JPH0755845A - Current sensor for forward and backward current flow wire - Google Patents

Current sensor for forward and backward current flow wire

Info

Publication number
JPH0755845A
JPH0755845A JP5200633A JP20063393A JPH0755845A JP H0755845 A JPH0755845 A JP H0755845A JP 5200633 A JP5200633 A JP 5200633A JP 20063393 A JP20063393 A JP 20063393A JP H0755845 A JPH0755845 A JP H0755845A
Authority
JP
Japan
Prior art keywords
cable
sensor
current
detection sensor
reciprocating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5200633A
Other languages
Japanese (ja)
Other versions
JP2555264B2 (en
Inventor
Takaharu Suzuki
木 貴 晴 鈴
Atsuo Kosukegawa
充 生 小助川
Shoji Kusui
井 昭 二 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Electric Meters Inspection Corp JEMIC
Original Assignee
Japan Electric Meters Inspection Corp JEMIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electric Meters Inspection Corp JEMIC filed Critical Japan Electric Meters Inspection Corp JEMIC
Priority to JP5200633A priority Critical patent/JP2555264B2/en
Publication of JPH0755845A publication Critical patent/JPH0755845A/en
Application granted granted Critical
Publication of JP2555264B2 publication Critical patent/JP2555264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a current sensor for two wires, wherein individual conductor currents inside a cable such as a parallel cord containing two or more conductors can be measured in a noncontact manner or when the sensor is brought into slight contact without working the cable. CONSTITUTION:This sensor is provided with a detection sensor S which detects a magnetic flux generated by currents flowing in individual conductors for a cable 10 composed of a plurality of cores and with a variable amplifier K which, when the detection sensor S is positioned to the cable 10 by a support utensil 20 so as to correspond to the size of the cable 10 and the mutual interval between the conductors of the cable 10 is given, obtains a variable amplification degree corresponding to the interval and which outputs a measuring signal which has amplified an electric signal generated by the detection sensor S at a prescribed amplification degree corresponding to the interval.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、往復電流が流れる複数
芯ケーブルの電流を検出するための往復電線用電流セン
サに係り、とくに2本以上の導体を含むケーブルの各導
体電流を切り離すことなく、そのままの状態でケーブル
に近接することのみで導体電流を測定できるものに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current sensor for a reciprocating wire for detecting a current of a multi-core cable in which a reciprocating current flows, and in particular, without disconnecting each conductor current of a cable including two or more conductors. , Those that can measure the conductor current only by approaching the cable as it is.

【0002】[0002]

【従来の技術】従来の電流センサとしては、1本の導体
の電流であれば、把握型変流器によって包囲し測定して
いた。これに対して、2本以上の導体を含むケーブルで
は、各導体は絶縁材を介して密着しており、ケーブル全
体を把握型変流器で検出しても各導体の合成電流のみし
か測定できない。そこで、各導体電流を測定するにはそ
れらを各別に切り離して測定するほかに方法がなかっ
た。
2. Description of the Related Art As a conventional current sensor, a current of one conductor is surrounded by a grasping type current transformer for measurement. On the other hand, in a cable including two or more conductors, the conductors are in close contact with each other through an insulating material, and even if the whole cable is detected by a grasping type current transformer, only the combined current of each conductor can be measured. . Therefore, there was no other way to measure the conductor currents, apart from measuring them separately.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、導体を
切り離して電流測定を行うことは大変な手間であるばか
りでなく、実際には切り離しができず測定不可能な場合
もある。
However, not only is it difficult to measure the current by disconnecting the conductor, but in some cases, the conductor cannot be separated and measurement is impossible.

【0004】本発明は上述の点を考慮してなされたもの
で、2本以上の導体を含む平行コード等のケーブル内の
各導体電流を、ケーブルを加工せずに非接触または軽く
接するのみで測定できる往復電線用電流センサを提供す
ることを目的とする。
The present invention has been made in consideration of the above points, and each conductor current in a cable such as a parallel cord including two or more conductors can be contacted or lightly contacted without processing the cable. An object is to provide a current sensor for a reciprocating electric wire that can be measured.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、請求項1に記載する、複数芯ケーブル
の各導体に流れる電流により発生する磁束を検出して電
気信号を発生する検出センサと、ケーブルの規格寸法に
対応して前記検出センサを前記ケーブルに対して位置決
めする支持具と、前記ケーブルの導体相互の間隔が与え
られることにより該間隔に応じた可変増幅度を持ち、前
記検出センサに生じる電気信号を前記間隔に応じた所定
増幅度で増幅した測定信号を出力する可変増幅器とをそ
なえた往復電線用電流センサ、および請求項1に記載す
る往復電線用電流センサにおいて、前記支持具は、前記
ケーブルの寸法に応じた信号を形成するように形成さ
れ、前記可変増幅器は、前記支持具からの信号に応じて
増幅度を変えるように構成された往復電線用電流セン
サ、および請求項1に記載する往復電線用電流センサに
おいて、往復電流が流れる2芯ケーブルの周囲に複数個
の検出センサを対称に配列し、前記ケーブルの回転角度
に対応して空間的に変化する磁束を前記複数個の検出セ
ンサと鎖交せしめ、これら各検出センサの誘起出力電圧
信号を合成することにより前記2芯ケーブルの位置回転
角により大きく変化しない電気信号を得ることを特徴と
する往復電線用電流センサ、を提供するものである。
In order to achieve the above object, in the present invention, a magnetic flux generated by a current flowing through each conductor of a multi-core cable as described in claim 1 is detected to detect an electric signal. A sensor, a support for positioning the detection sensor with respect to the cable in accordance with the standard size of the cable, and an interval between the conductors of the cable are provided, so that a variable amplification degree according to the interval is provided, A reciprocating wire current sensor, comprising: a variable amplifier that outputs a measurement signal obtained by amplifying an electric signal generated in a detection sensor with a predetermined amplification degree according to the interval; and a reciprocating wire current sensor according to claim 1, wherein: The support is formed to generate a signal according to the size of the cable, and the variable amplifier is configured to change the amplification degree according to the signal from the support. The current sensor for reciprocating electric wire according to claim 1, and the current sensor for reciprocating electric wire according to claim 1, wherein a plurality of detection sensors are symmetrically arranged around a two-core cable through which the reciprocating electric current flows, and a rotation angle of the cable is determined. Correspondingly, a magnetic flux that changes spatially is linked to the plurality of detection sensors, and the induced output voltage signals of these detection sensors are combined to generate an electrical signal that does not significantly change depending on the position rotation angle of the two-core cable. The present invention provides a current sensor for a reciprocating wire, which is obtained.

【0006】[0006]

【作用】本発明の請求項1記載のセンサでは、支持具に
よって検出センサを測定すべきケーブルに対して位置決
めし、複数芯ケーブルの各導体の電流が発生する磁束を
検出センサで捕捉し、発生磁束の強度に影響する導体間
隔の大小に応じて増幅度を変える可変増幅器で補正した
出力を形成する。
In the sensor according to the first aspect of the present invention, the detection sensor is positioned with respect to the cable to be measured by the support, and the magnetic flux generated by the current of each conductor of the multi-core cable is captured by the detection sensor. An output corrected by a variable amplifier that changes the amplification degree according to the size of the conductor spacing that affects the strength of the magnetic flux is formed.

【0007】また、本発明の請求項2記載のセンサで
は、支持具により形成されたケーブルの寸法に応じた信
号に基づく増幅度で可変増幅器が検出センサの出力を増
幅する。
In the sensor according to the second aspect of the present invention, the variable amplifier amplifies the output of the detection sensor with an amplification degree based on a signal corresponding to the size of the cable formed by the support.

【0008】さらに本発明の請求項3記載のセンサで
は、往復2芯平行コードのような単純ケーブルの場合に
往復電流が同一値であることを利用して、支持具により
検出センサ同士が対称になるようにケーブル周囲に複数
の検出センサを配置し、各検出センサの出力信号を合成
処理する。
Further, in the sensor according to claim 3 of the present invention, in the case of a simple cable such as a reciprocating two-core parallel cord, the fact that the reciprocating current is the same value is utilized, so that the detection sensors are made symmetrical by the support. A plurality of detection sensors are arranged around the cable so that the output signals of the detection sensors are combined.

【0009】[0009]

【実施例】図1は、本発明の一実施例を示した説明図で
ある。この図において、10は2芯を絶縁被覆で被った
平行2芯ケーブル10であり、この平行2芯ケーブル1
0を支持具20により支持して検出センサSをケーブル
10から一定の距離に保って測定を行う。検出センタS
としてはコイル、ホールセンサおよびフラックスゲート
等を用いることができる。
FIG. 1 is an explanatory view showing an embodiment of the present invention. In this figure, 10 is a parallel two-core cable 10 in which two cores are covered with an insulating coating.
0 is supported by the support tool 20 and the detection sensor S is kept at a constant distance from the cable 10 for measurement. Detection center S
As the coil, a coil, a hall sensor, a flux gate or the like can be used.

【0010】ケーブル10の各導体11、12 に流れ
る往復電流により生じた所定点P(x,y)における磁
界Hは、その磁界ベクトルH1 、H2 が、アンペアの周
回積分の法則式により円周方向において ここでr1 、r2 は各導体11、12の中心から所定点
P(x,y)までを結ぶ線の長さ。として表される。
A magnetic field H at a predetermined point P (x, y) generated by a reciprocating current flowing through the conductors 11 and 12 of the cable 10 has magnetic field vectors H1 and H2 in the circumferential direction according to the law formula of ampere circular integration. At Here, r1 and r2 are the lengths of lines connecting the centers of the conductors 11 and 12 to the predetermined point P (x, y). Expressed as

【0011】ただし、 である。However, Is.

【0012】この場合、線r1 、r2 とx軸との間の角
をθ1 、θ2 とすると、磁界ベクトルH1、H2とのベクト
ル合成磁界Hのx、y方向成分Hx、HyのうちHx
は、 Hx =H1 sin θ1 −H2 sin θ2 である。
In this case, if the angles between the lines r1 and r2 and the x axis are θ1 and θ2, Hx of the x and y direction components Hx and Hy of the vector composite magnetic field H with the magnetic field vectors H1 and H2 is Hx.
Is H x = H 1 sin θ 1 −H 2 sin θ 2 Is.

【0013】同様にHyは、 Hy =−H1 cos θ1 −H2 cos θ2 ∴H=Hx i+Hy j (5) となる。[0013] Similarly Hy is, H y = -H 1 cos θ 1 -H 2 cos θ 2 ∴H = H x i + H y j (5)

【0014】これにより、図1で等磁界線に沿う磁束φ
が点線で示されるように発生する。この磁束φ と鎖交
するように、検出センサSを導体12の近くに配置する
と、導体12に流れる電流I2 を交流とすれば検出セン
サSの出力e として、 が得られる。単純平行コードでは導体11および12に
流れる電流I1 、I2 はI1= −I2 である。
As a result, the magnetic flux φ along the equal magnetic field lines in FIG.
Occurs as indicated by the dotted line. When the detection sensor S is arranged near the conductor 12 so as to interlink with the magnetic flux φ, if the current I2 flowing through the conductor 12 is an alternating current, the output e of the detection sensor S becomes Is obtained. In the simple parallel code, the currents I1 and I2 flowing through the conductors 11 and 12 are I1 = -I2.

【0015】そして、検出センサSの出力電圧e は可
変増幅器Kで増幅され、その出力e0 またはe0' をセ
ンサの出力信号として得る。この場合、kは例えば図の
ようにオペアンプA1 と帰還抵抗R1 、R2 よりなり、
出力e0 は、 となる。
The output voltage e of the detection sensor S is amplified by the variable amplifier K, and its output e0 or e0 'is obtained as an output signal of the sensor. In this case, k is composed of an operational amplifier A1 and feedback resistors R1 and R2, as shown in the figure,
The output e0 is Becomes

【0016】あわせて導体11、12の間隔dに対応し
て抵抗値R1 を変え、増幅度(R1+R2 )/R1 を変
える。また、検出センサ支持具20でケーブル10へ検
出センサSを近接するときに導体11、12の距離dが
測定でき、この距離dを可変増幅器Kに与えることによ
り距離dに応じて抵抗値R1 を手動または連結自動で変
える。
At the same time, the resistance value R1 is changed corresponding to the distance d between the conductors 11 and 12, and the amplification factor (R1 + R2) / R1 is changed. Further, the distance d between the conductors 11 and 12 can be measured when the detection sensor supporter 20 brings the detection sensor S close to the cable 10. By providing this distance d to the variable amplifier K, the resistance value R1 can be determined according to the distance d. Change it manually or automatically.

【0017】これにより可変増幅器の出力端には距離d
で補正した大きさの出力が得られる。可変増幅器の出力
は、オペアンプA2 、抵抗R3 、R4 、R5 、コンデン
サC1 、C2 で構成された移相回路に与えられ、90°
移相された信号となる。
As a result, the distance d is provided at the output end of the variable amplifier.
The output of the size corrected by is obtained. The output of the variable amplifier is given to a phase shift circuit composed of an operational amplifier A2, resistors R3, R4, R5 and capacitors C1, C2, and the output is 90 °.
It becomes a phase-shifted signal.

【0018】図2(a )は、検出センサSを導体11、
12を持った平行コードと平行に密着した例である。こ
の場合は、導体11、12を流れる電流I1 、I2 の各
磁束φ1 、φ2 を同時かつ均等に捕捉するので、コード
を柱などに密着配線してあるときは、片面から押し当て
るのみで簡単に測定できる。
In FIG. 2A, the detection sensor S is connected to the conductor 11,
This is an example in which a parallel cord having 12 is closely attached in parallel. In this case, since the magnetic fluxes φ1 and φ2 of the currents I1 and I2 flowing through the conductors 11 and 12 are simultaneously and evenly captured, when the cord is closely attached to a pole or the like, it is easy to press it from one side only. Can be measured.

【0019】また、検出センサSを寸法的に大きくして
おくと、検出センサSが多少位置ずれしても、図2
(b)の実験結果に示すように、出力e はほとんど変
化しない。このために、コイルの場合であれば、角型に
巻装しておく。ホールセンサの場合であれば、検出作動
面を矩形にする。
Further, if the detection sensor S is made large in size, even if the detection sensor S is slightly displaced, the position shown in FIG.
As shown in the experimental result of (b), the output e hardly changes. For this reason, in the case of a coil, it is wound in a square shape. In the case of a hall sensor, the detection operation surface is rectangular.

【0020】図3は、本発明の他の実施例を示したもの
で、導体11、12を2つの検出センサS1 、S2 で挟
んでいる。この場合は、ケーブル10と検出センサS1
、S2 とは離れており、しかも出力電圧e は2つの
センサS1 、S2 の出力を合成してあるので、ケーブル
10が両センサS1 、S2 間で多少位置変動しても検出
出力はほとんど変化しない。
FIG. 3 shows another embodiment of the present invention in which the conductors 11 and 12 are sandwiched between two detection sensors S1 and S2. In this case, the cable 10 and the detection sensor S1
, S2, and the output voltage e combines the outputs of the two sensors S1 and S2, the detection output hardly changes even if the position of the cable 10 changes slightly between the two sensors S1 and S2. .

【0021】図4は、4個の検出センサS1 〜S4 を、
図示しない支持具により導体11、12の周りに対称に
配列した例である。この場合は、導体11、12の向き
が検出センサに平行でなくても、図のように導体の軸方
向を中心にして若干回転した状態では、導体がたとえば
水平状態にある時に比べて検出センサS1 、S2 、S3
、S4 の各出力は変化するが、それら各出力の合成値
は一定である。
FIG. 4 shows four detection sensors S1 to S4,
This is an example in which the conductors 11 and 12 are symmetrically arranged by a support tool (not shown). In this case, even if the orientations of the conductors 11 and 12 are not parallel to the detection sensor, in the state where the conductors are slightly rotated around the axial direction of the conductors as shown in the figure, the detection sensor is compared to when the conductors are in the horizontal state, for example. S1, S2, S3
, S4 changes, but the combined value of these outputs is constant.

【0022】図5は、検出センサの数をS1 〜S8 と多
くし、P点を支点として開閉する支持具としての非磁性
材製のレバー付きアーム30による把握構造にした例で
ある。これにより、検出センサSの数の増加分に対応し
て精度が向上する。
FIG. 5 shows an example in which the number of detection sensors is increased to S1 to S8, and a grasping structure is provided by a non-magnetic material arm 30 with a lever as a supporting tool for opening and closing with a point P as a fulcrum. Thereby, the accuracy is improved corresponding to the increase in the number of the detection sensors S.

【0023】導体11、12の間隔はケーブル10の規
格でわかるが、例えばアーム30に設けられたレバー4
1 、42 の開度角として測定できる。そして、この
開度角によって測定すべきケーブルがどの規格に相当す
るか検出し、この検出値に応じて可変増幅器の増幅度が
自動的に設定されるようにしてもよい。
The distance between the conductors 11 and 12 can be known from the standard of the cable 10, but, for example, the lever 4 provided on the arm 30.
It can be measured as an opening angle of 1, 42. Then, which standard the cable to be measured corresponds to may be detected based on the opening angle, and the amplification degree of the variable amplifier may be automatically set according to the detected value.

【0024】なお、本発明においては、ケーブル10内
の導体間隔の測定または規格による判定方法は、特に限
定されることがなく、支持具による機構的な方法のほ
か、いわゆる静電方式、高周波渦電流方式、線間電位検
出方式など各種の方式を用いることができる。
In the present invention, the measuring method of the conductor spacing in the cable 10 or the judging method based on the standard is not particularly limited, and in addition to the mechanical method using the support, the so-called electrostatic method and high-frequency vortex are used. Various methods such as a current method and a line potential detection method can be used.

【0025】また上記実施例は、いずれも空芯とした
が、鉄芯を入れて磁束を集中捕捉してもよいことは明ら
かである。
In each of the above embodiments, an air core is used, but it is obvious that an iron core may be inserted to concentrate the magnetic flux.

【0026】[0026]

【発明の効果】本発明の請求項1記載のセンサによれ
ば、支持具によって検出センサを測定すべきケーブルに
対して位置決めし、複数芯ケーブルの各導体の電流の発
生する磁束を検出センサで捕捉し、発生磁束の強度に影
響する導体間隔の大小に応じて増幅度を変える可変増幅
器で補正することにより、ケーブルを分離加工すること
なく全く非接触または単に近接するのみで簡単にケーブ
ルの電流を測定できるものである。
According to the sensor of claim 1 of the present invention, the support sensor positions the detection sensor with respect to the cable to be measured, and the magnetic flux generated by the current of each conductor of the multi-core cable is detected by the detection sensor. By capturing and compensating with a variable amplifier that changes the amplification degree according to the size of the conductor interval that affects the strength of the generated magnetic flux, the cable current can be easily made without contacting or simply approaching without separating the cable. Can be measured.

【0027】また、本発明の請求項2記載のセンサによ
れば、支持具により与えられる信号に基づいて可変増幅
器の増幅度が自動的に定まるから測定しようとするケー
ブルを支持具にセットするだけでケーブル寸法に即した
正確な測定が行える。
Further, according to the sensor of the second aspect of the present invention, since the amplification degree of the variable amplifier is automatically determined based on the signal given by the supporting tool, only the cable to be measured is set on the supporting tool. Allows accurate measurement according to the cable dimensions.

【0028】さらに、本発明の請求項3記載のセンサに
よれば、往復2芯平行コードのような単純ケーブルの場
合に往復電流が同一値であることを利用して、検出セン
サ同士が対称になるように支持具によりケーブル周囲に
複数の検出センサを配置し、各検出センサの出力信号を
合成処理することにより、単線把握変流器と同程度の検
出能力を持たせることができるものである。これによ
り、平行コードと検出センサの位置関係をとくに正確に
しなくても正確な測定ができる。各検出センサの出力信
号を合成処理する方法は、ディジタル処理を含めて種々
の方法を採ることができる。
Further, according to the sensor of claim 3 of the present invention, in the case of a simple cable such as a reciprocating two-core parallel cord, the fact that the reciprocating current is the same value is utilized to make the detection sensors symmetrical. By arranging a plurality of detection sensors around the cable with a support and combining the output signals of each detection sensor, it is possible to have the same detection capability as a single wire grasping current transformer. . As a result, accurate measurement can be performed without making the positional relationship between the parallel cord and the detection sensor particularly accurate. As a method of combining the output signals of the respective detection sensors, various methods including digital processing can be adopted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】同図(a )は平行コードに検出センサを平行に
側面より密着して測定する図1の実施例による他の測定
法を示す説明図、同図(b )は同図(a )における検出
センサの位置ずれによる誤差変化の実験結果を示す説明
図。
2 (a) is an explanatory view showing another measuring method according to the embodiment of FIG. 1 in which a detection sensor is closely contacted in parallel with a parallel cord from a side surface, and FIG. 2 (b) is the same drawing (a). 4) is an explanatory view showing an experimental result of an error change due to the position shift of the detection sensor in FIG.

【図3】本発明の他の実施例を示したもので、平行コー
ドの両面に2個の検出センサを近接配列いたものの説明
図。
FIG. 3 shows another embodiment of the present invention, and is an explanatory view of a parallel cord in which two detection sensors are arranged in proximity to each other.

【図4】本発明のさらに他の実施例を示したもので、4
個の検出センサを平行コードの周囲に対称に配列したも
のの説明図。
FIG. 4 shows still another embodiment of the present invention, in which 4
Explanatory drawing of what arranged one detection sensor symmetrically around the parallel code.

【図5】本発明のなおも他の実施例を示したもので、8
個の検出センサを平行コードの周囲に配列し検出センサ
支持具を把握式にしてかつ導体間隔を測定するものの説
明図。
FIG. 5 shows still another embodiment of the present invention.
Explanatory drawing of what arrange | positions each detection sensor around a parallel code, makes a detection sensor support tool a grasping type, and measures a conductor space | interval.

【符号の説明】[Explanation of symbols]

10 ケーブル 11、12 導体 20 支持具 30 アーム 41、42 レバー d 導体間距離 H 磁界 I 電流 S 検出センサ 10 Cables 11 and 12 Conductors 20 Supports 30 Arms 41 and 42 Lever d Distance between conductors H Magnetic field I Current S Detection sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数芯ケーブルの各導体に流れる電流によ
り発生する磁束を検出して電気信号を発生する検出セン
サと、 ケーブルの寸法に対応して前記検出センサを前記ケーブ
ルに対して位置決めする支持具と、 前記ケーブルの導体相互の間隔が与えられることにより
該間隔に応じた可変増幅度を持ち、前記検出センサに生
じる電気信号を前記間隔に応じた所定増幅度で増幅した
測定信号を出力する可変増幅器と、をそなえた往復電線
用電流センサ。
1. A detection sensor for detecting a magnetic flux generated by a current flowing through each conductor of a multi-core cable to generate an electric signal, and a support for positioning the detection sensor with respect to the cable in accordance with the size of the cable. The tool and the conductors of the cable have a variable amplification degree according to the distance, and an electric signal generated in the detection sensor is amplified by a predetermined amplification degree according to the distance to output a measurement signal. A current sensor for a reciprocating wire that has a variable amplifier.
【請求項2】請求項1記載のセンサにおいて、 前記支持具は、前記ケーブルの寸法に応じた信号を形成
するように構成され、 前記可変増幅器は、前記支持具からの信号に応じて増幅
度を変えるように構成された往復電線用電流センサ。
2. The sensor according to claim 1, wherein the support member is configured to generate a signal according to a dimension of the cable, and the variable amplifier has an amplification factor according to a signal from the support device. Current sensor for reciprocating electric wire, which is configured to change the voltage.
【請求項3】請求項1記載の往復電線用電流センサにお
いて、 往復電流が流れる2芯ケーブルの周囲に複数個の検出セ
ンサを対称に配列し、前記ケーブルの回転角度に対応し
て空間的に変化する磁束を前記複数個の検出センサそれ
ぞれと鎖交せしめ、これら各検出センサの誘起出力電圧
信号を合成することにより前記2芯ケーブルの位置回転
角により大きく変化しない電気信号を得ることを特徴と
する往復電線用電流センサ。
3. The reciprocating wire current sensor according to claim 1, wherein a plurality of detection sensors are symmetrically arranged around a two-core cable through which a reciprocating current flows, and spatially corresponding to a rotation angle of the cable. It is characterized in that the changing magnetic flux is interlinked with each of the plurality of detection sensors, and the induced output voltage signals of these detection sensors are combined to obtain an electric signal that does not largely change depending on the position rotation angle of the two-core cable. Current sensor for reciprocating electric wire.
JP5200633A 1993-08-12 1993-08-12 Current sensor for reciprocating wire Expired - Lifetime JP2555264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200633A JP2555264B2 (en) 1993-08-12 1993-08-12 Current sensor for reciprocating wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200633A JP2555264B2 (en) 1993-08-12 1993-08-12 Current sensor for reciprocating wire

Publications (2)

Publication Number Publication Date
JPH0755845A true JPH0755845A (en) 1995-03-03
JP2555264B2 JP2555264B2 (en) 1996-11-20

Family

ID=16427634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200633A Expired - Lifetime JP2555264B2 (en) 1993-08-12 1993-08-12 Current sensor for reciprocating wire

Country Status (1)

Country Link
JP (1) JP2555264B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127158A (en) * 1995-10-26 1997-05-16 Kansai Electric Power Co Inc:The Direct current sensor
JP2010286295A (en) * 2009-06-10 2010-12-24 Kyoritsu Denki Kk Current detector
JP2012098205A (en) * 2010-11-04 2012-05-24 Fujitsu Ltd Current measurement method and magnetic sensor device
WO2012172852A1 (en) * 2011-06-17 2012-12-20 株式会社メガチップス Current measuring apparatus
JP2013257176A (en) * 2012-06-11 2013-12-26 Fukami Seisakusho:Kk Wattmeter and electric power measurement adaptor
WO2014038027A1 (en) * 2012-09-06 2014-03-13 株式会社日立製作所 Current probe, current measuring system, and current measuring method
JP2016148597A (en) * 2015-02-13 2016-08-18 横河電機株式会社 Current sensor
JP2023013294A (en) * 2021-07-15 2023-01-26 株式会社トラフィック・シム Current identification device and calibration method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127158A (en) * 1995-10-26 1997-05-16 Kansai Electric Power Co Inc:The Direct current sensor
JP2010286295A (en) * 2009-06-10 2010-12-24 Kyoritsu Denki Kk Current detector
JP2012098205A (en) * 2010-11-04 2012-05-24 Fujitsu Ltd Current measurement method and magnetic sensor device
WO2012172852A1 (en) * 2011-06-17 2012-12-20 株式会社メガチップス Current measuring apparatus
JP2013002974A (en) * 2011-06-17 2013-01-07 Mega Chips Corp Current measuring device
JP2013257176A (en) * 2012-06-11 2013-12-26 Fukami Seisakusho:Kk Wattmeter and electric power measurement adaptor
WO2014038027A1 (en) * 2012-09-06 2014-03-13 株式会社日立製作所 Current probe, current measuring system, and current measuring method
JP5946918B2 (en) * 2012-09-06 2016-07-06 株式会社日立製作所 Current probe, current measurement system, and current measurement method
JPWO2014038027A1 (en) * 2012-09-06 2016-08-08 株式会社日立製作所 Current probe, current measurement system, and current measurement method
JP2016148597A (en) * 2015-02-13 2016-08-18 横河電機株式会社 Current sensor
JP2023013294A (en) * 2021-07-15 2023-01-26 株式会社トラフィック・シム Current identification device and calibration method

Also Published As

Publication number Publication date
JP2555264B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
FI83998B (en) MAINTENANCE TRANSFORMER FOR THE MAINTENANCE OF THE END.
US7298141B2 (en) Fluxgate and fluxgate magnetometers
JP6712455B2 (en) Current measuring device and method
EP3405795B1 (en) Measurement device
JP2012078198A (en) Magneto impedance sensor element and manufacturing method of the same
US5420504A (en) Noninductive shunt current sensor based on concentric-pipe geometry
US10126330B2 (en) Clamp-type ammeter
US20120074929A1 (en) Inductive Current Sensor
JPS58501692A (en) Current measurement transformer
JP2555264B2 (en) Current sensor for reciprocating wire
JP2022054461A (en) Current sensor and method of using the same
US5446372A (en) Noninductive shunt current sensor with self-power capability
JP6974898B2 (en) Current converter
JP2012098205A (en) Current measurement method and magnetic sensor device
US5416408A (en) Current sensor employing a mutually inductive current sensing scheme with a magnetic field substantially uniform in angular direction
US5453681A (en) Current sensor employing a mutually inductive current sensing scheme
JPH11237411A (en) Dc current sensor and dc current measurement system
JPH0318765A (en) Clamp ammeter
JP3223244U (en) Current detection module and current tester device
WO2021008904A1 (en) Current transducer for measuring residual currents
JP3441984B2 (en) Leakage current measurement clamp tester
JPH0581731U (en) Current sensor
GB2053489A (en) Magneto-electric movement sensor
US812196A (en) Apparatus for measuring electric resistances.
JPH054037U (en) Current detection sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 17

EXPY Cancellation because of completion of term