery cell row A2. Here is an example. That is, instead of the diode D2 in FIG. 2, a constant voltage diode D having a breakdown voltage higher than the maximum terminal voltage of the secondary battery cell rows A1 to An.
2z is provided.

【0045】この場合も、2次電池セル列A2が放電容
量試験のために、スイッチS2a、S2bによって切り
離されても、定電圧ダイオードD2zの降伏電圧と、定
電圧ダイオードD2zに直列に接続される2次電池セル
列A1、A3〜Anの端子電圧との総和を越える電圧
を、充電回路Cが供給すれば、定電圧ダイオードD2z
を介して充電電流通路が確保され、2次電池セル列A2
を放電容量試験している途中でも、放電容量試験に供す
る2次電池セル列A2以外の2次電池セル列A1、A3
〜Anへの充電を継続できる。
Also in this case, even if the secondary battery cell array A2 is disconnected by the switches S2a and S2b for the discharge capacity test, the breakdown voltage of the constant voltage diode D2z and the constant voltage diode D2z are connected in series. If the charging circuit C supplies a voltage exceeding the sum of the terminal voltages of the secondary battery cell rows A1, A3 to An, the constant voltage diode D2z.
A charging current path is secured through the secondary battery cell array A2
Even during the discharge capacity test, the secondary battery cell arrays A1 and A3 other than the secondary battery cell array A2 subjected to the discharge capacity test.
~ An can be continuously charged.

【0046】[0046]

【発明の効果】請求項1に記載の発明によれば、予備の
組電池を設けなくても、組電池のバックアップ機能を確
保することができ、しかも、1つの2次電池セル列のみ
を放電させたときの放電量を測定し、他の2次電池セル
列の放電量もそれと同じであると推測すれば、放電容量
の測定操作が容易であるという効果を奏する。
According to the invention described in claim 1, the backup function of the assembled battery can be ensured without providing a spare assembled battery, and only one secondary battery cell row is discharged. If the amount of discharge at that time is measured and it is estimated that the amounts of discharge of the other secondary battery cell rows are also the same, it is possible to easily measure the discharge capacity.

【0047】請求項2に記載の発明によれば、予備の組
電池を設けなくても、組電池のバックアップ機能を確保
することができ、しかも、より確実な放電容量測定デー
タを得ることができるという効果を奏する。
According to the second aspect of the invention, the backup function of the assembled battery can be ensured without providing a spare assembled battery, and more reliable discharge capacity measurement data can be obtained. Has the effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示す回路図である。FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】第1実施例の変形例を示す回路図である。FIG. 3 is a circuit diagram showing a modification of the first embodiment.

【図4】第2実施例の変形例を示す回路図である。FIG. 4 is a circuit diagram showing a modification of the second embodiment.

【図5】従来の停電バックアップ電源の一例を示す回路
図である。
FIG. 5 is a circuit diagram showing an example of a conventional power failure backup power supply.

【符号の説明】[Explanation of symbols]

E…入力電源、 C…充電回路、 S…出力電圧安定化回路、 L…負荷、 B1…組電池、 J…放電容量測定回路、 S1、S1a〜Sna、S1b〜Snb…切換スイッ
チ、 X、Y…切換スイッチの接点、 A1〜An…組電池B1を構成する2次電池セル列、 D1〜Dn…電流バイパスダイオード、 D1z〜Dnz…電流バイパスダイオードとしての定電
圧ダイオード。
E ... Input power supply, C ... Charging circuit, S ... Output voltage stabilizing circuit, L ... Load, B1 ... Battery pack, J ... Discharge capacity measuring circuit, S1, S1a to Sna, S1b to Snb ... Changeover switch, X, Y ... contacts of the changeover switch, A1 to An ... secondary battery cell arrays that form the assembled battery B1, D1 to Dn ... current bypass diodes, D1z to Dnz ... constant voltage diodes as current bypass diodes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 隆司 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Yamashita 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1つまたは複数の2次電池セルで構成さ
れる2次電池セル列が、複数直列接続されることによっ
て組電池が構成され、この組電池に蓄積された電力によ
って、電源の持続性を保証する停電バックアップ電源に
おいて、 上記2次電池セル列を1つ以上冗長に直列に接続するよ
うに上記組電池を構成し、上記組電池を充電した後、上
記組電池内の冗長な数以下の上記2次電池セル列を選択
し、上記組電池から出力される電流の通路を形成するよ
うに、上記選択された2次電池セル列をバイパスする経
路を設け、上記選択された2次電池セル列を上記組電池
から切り離し、上記選択された2次電池セル列を放電し
たときの放電電力量を計測することによって、上記選択
された2次電池セル列の保有電力量を求めることを特徴
とする直列接続組電池の放電容量試験方法。
1. An assembled battery is formed by connecting a plurality of secondary battery cell rows each including one or a plurality of secondary battery cells in series, and the power stored in the assembled battery is used as a power source. In a power failure backup power supply that guarantees sustainability, the assembled battery is configured so that one or more secondary battery cell rows are redundantly connected in series, and the redundant battery in the assembled battery is charged after charging the assembled battery. The number of the secondary battery cell rows is selected to be equal to or less than a certain number, and a path for bypassing the selected secondary battery cell rows is provided so as to form a passage of the current output from the assembled battery, and the selected secondary battery cell row is selected. Determining the amount of power held by the selected secondary battery cell array by disconnecting the secondary battery cell array from the assembled battery and measuring the amount of discharge power when the selected secondary battery cell array is discharged. Characterized by Discharge capacity test method of the connection assembled battery.
【請求項2】 請求項1において、 上記選択された2次電池セル列を放電したときの放電電
力量を計測することによって上記選択された2次電池セ
ル列の保有電力量を求め、上記放電した2次電池セル列
について、上記組電池内への接続、上記バイパス経路の
解除、再充電を行った後に、上記保有電力量を求めた2
次電池セル列以外の2次電池セル列のそれぞれについ
て、上記バイパス経路の設置、上記組電池からの切り離
し、上記放電、上記放電電力量の計測、上記組電池内へ
の接続、上記バイパス経路の解除、上記再充電の一連の
動作を、順次実行することによって、組電池全体の放電
容量試験を行うことを特徴とする直列接続組電池の放電
容量試験方法。
2. The stored electric energy of the selected secondary battery cell array is obtained by measuring the amount of electric power discharged when the selected secondary battery cell array is discharged, according to claim 1, Regarding the rechargeable battery cell array, after the connection into the assembled battery, the release of the bypass route, and the recharging, the above-mentioned stored power amount was calculated 2
For each of the secondary battery cell rows other than the secondary battery cell row, installation of the bypass path, disconnection from the assembled battery, discharge, measurement of the discharged power amount, connection into the assembled battery, connection of the bypass path A discharge capacity test method for a series-connected assembled battery, wherein a discharge capacity test of the entire assembled battery is performed by sequentially executing a series of operations of releasing and recharging.
JP21799293A 1993-08-10 1993-08-10 Discharge capacity test method for series-connected batteries Expired - Lifetime JP3199202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21799293A JP3199202B2 (en) 1993-08-10 1993-08-10 Discharge capacity test method for series-connected batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21799293A JP3199202B2 (en) 1993-08-10 1993-08-10 Discharge capacity test method for series-connected batteries

Publications (2)

Publication Number Publication Date
JPH0755901A true JPH0755901A (en) 1995-03-03
JP3199202B2 JP3199202B2 (en) 2001-08-13

Family

ID=16712931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21799293A Expired - Lifetime JP3199202B2 (en) 1993-08-10 1993-08-10 Discharge capacity test method for series-connected batteries

Country Status (1)

Country Link
JP (1) JP3199202B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515149A (en) * 2003-12-17 2007-06-07 エキサイド テクノロジーズ Battery energy storage module
JP2008099374A (en) * 2006-10-10 2008-04-24 Origin Electric Co Ltd Storage battery discharge controller
US7948211B2 (en) 2008-04-18 2011-05-24 International Business Machines Corporation System and methods to extend the service life of portable devices
US9455589B2 (en) 2013-12-06 2016-09-27 Fujitsu Limited Power supply apparatus and power supply degradation diagnosis method
CN111245040A (en) * 2018-11-29 2020-06-05 丰田自动车株式会社 Power supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515149A (en) * 2003-12-17 2007-06-07 エキサイド テクノロジーズ Battery energy storage module
JP2008099374A (en) * 2006-10-10 2008-04-24 Origin Electric Co Ltd Storage battery discharge controller
US7948211B2 (en) 2008-04-18 2011-05-24 International Business Machines Corporation System and methods to extend the service life of portable devices
US8084994B2 (en) 2008-04-18 2011-12-27 International Business Machines Corporation System to extend the service life of portable devices
US9455589B2 (en) 2013-12-06 2016-09-27 Fujitsu Limited Power supply apparatus and power supply degradation diagnosis method
CN111245040A (en) * 2018-11-29 2020-06-05 丰田自动车株式会社 Power supply system
CN111245040B (en) * 2018-11-29 2023-07-14 丰田自动车株式会社 Power supply system

Also Published As

Publication number Publication date
JP3199202B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
US9564763B2 (en) High-efficiency battery equalization for charging and discharging
US7825629B2 (en) Method and system for cell equalization with charging sources and shunt regulators
CN100514744C (en) Battery pack
US7821230B2 (en) Method and system for cell equalization with switched charging sources
JP2004364446A (en) Charge/discharge control device of backup battery
JP3229696B2 (en) How to charge the battery
EP3799251A1 (en) Battery control unit and battery system
JP2003157908A (en) Charging device for lithium ion secondary cell, and charging method of the same
JP2021044918A (en) Battery control unit and cell system
US20210399558A1 (en) Battery control unit and battery system
US11843267B2 (en) Battery control unit and battery system
JP5664310B2 (en) DC power supply
US20120032513A1 (en) Battery management circuit, battery module and battery management method
JP4485489B2 (en) DC power supply system and test method thereof, and program for executing DC power supply system test method
JP3249261B2 (en) Battery pack
JP3199202B2 (en) Discharge capacity test method for series-connected batteries
JP3314804B2 (en) Battery degradation judgment method of power failure backup power supply
JP2967850B2 (en) Test method for battery discharge capacity
JP2004229391A (en) Battery pack
TWI415363B (en) Battery management circuit, battery module and battery management method
US20230216334A1 (en) Uninterruptible power supply device
US20220376519A1 (en) Individual discharge system and method for battery racks
JP7004524B2 (en) Batteries control system and battery control method
JP2021182804A (en) Battery control unit and battery system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 13

EXPY Cancellation because of completion of term