JPH0755524A - Method and instrument for measuring flow rate of high-concentration powder carried on carrying medium in pipe - Google Patents

Method and instrument for measuring flow rate of high-concentration powder carried on carrying medium in pipe

Info

Publication number
JPH0755524A
JPH0755524A JP19863893A JP19863893A JPH0755524A JP H0755524 A JPH0755524 A JP H0755524A JP 19863893 A JP19863893 A JP 19863893A JP 19863893 A JP19863893 A JP 19863893A JP H0755524 A JPH0755524 A JP H0755524A
Authority
JP
Japan
Prior art keywords
light
powder
flow rate
amount
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19863893A
Other languages
Japanese (ja)
Other versions
JP2861742B2 (en
Inventor
Shinichi Isozaki
進市 磯崎
Mitsuhiro Yamanaka
光弘 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19863893A priority Critical patent/JP2861742B2/en
Publication of JPH0755524A publication Critical patent/JPH0755524A/en
Application granted granted Critical
Publication of JP2861742B2 publication Critical patent/JP2861742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To continuously and automatically measure the concentration of powder when the powder is carried and the flow rate of the powder in an on-line state by calculating the flow rate of the powder by using the light transmissivity of the powder found from the receiving quantity of light transmitted by the powder through an observation port facing the wall of a pipe through which the powder is carried by a carrying medium. CONSTITUTION:A luminous flux made incident from a light source body 3 which is connected to the end section of a measuring tube 11a and emits the luminous flux across powder in a vertical pipe 1 at right angles is detected by means of a light quantity detecting terminal 5 as a parallel luminous flux after passing through another measuring tube 11b. Relational expressions among the light transmissivity and average concentration of the powder and parameter of measuring conditions is stored in advance in the storing section 17 of an arithmetic device 14 and an arithmetic section 15 converts the output signal (intensity of transmitted light) of the detecting terminal 5 and, at the same time, calculates the average concentration of the powder. When the carrying of the powder is restarted, a high-level light quantity for measuring flow rate of the powder is introduced to a measuring optical path and the flow rate of the powder is automatically and continuously measured by detecting 5 a decrease in the quantity of transmitted light and retreating 32 a light attenuating shutter 31 from the optical path.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は管内を搬送媒体により搬
送される高濃度粉体の流量測定方法及びその測定装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a flow rate of a high-concentration powder conveyed by a conveying medium in a pipe and a measuring apparatus therefor.

【0002】[0002]

【従来の技術】従来粉体の流量測定方法及びその測定装
置については、光透過方式の粉体濃度計を利用したもの
が知られている。図9に一例を示す。図9において、粉
体移送管1に相対する二つの観察窓2を設置する。一方
の観察窓2から光源体3から発する平行光束4を入射
し、粉体移送管1内に入射する。入射した光は粉体7に
よって減衰し、残りの透過光を他方の観察窓2から取出
し、光検出器5に導入して、透過光量を検出する。
2. Description of the Related Art Conventionally, as a powder flow rate measuring method and a measuring apparatus therefor, it is known to use a light transmission type powder densitometer. An example is shown in FIG. In FIG. 9, two observation windows 2 facing the powder transfer tube 1 are installed. The parallel light flux 4 emitted from the light source body 3 is made incident from one observation window 2 and is made incident on the inside of the powder transfer tube 1. The incident light is attenuated by the powder 7, and the remaining transmitted light is extracted from the other observation window 2 and introduced into the photodetector 5 to detect the amount of transmitted light.

【0003】即ち、光源体の光量(入射光強度)を一定
値に設定し、粒子濃度による透過光量の変化を検出する
ことによって粒子濃度を測定する。更に粒子の移動速度
が搬送媒体(ガス)流速に等しいと仮定して、粒子濃度
値と搬送媒体平均流速値の積から粉体流量値を算出す
る。
That is, the particle concentration is measured by setting the light amount (incident light intensity) of the light source to a constant value and detecting the change in the transmitted light amount depending on the particle concentration. Further, assuming that the moving speed of the particles is equal to the flow velocity of the carrier medium (gas), the powder flow rate value is calculated from the product of the particle concentration value and the mean flow velocity value of the carrier medium.

【0004】[0004]

【発明が解決しようとする課題】然しながら、上述した
光透過方式による粉体濃度計による測定においては、測
定可能粉体最大濃度が制約されるため、高濃度粉体測定
に適用する場合には、粉体移送管から搬送媒体(ガス)
を等速吸引したり、あるいは分岐管を設けたりして、一
部分の粒子をサンプリングして、測定する必要がある。
この様な改良した方式によっても、実用化されているダ
スト濃度計の最大粉体濃度は200gr/m3程度であり、
それ以上の濃度粒子群に対しては光が減衰してしまうた
めに、光透過式を適用して高濃度粉体流量を測定するこ
とは困難であった。
However, in the measurement by the powder densitometer by the above-mentioned light transmission method, the maximum measurable powder concentration is restricted. From powder transfer pipe to carrier medium (gas)
It is necessary to sample a part of the particles and measure them by suctioning at a constant velocity or by providing a branch pipe.
Even with such an improved method, the maximum powder concentration of the dust densitometer that has been put into practical use is about 200 gr / m 3 ,
It is difficult to measure the flow rate of the high-concentration powder by applying the light transmission method, because the light is attenuated with respect to the particle group having a higher concentration.

【0005】本出願人は上記のような問題点の解決を図
り、特願平4−234721号、及び特願平4−233
794号による出願をした。一般には粉体を連続的に搬
送して、高濃度領域の粉体濃度測定が行われるが、粉体
の搬送を停止する場合も多い。
The present applicant has attempted to solve the above-mentioned problems, and is directed to Japanese Patent Application No. 4-234721 and Japanese Patent Application No. 4-233.
Filed under No. 794. Generally, the powder is continuously conveyed to measure the powder concentration in the high concentration region, but in many cases, the conveyance of the powder is stopped.

【0006】この場合、使用される光学式の高濃度粉体
流量測定装置は、光源として強力なものてあり、粉体が
流れていない場合は透過光量がほとんど減衰しないため
に、透過光量によって光検出端が破壊され、検出能力が
低下する、さらに光検出端の破壊を防止するために粉体
が流れていない場合に光源の強力な投射光を光検出端に
受光させないように、光源の発光を停止する、或いは投
射光の入射を遮断すると粉体の流れが再開された時、連
続した測定が出来ないという問題があることを得た。
In this case, the optical high-concentration powder flow rate measuring device used is a powerful light source, and when the powder is not flowing, the transmitted light amount is hardly attenuated. Light emission of the light source so that the detection end is destroyed, the detection ability is reduced, and in order to prevent destruction of the light detection end, when the powder is not flowing, the strong detection light of the light source is not received by the light detection end. It has been found that when the powder flow is restarted by stopping or stopping the incidence of projection light, continuous measurement cannot be performed.

【0007】本発明は上記特願平4−234721号に
示す発明を基にして、その問題点の解決を図ったもので
あり、粉体の搬送を停止する場合も含めた粉体搬送時の
高濃度領域の粉体濃度の連続自動測定を可能にし、粉体
流量をオンラインで測定出来る方法及びその装置を提供
することを目的とする。
The present invention is based on the invention disclosed in the above-mentioned Japanese Patent Application No. 4-234721, and is intended to solve the problems. In the case of carrying the powder, including the case of stopping the carrying of the powder. An object of the present invention is to provide a method and an apparatus for enabling continuous automatic measurement of powder concentration in a high concentration region and measuring the powder flow rate online.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、方法の発明として、第1の発明は粉体が搬送媒体に
より搬送される管の管壁に相対する二つの観察窓を設置
し、該観察窓を介して、光を透過させ、その透過した光
を受光し、その透過光量の所定の受光量からの透過率を
用いて測定した粉体平均濃度と前記搬送媒体の流速値と
から粉体流量を算出する方法であって、前記粉体の搬送
が停止された時に、上記所定の受光量を粉体搬送時の光
量レベルから弱めた光量レベルを与える受光量を用いて
測定し、粉体が搬送開始される時の透過光量の減衰を検
知し、その検知信号によって、上記所定の受光量を粉体
搬送時の光量レベルに強めて粉体平均濃度を測定し、そ
の粉体平均濃度と前記搬送媒体の流速値とから粉体流量
を算出することを特徴とする管内を搬送媒体により搬送
される粉体の流量測定方法とするものである。
In order to achieve the above-mentioned object, as a method invention, the first invention is to install two observation windows opposed to the tube wall of a tube in which powder is carried by a carrier medium. , Through the observation window, the light is transmitted, the transmitted light is received, and the powder average concentration and the flow velocity value of the carrier medium measured by using the transmittance from the predetermined received light amount of the transmitted light amount. A method for calculating the powder flow rate from the above, wherein when the powder conveyance is stopped, the predetermined light reception amount is measured using a light reception amount that gives a light amount level weakened from the light amount level at the time of powder transfer. Detecting the attenuation of the transmitted light quantity when the powder is started to be conveyed, and using the detection signal, the predetermined light receiving amount is strengthened to the light quantity level at the time of powder conveyance to measure the powder average concentration. It is possible to calculate the powder flow rate from the average concentration and the flow velocity value of the carrier medium. It is an method for measuring the flow rate of a powder that is transported by the transport medium in the tube to symptoms.

【0009】第2の発明は粉体が搬送媒体により搬送さ
れる管内に一定の先端間隔で対向するように突出して配
設された光透過用測定管を介して、光を透過させ、その
透過した光を受光し、その透過光量の所定の受光量から
の透過率を用いて測定した粉体平均濃度と上記搬送媒体
の流速値とから粉体流量を算出する方法であって、上記
粉体の搬送が停止された時に、上記所定の受光量を粉体
搬送時の光量レベルから弱めた光量レベルを与える受光
量を用いて測定し、粉体が搬送開始される時の透過光量
の減衰を検知し、その検知信号によって、上記所定の受
光量を粉体搬送時の光量レベルに強めて粉体平均濃度を
測定し、その粉体平均濃度と上記搬送媒体の流速値とか
ら粉体流量を算出することを特徴とする管内を搬送媒体
により搬送される高濃度粉体の流量測定方法とするもの
である。
In a second aspect of the invention, the powder is transmitted through a light-transmitting measuring tube which is arranged so as to project so that the powder is opposed to the tube conveyed by a carrier medium at a constant tip interval. Is a method of calculating the powder flow rate from the powder average concentration measured using the transmittance from the predetermined received light amount of the transmitted light amount and the flow velocity value of the carrier medium, When the conveyance of the powder is stopped, the predetermined amount of received light is measured by using the amount of received light that gives a light amount level that is weakened from the light amount level when the powder is conveyed, and the attenuation of the transmitted light amount when the powder starts to be conveyed is measured. Detecting the detected signal, the predetermined light receiving amount is strengthened to the light amount level during powder conveyance to measure the powder average concentration, and the powder flow rate is calculated from the powder average concentration and the flow velocity value of the conveying medium. It is carried by the carrier medium in the pipe characterized by calculating It is an method for measuring the flow rate of a density powder.

【0010】この場合、第3の発明、第4の発明、また
は第5の発明として、上記のように所定の受光量の光量
レベルを弱める或いは再び強める手段は、光源体の光源
付加電流操作によって行うこと、光減衰シャッター操作
によって行うこと、または光源のコリメーテイングレン
ズ装置の操作によって行う。
In this case, as the third invention, the fourth invention, or the fifth invention, the means for weakening or re-strengthening the light amount level of the predetermined light receiving amount as described above is operated by operating the light source additional current of the light source body. This is done by operating the light-attenuating shutter or by operating the collimating lens device of the light source.

【0011】装置の発明として、第6の発明は軸芯に直
交する線上に位置して対向させた観察窓を有する管と、
それらの観察窓の一方の観察窓に配置された光束入射用
の光源体と、他方の観察窓に配置された光量検出端を具
備した光透過率検出部と、搬送媒体の流速を測定する検
出端と、それらの出力信号から粉体平均濃度と媒体平均
流速とを各々算出し、これらを乗算し、粉体流量を演算
する装置を組合わせてなる粉体流量測定装置であって、
上記光量検出端への受光量レベルを変化させる光透過率
検出部の光学手段と上記光透過率検出端の検出信号を受
けてその信号レベルと域値と比較し上記受光量レベルを
変化させる光透過率検出部の光学手段に光量レベル設定
値の切り替えの指令信号を発する比較手段を設けたこと
を特徴とする管内を搬送媒体により搬送される粉体の流
量測定装置とするものである。
As a device invention, a sixth invention is a pipe having observation windows located on a line orthogonal to the axis and opposed to each other,
A light source for incident a light beam disposed in one of the observation windows, a light transmittance detection unit having a light amount detection end disposed in the other observation window, and detection for measuring the flow velocity of the carrier medium. A powder flow rate measuring device comprising an end and a powder average concentration and a medium average flow velocity calculated from the output signals thereof, respectively, and a device for calculating a powder flow rate by combining them.
Optical means of the light transmittance detecting portion for changing the light receiving amount level to the light amount detecting end and light for receiving the detection signal of the light transmittance detecting end and comparing the signal level with the threshold value to change the light receiving amount level. A flow rate measuring device for powder carried by a carrying medium in a pipe, characterized in that the optical means of the transmittance detecting section is provided with a comparing means for issuing a command signal for switching a light quantity level set value.

【0012】第7の発明、第8発明、又は第9の発明
は、軸芯に直交する線上に位置して対向させた開口部を
有する管と、それらの開口部に挿入され、一定の先端間
隔で対向するように突出して配設された光透過用測定管
と、光透過用測定管に付設した先端間隔調節装置と、一
方の測定管の後端部に配置された光束入射用の光源体
と、他方の測定管の後端部に配置された光量検出端を具
備した光透過率検出部と、搬送媒体の流速を測定する検
出端と、それらの出力信号から粉体平均濃度と媒体平均
流速とを各々算出し、これらを乗算し、粉体流量を演算
する装置を組合わせてなる流量測定装置であって、上記
光源体の光源付加電流制御装置に光量レベル設定回路と
上記光透過率検出端の検出信号を受けてその信号レベル
と域値と比較し上記光量レベル設定回路に光量レベル設
定値の切り替えの指令信号を発する比較手段を設けたこ
と、少なくとも1個の光透過量を減衰するシャッターと
該シャッターを上記光源体からの測定用光路に装入、退
避させる移動装置と上記光透過率検出端の検出信号を受
けてその信号レベルと域値と比較し上記移動装置に装
入、退避の指令信号を発する比較手段を配設したこと、
又はその平行光束の光密度の異なる複数のコリメーテイ
ングレンズ装置と該コリメーテイングレンズ装置を上記
光源体と上記測定管の間の光軸に装入、退避させる移動
装置と上記光透過率検出端の検出信号を受けてその信号
レベルと域値と比較し上記移動装置に装入、退避の指令
信号を発する比較手段を配設したことによる管内を搬送
媒体により搬送される高濃度粉体の流量測定装置とする
ものである。
The seventh invention, the eighth invention, or the ninth invention is a tube having openings facing each other on a line orthogonal to the axis, and a fixed tip inserted into these openings. A light-transmitting measuring tube which is arranged so as to be opposed to each other at an interval, a tip interval adjusting device attached to the light-transmitting measuring tube, and a light source for incident light flux arranged at the rear end of one of the measuring tubes. The body, the light transmittance detecting section having a light quantity detecting end arranged at the rear end of the other measuring tube, the detecting end for measuring the flow velocity of the carrier medium, and the powder average concentration and the medium from the output signals thereof. A flow rate measuring device comprising a device for calculating an average flow velocity and a device for calculating a powder flow amount by multiplying the average flow velocity with each other. The light source additional current control device for the light source body is provided with a light amount level setting circuit and the light transmitting device. The detection signal from the rate detection end is received and the signal level and threshold value are compared to The level setting circuit is provided with a comparison means for issuing a command signal for switching the light amount level set value, and at least one shutter for attenuating the light transmission amount and the shutter are inserted into and retracted from the light source body in the measuring optical path. Comparing means for receiving a detection signal from the moving device and the light transmittance detecting end, comparing the signal level and the threshold value, and issuing a charging / retracting command signal to the moving device,
Alternatively, a plurality of collimating lens devices having different light densities of the parallel light fluxes, a moving device for loading and unloading the collimating lens devices on the optical axis between the light source body and the measuring tube, and the light transmittance detection. The high-concentration powder conveyed by the conveying medium in the pipe is provided by the comparison means for receiving the detection signal at the end and comparing the signal level with the threshold value and issuing the charging / retracting command signal to the moving device. This is a flow rate measuring device.

【0013】[0013]

【作用】本発明は上記した構成で、高濃度粉体の流量測
定の例では粉体を搬送媒体によって搬送する管内に一定
の先端間隔で対向するように突出して配設された光透過
用測定管を介して、粉体に光を透過させるものであり、
開口部から光透過用測定管を相対して挿入させて、測定
部光路長を実際の粉体移送管径より小さくして、光透過
量の減衰量を極力抑制するとともに、光源体としては、
連続発光レーザ光源のような光強度の大きい平行光束が
容易に実現可能な強い光源体を用いたものである。
The present invention has the above-described structure, and in the example of measuring the flow rate of a high-concentration powder, the measurement for light transmission is arranged so as to be opposed to each other at a constant tip interval in a pipe for conveying the powder by a conveying medium. Light is transmitted through the tube to the powder,
By inserting the measurement tube for light transmission from the opening oppositely, the measurement section optical path length is made smaller than the actual powder transfer tube diameter, and while suppressing the amount of attenuation of light transmission as much as possible, as a light source,
It uses a strong light source body capable of easily realizing a parallel light flux having a high light intensity, such as a continuous light emitting laser light source.

【0014】本発明では実際の粉体流量測定において、
粉体が粒子径が異なり、粒子の種類が異なる所謂混粒状
態にあるので、図3に示すような透過率と粉体平均濃度
の測定条件の関係を用いて、光量検出端の出力信号から
本発明の演算装置により算出して粉体平均濃度値を求め
る。
In the present invention, in the actual powder flow rate measurement,
Since the powders are in a so-called mixed particle state in which the particle diameters are different and the types of particles are different, the output signal from the light amount detection end is calculated using the relationship between the transmittance and the measurement condition of the powder average concentration as shown in FIG. An average density value of the powder is calculated by the calculation device of the present invention.

【0015】図3は後述する図1、図2の測定装置を用
いた場合の透過率(I/Io )と粉体平均濃度と測定条
件の関係からなるパラメーターを示す図で粉体として硅
砂2種と、鉄鉱石を用いた較正試験により得られたもの
である。
FIG. 3 is a diagram showing parameters which are related to the transmittance (I / Io), the average concentration of the powder and the measurement conditions when the measuring device of FIGS. 1 and 2 which will be described later is used. It was obtained by a calibration test using seeds and iron ore.

【0016】図3から明らかなように、粉体粒径が異な
っても、粒子真比重(ρ)を考慮することによって、透
過率(I/Io) が一つの較正直線上に一致して測定す
ることが出来た。このことから本発明では粉体粒径、粉
体種類が混粒していても測定が可能であることを得た。
As is apparent from FIG. 3, even if the particle diameters of the powders are different, the transmittance (I / Io) is measured on one calibration line by considering the true specific gravity (ρ) of the particles. I was able to do it. From this, it was found that the present invention enables measurement even if the powder particle size and powder type are mixed.

【0017】即ち、測定装置としてのLを特定し、被測
定物の粉体の真比重(ρ)及び調和平均径(dp32) が取
扱いプロセスの固有値として自明であることから、透過
率(I/Io)を測定して、図3の関係から平均粉体濃度
値(kg/m3 )を一義的に求める。
That is, since L as a measuring device is specified and the true specific gravity (ρ) and the harmonic mean diameter (dp32) of the powder to be measured are obvious as eigenvalues of the handling process, the transmittance (I / Io) is measured and the average powder concentration value (kg / m 3 ) is uniquely determined from the relationship shown in FIG.

【0018】一方、搬送媒体の流速を測定する検出端
と、その出力信号から本発明の演算装置により媒体平均
流速値を算出する。即ち、既存のピトー管による圧力の
検出信号、又は熱線式流速検出端による温度の検出信号
と媒体平均流速の一般的関係式を用いることにより、上
記媒体平均流速値の算出が行われる。
On the other hand, the medium average flow velocity value is calculated by the arithmetic unit of the present invention from the detection end for measuring the flow velocity of the conveyed medium and its output signal. That is, the medium average flow velocity value is calculated by using a pressure detection signal from an existing Pitot tube, or a general relational expression of the temperature detection signal from the heat ray type flow velocity detection end and the medium average flow velocity.

【0019】更に上記粉体平均濃度値と媒体平均流速値
とを本発明の演算装置により乗算することによって、粉
体流量値を算出することが出来る。更に本発明において
は、相対する二つの光透過用測定管の先端間隔(L)を
一定にして、管内を径方向に横断させることによって、
管の径方向の粉体濃度の分布の測定も可能である。
Further, the powder flow rate value can be calculated by multiplying the powder average concentration value and the medium average flow velocity value by the arithmetic unit of the present invention. Further, in the present invention, by making the distance (L) between the tips of the two opposed measurement tubes for light transmission constant and traversing the tubes in the radial direction,
It is also possible to measure the distribution of powder concentration in the radial direction of the tube.

【0020】図4は垂直管内の直径方向の粉体分布を推
定するための説明図である。測定管の先端間隔(L)を
一定間隔に保って管の内直径の範囲で、少なくとも管中
心から一方の管壁に向かって、連続し、先端間隔長さを
一単位としてステップ的に管の半径に沿い移動すること
により、管内の移動位置に対応する透過光量の減衰分布
から管内の直径方向の粉体濃度分布を測定し、同時に次
の数式1の加重平均式を用い、本発明の演算装置で演算
して粉体平均濃度を求める。
FIG. 4 is an explanatory view for estimating the diametrical powder distribution in the vertical pipe. Keeping the tip interval (L) of the measuring tube at a constant interval, the tube is continuous from at least the center of the tube toward one of the tube walls within the range of the inner diameter of the tube, and the tip interval length is set as one unit to make the tube stepwise. By moving along the radius, the powder concentration distribution in the diameter direction in the tube is measured from the attenuation distribution of the amount of transmitted light corresponding to the moving position in the tube, and at the same time, the weighted average expression of the following mathematical formula 1 is used to calculate the present invention. The average powder concentration is calculated by the device.

【0021】[0021]

【数1】 [Equation 1]

【0022】上記粉体平均濃度値と媒体平均流速値とを
本発明の演算装置により乗算することによって、粉体流
量値を算出することが出来る。
The powder flow rate value can be calculated by multiplying the powder average concentration value and the medium average flow velocity value by the arithmetic unit of the present invention.

【0023】本発明では、高濃度粉体の粒子濃度を測定
するために大出力の光源を使用するが、粉体の搬送が停
止された時など粒子濃度が小さい場合は透過光強度が大
きくなり、過大な光強度の透過光が光検出端に照射され
ると光検出端を焼損する恐れがある。
In the present invention, a high-power light source is used to measure the particle concentration of the high-concentration powder. However, when the particle concentration is low, such as when the powder conveyance is stopped, the transmitted light intensity increases. When the transmitted light having an excessively high light intensity is applied to the light detecting end, the light detecting end may be burned out.

【0024】本発明では、粉体の搬送が停止された時
に、所定の受光量を粉体搬送時の光量レベルから弱めた
光量レベルを与える受光量を用いて測定し、粉体が搬送
開始される時の透過光量の減衰を検知し、その検知信号
によって、前記所定の受光量を粉体搬送時の光量レベル
に強めて粉体平均濃度を測定し、その粉体平均濃度と前
記搬送媒体の流速値とから粉体流量を算出するので、連
続測定中に粉体の搬送が途切れることがあっても、過大
な光強度の透過光によって透過光強度を検出する光検出
器の焼損がないようにするものである。
In the present invention, when the powder conveyance is stopped, the predetermined light reception amount is measured by using the light reception amount which gives a light amount level weakened from the light amount level at the time of powder conveyance, and the powder conveyance is started. When the attenuation of the transmitted light amount at the time of the powder is detected, the predetermined light receiving amount is increased to the light amount level at the time of powder conveyance by the detection signal to measure the powder average concentration, and the powder average concentration and the conveyance medium Since the powder flow rate is calculated from the flow velocity value, even if the powder conveyance is interrupted during continuous measurement, there is no burning of the photodetector that detects the transmitted light intensity due to the excessive transmitted light intensity. It is something to do.

【0025】本発明による所定の受光量は、粉体搬送時
の光透過測定用の光強度であって、仮に粉体が測定区間
に存在しない場合、光検出器が受光する光量であって、
粉体搬送時の測定は前記光量を保持して投射し、測定区
間に粉体が存在することにより、減衰された光を受光
し、その透過率(減衰比率)を用いて、粉体濃度を測定
する。 そのように、粉体搬送時の粉体濃度測定のため
に、一定の強度で投射させ、或いは受光されるときの光
量を粉体搬送時の測定用の所定の受光量と云う。
The predetermined amount of received light according to the present invention is a light intensity for light transmission measurement during powder conveyance, and is the amount of light received by the photodetector if the powder is not present in the measurement section.
For the measurement during powder conveyance, the light quantity is held and projected, and the powder that is present in the measurement section receives the attenuated light, and the transmittance (attenuation ratio) is used to determine the powder concentration. taking measurement. In this way, the amount of light that is projected or received at a constant intensity for measuring the powder concentration during powder conveyance is referred to as the predetermined amount of received light for measurement during powder conveyance.

【0026】そこで、粉体搬送が停止された時の測定に
用いる最も弱めた所定の受光量は粉体搬送時の測定に用
いる所定の受光量の1/10〜1/10000の受光量
であって、光透過率検出端に使用されている受光素子の
許容受光量と光源の最大出力光量の比から計算される値
以下に選択した一定値のものである。
Therefore, the weakened predetermined light receiving amount used for the measurement when the powder conveyance is stopped is 1/10 to 1/10000 of the predetermined light receiving amount used for the powder conveyance measurement. Then, it is a constant value selected below a value calculated from the ratio of the allowable light receiving amount of the light receiving element used at the light transmittance detecting end to the maximum output light amount of the light source.

【0027】上記を満足させるために、本発明では3つ
の方策を立てた。第1の方策は上記所定の受光量を粉体
搬送された時の測定用の強レベルと粉体搬送が停止され
た時の測定用の弱レベルの切り替えを入射光の光源体の
付加電流をかえてその光強度を変更させるものである。
In order to satisfy the above, the present invention has taken three measures. The first measure is to switch between the strong level for measurement when the above-mentioned predetermined amount of received light is conveyed and the weak level for measurement when the powder is stopped by changing the additional current of the light source of incident light. Instead, it changes the light intensity.

【0028】光源体の光強度、例えばレザー出力値を弱
レベルから強レベル或いはその逆に切り換える手段は粉
体濃度計からの光強度レベル切り換え信号によって、レ
ザー電源の放電電流制御回路への出力レベル設定回路の
出力設定信号を強レベル信号或いは弱レベル信号に切り
換えることによってなされる。通常、このレザー出力値
の出力レベルの切り換えは定格総合出力の100〜10
%範囲内で可能である。
The means for switching the light intensity of the light source, for example, the laser output value from the weak level to the strong level or vice versa, is the output level to the discharge current control circuit of the laser power source by the light intensity level switching signal from the powder densitometer. This is done by switching the output setting signal of the setting circuit to a strong level signal or a weak level signal. Normally, switching the output level of this laser output value is 100 to 10 of the rated total output.
It is possible within the range of%.

【0029】第2の方策は、光透過率検出部内の光収束
用レンズの前方に光減衰シャッターを設置して、光を減
衰させ、光検出端の損傷を防止する構造にしたものであ
る。このシャッターの光軸への移動は、シャッター駆動
装置で行ない、この駆動装置への命令は光検出端で検出
した透過光量値を参照して行うようにする。
The second measure is to install a light-attenuating shutter in front of the light-focusing lens in the light-transmittance detecting section so as to attenuate the light and prevent damage to the light-detecting end. The movement of the shutter to the optical axis is performed by the shutter drive device, and the command to the drive device is performed by referring to the transmitted light amount value detected at the light detection end.

【0030】例えば、光検出端が損傷しない受光量を前
記所定の受光量の弱レベルとして設定し、上記所定の受
光量の強レベルの光量を弱レベルの光量に減衰する光減
衰シャッターを測定用光路に装入し測定を継続して粉体
の搬送開始をモニターする。
For example, a light-attenuating shutter for setting a light receiving amount that does not damage the light detecting end as a weak level of the predetermined light receiving amount and attenuating the high level light amount of the predetermined light receiving amount to the weak level light amount is for measurement. It is charged in the optical path and the measurement is continued to monitor the start of powder conveyance.

【0031】この状態で粒子濃度が大きくなると、透過
光量は更に小さくなる或いは透過光量が検出されなくな
るので、光減衰シャッターを測定用光路から退去させ光
源全光量を使用することにより粉体流量の測定を開始す
るというものである。
If the particle concentration increases in this state, the amount of transmitted light becomes smaller or the amount of transmitted light cannot be detected. Therefore, the optical attenuation shutter is moved away from the measuring optical path and the total light amount of the light source is used to measure the powder flow rate. Is to start.

【0032】本発明の光減衰シャッターでは透過光量を
1/100〜1/10000程度に減衰する。更に、測
定系光軸にシャッターを進入させ、透過光量を減衰させ
た状態で、測定待機状態として透過光量を常時測定する
ならば、粒子濃度測定装置全系の経時変化を監視するこ
とが出来る。
The light attenuation shutter of the present invention attenuates the amount of transmitted light to about 1/100 to 1/10000. Further, if the amount of transmitted light is constantly measured in a measurement standby state with a shutter entering the optical axis of the measurement system and the amount of transmitted light is attenuated, it is possible to monitor changes over time in the entire particle concentration measuring device system.

【0033】第3の方策は、透過光量を減衰するシャッ
ターの代わりに、入射光強度を減衰させるコリメーテイ
ングレンズ装置を光源体と発光部の光透過用測定管の間
に設置するという構造である。
The third measure is a structure in which a collimating lens device that attenuates the intensity of incident light is installed between the light source body and the light transmission measuring tube of the light emitting unit, instead of the shutter that attenuates the amount of transmitted light. is there.

【0034】このコリメーテイングレンズ装置は光源体
の出力光束を全て測定用平行光束に変換する強レベル用
のコリメーテイングレンズ装置、光源体の出力光束断面
の光軸を中心とした一部分だけを上記測定用平行光束と
同径の平行光束にする光減衰率の異なる複数の減衰用コ
リメーテイングレンズ装置を光軸に平行に並列し配置し
たものであり、粉体流量測定の待機状態では最も光減衰
率の高いコリメーテイングレンズ装置を光源体の出力光
軸に装入して入射光量を減衰させ、結果として光透過率
検出端の所定の受光量を弱レベルにする。
This collimating lens device is a high-level collimating lens device for converting all output light beams of the light source body into parallel light beams for measurement, and only a part of the output light beam cross section of the light source body around the optical axis. A plurality of attenuating collimating lens devices having different optical attenuating ratios for making the above-mentioned parallel light flux for measurement and a parallel light flux having the same diameter are arranged in parallel in parallel to the optical axis, and are most suitable in the standby state of powder flow rate measurement. A collimating lens device having a high light attenuation factor is inserted in the output optical axis of the light source body to attenuate the incident light amount, and as a result, the predetermined light receiving amount at the light transmittance detection end is set to a weak level.

【0035】本発明の光減衰用コリメーテイングレンズ
装置は入射光量を1/10から1/100程度に減衰す
る。コリメーテイングレンズ装置の交換入替えはコリメ
ーテイングレンズ装置切り換え装置によって行い、この
切り換え装置への命令は光検出端で検出した透過光量値
を参照して行う。
The light-attenuating collimating lens device of the present invention attenuates the amount of incident light to about 1/10 to 1/100. Replacement and replacement of the collimating lens device is performed by the collimating lens device switching device, and an instruction to this switching device is performed by referring to the transmitted light amount value detected at the light detection end.

【0036】例えば、光検出端が損傷しない透過光量を
設定しておき、実際の透過光量が所定の設定値より大き
い場合は、光減衰用コリメーテイングレンズ装置を光軸
に移動し、透過光量を減衰し、測定待機状態とする。
For example, if the amount of transmitted light which does not damage the light detecting end is set and the actual amount of transmitted light is larger than a predetermined set value, the collimating lens device for light attenuation is moved to the optical axis to transmit the amount of transmitted light. Is attenuated, and the measurement standby state is set.

【0037】この状態で粒子濃度が大きくなると、透過
光量は更に小さくなる或いは透過光量が検出されなくな
るので、光源光量の全光量を入射光量とする他のコリメ
ーテイングレンズ装置を上記光減衰用コリメーテイング
レンズ装置と交換配設し、光源全光量を使用することに
より粉体流量の測定を開始するというものである。
If the particle concentration increases in this state, the amount of transmitted light becomes smaller or the amount of transmitted light cannot be detected. Therefore, another collimating lens device having the total amount of light of the light source as the incident light amount is used. It is arranged to be exchanged with the mating lens device, and the measurement of the powder flow rate is started by using the total light amount of the light source.

【0038】[0038]

【実施例】以下に本発明の実施例を図によって説明す
る。図1、図2は本発明の一実施例を示す図であり、図
1は本発明装置を設置した状態を示す図であり、図2は
本発明の装置の光透過率検出部の要部を示す図である。
図において、10は粉体流量計の光透過率検出部、11
a、11bは光透過用測定管、12は先端間隔調節装
置、13は流速検出端である。7は粉体の粒子である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are views showing an embodiment of the present invention, FIG. 1 is a view showing a state in which the device of the present invention is installed, and FIG. 2 is a main part of a light transmittance detecting portion of the device of the present invention. FIG.
In the figure, 10 is a light transmittance detection unit of the powder flow meter, and 11
Reference numerals a and 11b are light transmission measuring tubes, 12 is a tip interval adjusting device, and 13 is a flow velocity detecting end. 7 is a powder particle.

【0039】本発明の粉体流量の測定装置は、粉体が搬
送媒体により搬送される配管系9内に設けた隣接する配
管と同心等断面積の垂直管1と、軸芯Cに直交する線E
上に位置して対向させた開口部8a、8bを有し、それ
らの開口部8a、8bに挿入し、一定の先端間隔で対向
するように突出して配設された光透過用測定管11a、
11bと、光透過用測定管11a、11bに付設した先
端間隔調節装置12と、一方の測定管11aの後端部に
配置した光束入射用の光源体3と、光源体の光源電源2
1と、他方の測定管11bの後端部に配置した光量検出
端5からなる光透過率検出部10と、搬送媒体の流速を
測定する流速検出端13、及びそれらの検出端の出力信
号から粉体平均濃度値と媒体平均流速値とを各々算出
し、これらを乗算し、粉体流量値を演算する装置14を
組合わせ、更に、粉体の搬送が停止された時に、上記所
定の受光量を粉体搬送時の光量レベルから弱めた光量レ
ベルを与える受光量を用いて測定を継続して粉体搬送開
始を監視して粉体が搬送開始される時の透過光量の減衰
を検知し、その検知信号によって、上記所定の受光量を
粉体搬送時の光量レベルに強めて粉体濃度を測定し、そ
の粉体濃度と上記搬送媒体の流速値とから粉体流量を算
出するものであり、上記のような光量レベルを弱めた
り、強めたりする装置として、光透過率検出部10に後
述する図6、図7、図8に示すような光源付加電流をか
えて出力光量を切り替える光源電源21、或いは透過光
量を減衰するシャッター、又は入射光強度の切り換え可
能なコリメーテイングレンズ装置を設けたものである。
The powder flow rate measuring device of the present invention is provided with a vertical pipe 1 having an equal cross-sectional area and concentric with an adjacent pipe provided in a pipe system 9 in which powder is conveyed by a conveying medium, and orthogonal to the axis C. Line E
Measuring tube 11a for light transmission, which has openings 8a, 8b located above and opposed to each other, is inserted into these openings 8a, 8b, and is projectingly arranged so as to be opposed to each other at a constant tip interval;
11b, a tip interval adjusting device 12 attached to the light-transmitting measuring tubes 11a, 11b, a light source 3 for light flux incidence arranged at the rear end of one measuring tube 11a, and a light source power source 2 for the light source.
1 and a light transmittance detecting unit 10 including a light amount detecting end 5 arranged at the rear end of the other measuring tube 11b, a flow velocity detecting end 13 for measuring the flow velocity of the carrier medium, and output signals from these detecting ends. A device 14 for calculating the powder average concentration value and the medium average flow velocity value, multiplying them, and calculating the powder flow rate value is combined, and further, when the powder conveyance is stopped, the predetermined light reception is performed. Measurement is continued using the received light amount that gives a light amount level that is weakened from the light amount level during powder transfer, and the start of powder transfer is monitored to detect the attenuation of the transmitted light amount when powder starts to be transferred. By using the detection signal, the predetermined light receiving amount is strengthened to the light amount level during powder conveyance to measure the powder concentration, and the powder flow rate is calculated from the powder concentration and the flow velocity value of the conveying medium. Yes, a device that weakens or strengthens the light level as described above Then, the light source power source 21 for switching the output light amount by changing the light source additional current as shown in FIG. 6, FIG. 7, and FIG. 8 described later to the light transmittance detection unit 10, the shutter for attenuating the transmitted light amount, or the incident light intensity. The collimating lens device which can be switched is provided.

【0040】演算装置14は光透過率検出部10内の光
量検出端5及び流速検出端13から各々測定値を信号に
変換した送信信号を受信し、演算部15で演算し、表示
部16に粉体7の流量を表示させる。17は記憶部、1
8は指令部、19はカバーである。
The arithmetic unit 14 receives the transmission signals obtained by converting the measured values into signals from the light amount detecting end 5 and the flow velocity detecting end 13 in the light transmittance detecting unit 10, calculates them in the calculating unit 15, and displays them in the display unit 16. The flow rate of the powder 7 is displayed. 17 is a storage unit, 1
Reference numeral 8 is a command unit, and 19 is a cover.

【0041】図6は本発明により、光源体の光強度を制
御する光源電流制御回路に光量レベル設定値の切り替え
指令を与える光量レベル設定回路を設けた光源電源21
の一実施例、即ち、連続発光レザー光源を用いた例を示
す図である。
FIG. 6 shows a light source power source 21 provided with a light quantity level setting circuit for giving a light quantity level setting value switching command to a light source current control circuit for controlling the light intensity of a light source body according to the present invention.
It is a figure which shows one Example, ie, the example using a continuous light emitting laser light source.

【0042】光源体3であるレザー発振器22のレザー
出力(光強度)はレザー出力をモニターして、放電電流
制御回路23が放電電流出力回路24の放電電流量を調
整することによって、所定のレザー出力値に安定させて
いる。
The laser output (light intensity) of the laser oscillator 22 which is the light source body 3 is monitored by the laser output, and the discharge current control circuit 23 adjusts the discharge current amount of the discharge current output circuit 24. Stabilized to the output value.

【0043】そこで、レザー発振器22のレザー出力値
を弱レベルから強レベル或いはその逆に切り替える手段
は、光透過率検出端の検出信号を受けてその信号レベル
と域値を比較する手段からの指令信号によって、レザー
電源の放電電流制御回路23への出力レベル設定回路2
6の出力設定信号を強レベル信号から弱レベル信号に切
り換えることによってなされる。21は光源(レザー)
電源である。
Therefore, the means for switching the laser output value of the laser oscillator 22 from the weak level to the strong level or vice versa is a command from the means for receiving the detection signal at the light transmittance detecting end and comparing the signal level with the threshold value. The output level setting circuit 2 to the discharge current control circuit 23 of the laser power supply according to the signal
This is done by switching the output setting signal of 6 from a strong level signal to a weak level signal. 21 is a light source (leather)
Power.

【0044】通常、このレザー出力値の出力レベルの切
り換えは定格総合出力の100〜10%範囲内で可能で
ある。前記比較する手段は光透過率検出端の検出信号を
受ける粉体流量計の演算装置を利用したソフト的手段、
あるいは上記検出信号の低周波数成分をアナログ回路で
比較する手段のどちらの手段でも用いることが出来る。
Normally, the switching of the output level of the laser output value is possible within the range of 100 to 10% of the rated total output. The means for comparing is a software means using an arithmetic unit of a powder flowmeter that receives a detection signal from the light transmittance detecting end,
Alternatively, either of the means for comparing the low frequency components of the detection signal with an analog circuit can be used.

【0045】図7(a)、(b)は本発明によるコリメ
ーテイングレンズ装置の一実施例を示す図であり、
(a)は光拡散レンズに凹レンズを用いた図、(b)は
光拡散レンズに凸レンズを用いた図である。
FIGS. 7A and 7B are views showing an embodiment of the collimating lens device according to the present invention.
(A) is a figure which used the concave lens for the light diffusion lens, (b) is a figure which used the convex lens for the light diffusion lens.

【0046】粉体濃度を測定する時には、光源体3から
出力光束27として出力される細い平行光線を光拡散用
の凸レンズ28a又は凹レンズ28bで拡散し、光束直
径が測定部平行光束29の直径に拡大された個所に設け
たコリメーテイング用の凸レンズ30を透過させて、所
定の直径を有する測定部平行光束29とする。33は拡
散光束である。
When measuring the powder concentration, the thin parallel light beam output as the output light beam 27 from the light source body 3 is diffused by the convex lens 28a or the concave lens 28b for light diffusion, and the light beam diameter becomes the diameter of the measuring part parallel light beam 29. The convex lens 30 for collimating provided at the enlarged portion is transmitted to form a parallel light beam 29 for measuring portion having a predetermined diameter. Reference numeral 33 is a diffused light flux.

【0047】測定部平行光束29の光強度(エネルギー
/単位投射面積)を弱めるには光拡散用レンズ28a、
28bの焦点距離を変えたレンズを使用し、その光拡散
度合が測定用の場合の光拡散度合より大きく、例えば広
がり直径を測定用の場合の3倍にした後、光軸を中心と
した一部の光束(測定部平行光束面積と同一の面積部
分)をコリメーテイングレンズ用の凸レンズ30で測定
部平行光束29とする。光拡散用レンズ28a、28b
での光拡散度合が測定用の場合の3倍である例では、測
定部平行光束29の光強度は1/9とすることが出来
る。
In order to weaken the light intensity (energy / unit projection area) of the measuring portion parallel light beam 29, the light diffusing lens 28a,
A lens having a different focal length of 28b is used, and the light diffusion degree thereof is larger than the light diffusion degree in the case of measurement. For example, after making the spread diameter three times that in the case of measurement, The partial light flux (the area having the same area as the measurement light flux) is made into the measurement light flux 29 by the convex lens 30 for the collimating lens. Light diffusion lenses 28a, 28b
In an example in which the degree of light diffusion in 3 is three times that in the case of measurement, the light intensity of the measuring unit parallel light flux 29 can be set to 1/9.

【0048】図7では光学的な方法の二例を示したが、
その他の光学的手法、例えばコリメーテイングレンズ用
凸レンズの位置を光拡散用レンズから遠い位置に下げて
配置する等によっても、測定部平行光束の光強度を弱め
ることが出来る。
FIG. 7 shows two examples of optical methods.
The optical intensity of the parallel light flux at the measurement portion can be weakened by other optical methods, for example, by arranging the convex lens for the collimating lens at a position far from the light diffusing lens.

【0049】本発明は上記のような光学的手法によって
設計した複数のコリメーテイングレンズ装置の光源体出
力光軸への配置を切り換えることによって、測定部平行
光束の光強度を変更するものである。
The present invention changes the light intensity of the parallel light flux in the measuring section by switching the arrangement of the plurality of collimating lens devices designed by the above optical method on the output optical axis of the light source body. .

【0050】図8(a)、(b)は本発明に用いる光減
衰用シャッターの一実施例を示す図であり(a)は側面
断面図、(b)は光減衰用シャッター透過後の光の減衰
状態を示す図である。ここではレザー光源体と多孔板シ
ャッター31を用いている。
FIGS. 8 (a) and 8 (b) are views showing an embodiment of the light attenuation shutter used in the present invention. FIG. 8 (a) is a side sectional view, and FIG. 8 (b) is the light after passing through the light attenuation shutter. It is a figure which shows the decay state of. Here, a laser light source and a perforated plate shutter 31 are used.

【0051】このシャッター31は外径φ20mm、厚
さ0.1mmのステンレス製の薄板に、エッチングなど
の加工法によってあけた小さな孔を等間隔で多数配置し
た多孔板であり、光による熱変形を極力小さくしたもの
である。
The shutter 31 is a thin plate made of stainless steel having an outer diameter of 20 mm and a thickness of 0.1 mm, and a large number of small holes formed at equal intervals by a processing method such as etching. It is as small as possible.

【0052】一枚目の多孔板31aに入射された光のう
ち、孔部以外の薄板に照射された光は遮断されるが、孔
を通過した光は直進し、次の多孔板31bに照射され、
更に次の多孔板31cに照射される結果、全体光量は減
衰する。上記のように、多孔板3a、3b、3cで照射
された光減衰用シャッター透過後の減衰した状態は
(b)に示すような光の分布状態となる。
Of the light incident on the first perforated plate 31a, the light irradiated on the thin plate other than the holes is blocked, but the light passing through the holes travels straight and is irradiated on the next perforated plate 31b. Is
As a result of irradiating the next porous plate 31c, the total amount of light is attenuated. As described above, the attenuated state after passing through the light attenuating shutter irradiated by the perforated plates 3a, 3b, and 3c is the light distribution state as shown in (b).

【0053】この減衰割合は、基本的には多孔板の一枚
の面積に対する孔部の総面積(開口比)とこれらの多孔
板の重り相対配置によって決定され、複数枚の多孔板の
相対位置を微調整することによって、透過率(減衰率)
を細かく調整出来る。
This damping ratio is basically determined by the total area of the holes (opening ratio) with respect to the area of one perforated plate and the relative weight arrangement of these perforated plates. By finely adjusting the transmittance (attenuation rate)
Can be finely adjusted.

【0054】本発明では、光透過率検出端にシリコンフ
ォトダイオードタイプの受光素子を用い、この形式の測
定可能最大光量は50mWであり、それ以上の大光量の
光が照射されると測定精度が低下する。
In the present invention, a silicon photodiode type light receiving element is used at the light transmittance detecting end, the maximum measurable light amount of this type is 50 mW, and when a light amount of more than that is irradiated, the measurement accuracy becomes high. descend.

【0055】高濃度粉体の粒子濃度を測定するために、
光源に出力5Wのレーザ光源を用いた例では、光減衰用
シャッターによる光の減衰割合の目標値は1/100=
0.05/5であるが、シャッター多孔板性能の信頼性
や経時変化等から、減衰割合を1/100〜1/100
00に設定した。
To measure the particle concentration of the high-concentration powder,
In an example in which a laser light source with an output of 5 W is used as the light source, the target value of the light attenuation rate by the light attenuation shutter is 1/100 =
Although it is 0.05 / 5, the attenuation ratio is 1/100 to 1/100 due to the reliability of the shutter perforated plate performance and the change over time.
It was set to 00.

【0056】この減衰割合を実現するために、多孔板の
孔径、孔数や枚数を変えて、種々試作し、実際に減衰割
合を調べて、上記の多孔板(φ0.15mmの孔をピッ
チ0.25mmで配置)を4枚構造とする光減衰用シャ
ッターに決定した。なお、より小さい孔径の孔あけ加工
が可能ならば、多孔板一枚あたりの減衰割合を大きく出
来るので、多孔板の枚数は少なくて済むことになる。
In order to realize this attenuation ratio, various hole diameters, the number of holes and the number of holes of the perforated plate were changed, various trial manufactures were carried out, the attenuation ratio was actually investigated, and the above-mentioned perforated plate (holes of φ0.15 mm with pitch 0 0.25 mm) was adopted as the light attenuating shutter having a four-sheet structure. If it is possible to perform drilling with a smaller hole diameter, the attenuation rate per perforated plate can be increased, so that the number of perforated plates can be reduced.

【0057】この光減衰用シャッター31は図2に一例
を示すように光透過率検出部10内の光収束用レンズ2
0の前方に設置する。この光減衰用シャッター31の光
軸への移動は、シャッター駆動装置32で行ない、この
駆動装置32への命令は、光検出端で検出した透過光量
値を参照して行う。
This light attenuation shutter 31 is used for the light converging lens 2 in the light transmittance detecting section 10 as shown in FIG.
Install in front of 0. The movement of the light attenuation shutter 31 to the optical axis is performed by the shutter drive device 32, and the command to the drive device 32 is performed by referring to the transmitted light amount value detected at the light detection end.

【0058】本発明の上述した装置を用いて、本発明方
法を行う場合について説明する。粉体を搬送する配管系
9内に設けた垂直管1に粉体を搬送媒体によって通過さ
せる。ここでは垂直管1が配管系9内の配管と同心等断
面積なので、測定部での流れの均一性が保たれているた
めに、その中を通過する粉体濃度は配管系9内の粒子7
の粉体濃度と同じである。
A case of carrying out the method of the present invention using the above-mentioned apparatus of the present invention will be described. The powder is passed through the vertical pipe 1 provided in the piping system 9 for carrying the powder by the carrier medium. Here, since the vertical pipe 1 has a concentric and equal cross-sectional area with the pipe in the pipe system 9, the uniformity of the flow in the measurement part is maintained, and therefore the powder concentration passing through the vertical pipe 1 depends on the particles in the pipe system 9. 7
It is the same as the powder concentration of.

【0059】光透過用測定管11a、11bは垂直管1
の軸芯Cに直交する線E上に位置して対向させた開口部
8a、8bから挿入し、配設しているので、光透過用測
定管11a、11bは同一径であり、その軸芯が一致す
る。これによって、測定管11aの端部に接続した光束
入射用の光源体3から入射された光束は平行光束4とし
て、垂直管1内の粉体を直角に横切り、測定管11bを
通過して光量検出端5で検出される。
The light transmission measuring tubes 11a and 11b are vertical tubes 1.
Since the measurement tubes 11a and 11b for light transmission have the same diameter, the measurement tubes 11a and 11b for light transmission have the same diameter because the measurement tubes 11a and 11b are inserted from the openings 8a and 8b facing each other and located on the line E orthogonal to the axis C of the. Match. As a result, the luminous flux incident from the light source body 3 for incident luminous flux connected to the end of the measuring tube 11a crosses the powder in the vertical tube 1 at a right angle as a parallel luminous flux 4, passes through the measuring tube 11b, and passes through the quantity of light. It is detected at the detection end 5.

【0060】又は、垂直管の内部に位置する、相対する
測定管の先端間隔を所定間隔に保って、垂直管の内直径
の範囲で、一方の管壁から他方の管壁に連続し所定の速
度で垂直管の直径に沿い移動することにより、垂直管内
直径方向の透過光量(透過率)の分布を検出する。
Alternatively, the distance between the tip ends of the opposed measuring tubes located inside the vertical tube is maintained at a predetermined interval, and one tube wall is continuously connected to the other tube wall within a predetermined range within a range of the inner diameter of the vertical tube. By moving along the diameter of the vertical tube at a velocity, the distribution of the amount of transmitted light (transmittance) in the diameter direction inside the vertical tube is detected.

【0061】ここにおいて、粉体の搬送が停止された時
は、光源体3の光強度を、光量検出端5で検出した透過
光強度が所定の弱レベルの受光量になるように、変化さ
せて光量検出端5が破壊されることを防止し測定を継続
する。
Here, when the conveyance of the powder is stopped, the light intensity of the light source body 3 is changed so that the transmitted light intensity detected by the light amount detecting end 5 becomes a predetermined weak level of the received light amount. The light quantity detecting end 5 is prevented from being destroyed, and the measurement is continued.

【0062】粉体が再び搬送開始されるときは、その透
過光量の減衰を検知し、その検知信号によって、受光量
を所定の強レベルの受光量に強め、一定間隔で対する上
記測定管の一方から他方へ光を透過して、その透過光量
を測定して光の透過率から図3に示した透過率、粉体平
均濃度、測定条件の構成直線の関係を用いて上記垂直管
内の粉体平均濃度を算出する。
When the powder is conveyed again, the attenuation of the transmitted light amount is detected, and the detection signal enhances the received light amount to a predetermined strong level, and one of the measuring tubes for the fixed interval. From the light in the vertical tube using the relationship between the transmittance, the average density of the powder, and the straight line of the measurement conditions shown in FIG. Calculate the average concentration.

【0063】この場合、測定部の光路長(L)を実際の
粉体搬送管径より小さくしているので、図3の透過率と
粉体平均濃度と測定条件からなるパラメーターとの関係
から、先端間隔を選定して、光透過量の減衰量を抑制す
ることが出来る。その結果、粉体の高濃度粒子群の粉体
平均濃度値を正確に測定することが出来る。
In this case, since the optical path length (L) of the measuring section is made smaller than the actual diameter of the powder conveying tube, from the relationship between the transmittance, the average concentration of the powder and the parameter consisting of the measuring conditions in FIG. The attenuation of the light transmission amount can be suppressed by selecting the tip interval. As a result, it is possible to accurately measure the powder average concentration value of the high concentration particle group of the powder.

【0064】本発明では実際の粉体流量測定において、
粉体が粒子径が異なり、粒子の種類が異なる所謂混粒状
態にあるので、上記図3に示した光の透過率と粉体平均
濃度と測定条件からなるパラメーターの関係式を演算装
置14の記憶部17にあらかじめ記憶させ、演算部15
で測定された光量検出端5の出力信号(透過光強度)か
ら光の透過率に換算し同時に粉体平均濃度値を算出す
る。
In the present invention, in the actual powder flow rate measurement,
Since the powders are in a so-called mixed state in which the particle diameters are different and the types of particles are different, the relational expression of the parameters including the light transmittance, the powder average concentration, and the measurement conditions shown in FIG. The calculation unit 15 stores the data in the storage unit 17 in advance.
The output signal (transmitted light intensity) of the light amount detecting end 5 measured in step 1 is converted into the light transmittance, and at the same time, the powder average concentration value is calculated.

【0065】一方、流速検出端13の出力信号から演算
部15により媒体平均流速値を算出する。更に上記粉体
平均濃度値と媒体平均流速値とを演算部15により乗算
することによって、粉体流量値を算出する。これらの値
は表示部16によって表示される。
On the other hand, the medium average flow velocity value is calculated by the calculating unit 15 from the output signal of the flow velocity detecting end 13. Further, the powder flow rate value is calculated by multiplying the powder average concentration value and the medium average flow velocity value by the calculation unit 15. These values are displayed on the display unit 16.

【0066】本発明方法によれば、条件として管長2.0
m、管径0.2 mの垂直管を配管系に配置し、垂直管の入
側から75%の位置に設けた開口部から光透過用測定管
を挿入して突出させ、その先端間隔(L)を0.1 mにな
るように配設して、粉体として硅砂5号(dp32=0.34mm,
ρ=2.58)を空気を媒体として流速20m/秒で搬送した場
合、図5に示すような結果を得ることが出来た。図5は
粉体流量値と測定経過時間との関係を示す図である。こ
こでは粉体濃度のサンプリング間隔を0.6秒とし、粉
体平均濃度値とガス流速値との乗算から、粉体流量値を
算出しプロットしたものである。
According to the method of the present invention, the pipe length is 2.0 as a condition.
m vertical pipe with a diameter of 0.2 m is placed in the piping system, and the light transmission measuring pipe is inserted and protruded from the opening provided at a position of 75% from the inlet side of the vertical pipe, and the distance between the tips (L) Is arranged to be 0.1 m, and as a powder, silica sand No. 5 (dp32 = 0.34 mm,
When ρ = 2.58) was conveyed with air as a medium at a flow rate of 20 m / sec, the results shown in FIG. 5 could be obtained. FIG. 5 is a diagram showing the relationship between the powder flow rate value and the elapsed measurement time. Here, the powder concentration sampling interval is set to 0.6 seconds, and the powder flow rate value is calculated and plotted from the multiplication of the powder average concentration value and the gas flow velocity value.

【0067】図5において、粉体流量値を示す曲線は粉
体搬送を停止した時A点からB点間で流量測定値は略0
を示すが、粉体搬送が再開されると直ちに流量曲線は略
4.5トン/時の流量を示している。この時A点におい
て、粉体流量測定用の所定の受光量の強レベルの光量を
粉体搬送のされない時の弱レベルの所定の受光量に減衰
する光減衰用シャッターを測定用光路に装入し測定を継
続し粉体の搬送開始を監視した。
In FIG. 5, the curve showing the powder flow rate value shows that the flow rate measurement value between point A and point B is almost 0 when the powder conveyance is stopped.
The flow rate curve shows a flow rate of approximately 4.5 tons / hour immediately after the powder conveyance is restarted. At this time, at point A, an optical attenuation shutter for attenuating the high level light intensity of the predetermined light receiving amount for powder flow rate measurement to the weak level predetermined light receiving amount when the powder is not conveyed is installed in the measurement optical path. Then, the measurement was continued and the start of powder conveyance was monitored.

【0068】上記監視によって、粉体搬送が始まったと
きの透過光量の減少を検知し、その検知信号によって光
減衰用シャッターを測定用光路から退去させ再び粉体流
量測定用の所定の受光量の強レ強レベルの光量を測定用
光路に導入して粉体流量を自動的に継続させたものであ
る。
By the above-mentioned monitoring, a decrease in the amount of transmitted light at the start of powder conveyance is detected, and the detection signal causes the shutter for light attenuation to be withdrawn from the optical path for measurement, and again a predetermined amount of received light for measuring the powder flow rate is detected. The intensity of light at a strong intensity level is introduced into the optical path for measurement, and the powder flow rate is automatically continued.

【0069】上記測定から明らかなように、本発明は高
濃度領域の粉体流量測定が出来るとともに、連続測定の
途上で粉体搬送の停止を生じても粉体搬送再開後に自動
的に継続して粉体流量測定が出来るので、産業用のオン
ライン粉体流量測定に使用するに適した技術である。
As is clear from the above measurement, the present invention is capable of measuring the powder flow rate in the high-concentration region, and even if the powder conveyance is stopped during the continuous measurement, it is automatically continued after the powder conveyance is restarted. Since it is possible to measure the powder flow rate by using this method, it is a technology suitable for use in industrial online powder flow rate measurement.

【0070】[0070]

【発明の効果】本発明によれば、以下の効果が得られ
る。 粉体濃度3kg/m3 迄の高濃度の測定が可能である。 高濃度粉体の多量搬送量の測定が可能である。 測定管の先端間隔(L)を一定にして、管内を径方向
に横断させて、垂直管の径方向の粉体濃度の分布を測定
出来る。 粉体搬送が停止しても、透過光量を適度に調整出来る
ので、光検出端が破壊されることがなく、粉体搬送再開
後に自動的に継続して粉体流量測定が出来る。
According to the present invention, the following effects can be obtained. It is possible to measure high concentration up to 3kg / m 3 of powder concentration. It is possible to measure a large amount of highly concentrated powder. It is possible to measure the powder concentration distribution in the radial direction of the vertical pipe by making the tip interval (L) of the measuring pipe constant and traversing the inside of the pipe in the radial direction. Even if the powder conveyance is stopped, the amount of transmitted light can be adjusted appropriately, so that the light detection end is not destroyed, and the powder flow rate can be automatically measured after the powder conveyance is restarted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置を配管系に設置した状態を示す図で
ある。
FIG. 1 is a diagram showing a state in which the device of the present invention is installed in a piping system.

【図2】本発明装置の光透過率検出部の要部を示す図で
ある。
FIG. 2 is a diagram showing a main part of a light transmittance detection unit of the device of the present invention.

【図3】本発明による透過率と、粉体平均濃度と測定条
件からなるパラメーターとの関係を示す図である。
FIG. 3 is a diagram showing the relationship between the transmittance according to the present invention and the parameters consisting of the average powder concentration and the measurement conditions.

【図4】本発明による管内の直径方向の粉体濃度分布を
測定するための説明図である。
FIG. 4 is an explanatory diagram for measuring a diametrical powder concentration distribution in a tube according to the present invention.

【図5】本発明の一実施例による粉体流量値と測定経過
時間との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a powder flow rate value and a measurement elapsed time according to an embodiment of the present invention.

【図6】本発明により光源電源に光強度制御回路と光量
レベル設定回路を設けた一実施例を示す図である。
FIG. 6 is a view showing an embodiment in which a light source power supply is provided with a light intensity control circuit and a light amount level setting circuit according to the present invention.

【図7】本発明による光減衰用シャッターの一実施例を
示す図である。
FIG. 7 is a diagram showing an embodiment of a light attenuation shutter according to the present invention.

【図8】本発明によるコリメーテイングレンズ装置の一
実施例を示す図である。
FIG. 8 is a diagram showing an embodiment of a collimating lens device according to the present invention.

【図9】従来の光透過方式粉体濃度計の一例を示す図で
ある。
FIG. 9 is a diagram showing an example of a conventional light transmission type powder densitometer.

【符号の説明】[Explanation of symbols]

10 粉体流量計の光透過率検出部 11a、11b 光透過用測定管 12 先端間隔調節装置 13 流速検出端 14 粉体流量計の演算装置 15 演算部 16 表示部 17 記憶部 18 指令部 19 カバー 20 レンズ 21 光源(レザー)電源 22 レザー発振器 23 放電電流制御回路 24 放電電流出力回路 25 粉体濃度計からの光強度レベル切換え信号 26 出力レベル設定回路 27 レザー出力光束 28 光拡散レンズ 28a 凸レンズ 28b 凹レンズ 29 測定部平行光束 30 コリメーテイング用の凸レンズ 31 多孔板シャッター 31a 一枚目の多孔板 31b 二枚目の多孔板 31c 三枚目の多孔板 32 駆動装置 33 拡散光束 34 透過光 35 光 10 Light Transmittance Detecting Part of Powder Flowmeter 11a, 11b Light Transmitting Measuring Tube 12 Tip Spacing Adjuster 13 Flow Rate Detecting End 14 Powder Flowmeter Calculator 15 Calculator 16 Display 17 Memory 18 Commander 19 Cover 20 lens 21 light source (laser) power source 22 laser oscillator 23 discharge current control circuit 24 discharge current output circuit 25 light intensity level switching signal from powder densitometer 26 output level setting circuit 27 laser output luminous flux 28 light diffusing lens 28a convex lens 28b concave lens 29 Measuring part parallel light beam 30 Convex lens for collimating 31 Perforated plate shutter 31a First perforated plate 31b Second perforated plate 31c Third perforated plate 32 Driving device 33 Diffused light beam 34 Transmitted light 35 Light

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 粉体が搬送媒体により搬送される管の管
壁に相対する二つの観察窓を設置し、該観察窓を介し
て、光を透過させ、その透過した光を受光し、その透過
光量の所定の受光量からの透過率を用いて測定した粉体
平均濃度と前記搬送媒体の流速値とから粉体流量を算出
する方法であって、前記粉体の搬送が停止された時に、
前記所定の受光量を粉体搬送時の光量レベルから弱めた
光量レベルを与える受光量を用いて測定し、粉体が搬送
開始される時の透過光量の減衰を検知し、その検知信号
によって、前記所定の受光量を粉体搬送時の光量レベル
に強めて粉体平均濃度を測定し、その粉体平均濃度と前
記搬送媒体の流速値とから粉体流量を算出することを特
徴とする管内を搬送媒体により搬送される粉体の流量測
定方法。
1. A two observation window facing a tube wall of a tube in which powder is conveyed by a conveyance medium is provided, light is transmitted through the observation window, and the transmitted light is received, A method for calculating a powder flow rate from a powder average concentration measured using a transmittance from a predetermined received light amount of a transmitted light amount and a flow velocity value of the transfer medium, wherein when the powder transfer is stopped. ,
The predetermined amount of received light is measured by using the amount of received light that gives a light amount level that is weakened from the light amount level at the time of powder conveyance, and the attenuation of the transmitted light amount when the powder is started to be conveyed is detected, and by the detection signal, A pipe characterized by increasing the predetermined amount of received light to a light amount level at the time of powder conveyance to measure the powder average concentration, and calculating the powder flow rate from the powder average concentration and the flow velocity value of the conveying medium. A method for measuring the flow rate of powder carried by a carrying medium.
【請求項2】 粉体が搬送媒体により搬送される管内に
一定の先端間隔で対向するように突出して配設された光
透過用測定管を介して、光を透過させ、その透過した光
を受光し、その透過光量の所定の受光量からの透過率を
用いて測定した粉体平均濃度と前記搬送媒体の流速値と
から粉体流量を算出する方法であって、前記粉体の搬送
が停止された時に、前記所定の受光量を粉体搬送時の光
量レベルから弱めた光量レベルを与える受光量を用いて
測定し、粉体が搬送開始される時の透過光量の減衰を検
知し、その検知信号によって、前記所定の受光量を粉体
搬送時の光量レベルに強めて粉体平均濃度を測定し、そ
の粉体平均濃度と前記搬送媒体の流速値とから粉体流量
を算出することを特徴とする管内を搬送媒体により搬送
される高濃度粉体の流量測定方法。
2. The light is transmitted through a light-transmitting measuring tube which is disposed so as to project so that the powder is opposed to the inside of a tube which is conveyed by a conveying medium at a constant tip interval, and the transmitted light is passed through the tube. A method of calculating a powder flow rate from a powder average concentration measured using the transmittance of a received light amount from a predetermined received light amount and a flow velocity value of the transfer medium, wherein the powder is transferred. When stopped, the predetermined amount of light received is measured using the amount of light received that gives a light amount level that is weakened from the amount of light during powder conveyance, and the attenuation of the amount of transmitted light when powder starts to be conveyed is detected, By using the detection signal, the predetermined amount of received light is increased to a light amount level during powder conveyance to measure the powder average concentration, and the powder flow rate is calculated from the powder average concentration and the flow velocity value of the conveying medium. Of high-concentration powder conveyed by the conveying medium in the pipe characterized by Flow measurement method.
【請求項3】 所定の受光量の光量レベルを弱める或い
は再び強める手段を光源体の光源付加電流操作によって
行うことを特徴とする請求項1又は請求項2記載の管内
を搬送媒体により搬送される高濃度粉体の流量測定方
法。
3. The medium according to claim 1 or 2, wherein the means for weakening or once again strengthening the light quantity level of a predetermined received light quantity is carried out by operating the light source additional current of the light source body. High-concentration powder flow rate measurement method.
【請求項4】 所定の受光量の光量レベルを弱める或い
は再び強める手段を光減衰シャッター操作によって行う
ことを特徴とする請求項1又は請求項2記載の管内を搬
送媒体により搬送される高濃度粉体の流量測定方法。
4. The high-concentration powder carried by a carrier medium in a pipe according to claim 1 or 2, wherein means for weakening or once again strengthening a light quantity level of a predetermined received light quantity is performed by a light attenuation shutter operation. How to measure body flow.
【請求項5】 所定の受光量の光量レベルを弱める或い
は再び強める手段を光源のコリメーテイングレンズ装置
の操作によって行うことを特徴とする請求項1又は請求
項2記載の管内を搬送媒体により搬送される高濃度粉体
の流量測定方法。
5. The pipe as claimed in claim 1 or 2, wherein means for weakening or strengthening the light amount level of a predetermined amount of received light is carried out by operating the collimating lens device of the light source. Flow measurement method for high concentration powder.
【請求項6】 軸芯に直交する線上に位置して対向させ
た観察窓を有する管と、それらの観察窓の一方の観察窓
に配置された光束入射用の光源体と、他方の観察窓に配
置された光量検出端を具備した光透過率検出部と、搬送
媒体の流速を測定する検出端と、それらの出力信号から
粉体平均濃度と媒体平均流速とを各々算出し、これらを
乗算し、粉体流量を演算する装置を組合わせてなる粉体
流量測定装置であって、前記光量検出端への受光量レベ
ルを変化させる光透過率検出部の光学手段と前記光透過
率検出端の検出信号を受けてその信号レベルと域値と比
較し前記受光量レベルを変化させる光透過率検出部の光
学手段に光量レベル設定値の切り替えの指令信号を発す
る比較手段を設けたことを特徴とする管内を搬送媒体に
より搬送される粉体の流量測定装置。
6. A tube having observation windows located on a line orthogonal to the axis and opposed to each other, a light source for light beam incidence arranged in one of the observation windows, and the other observation window. , A light transmittance detection unit having a light amount detection end, a detection end for measuring the flow velocity of the carrier medium, and a powder average concentration and a medium average flow velocity are calculated from their output signals, and these are multiplied. And a powder flow rate measuring device comprising a combination of a device for calculating the powder flow rate, wherein the optical means of the light transmittance detecting section for changing the received light level to the light amount detecting end and the light transmittance detecting end. Receiving means for comparing the signal level with the threshold value and changing the received light amount level, the optical means of the light transmittance detecting portion is provided with a comparing means for issuing a command signal for switching the light amount level set value. Powder that is transported by the transport medium in the pipe Flow measuring device.
【請求項7】 軸芯に直交する線上に位置して対向させ
た開口部を有する管と、それらの開口部に挿入され、一
定の先端間隔で対向するように突出して配設された光透
過用測定管と、光透過用測定管に付設した先端間隔調節
装置と、一方の測定管の後端部に配置された光束入射用
の光源体と、他方の測定管の後端部に配置された光量検
出端を具備した光透過率検出部と、搬送媒体の流速を測
定する検出端と、それらの出力信号から粉体平均濃度と
媒体平均流速とを各々算出し、これらを乗算し、粉体流
量を演算する装置を組合わせてなる流量測定装置であっ
て、前記光源体の光源付加電流制御装置に光量レベル設
定回路と前記光透過率検出端の検出信号を受けてその信
号レベルと域値と比較し前記光量レベル設定回路に光量
レベル設定値の切り替えの指令信号を発する比較手段を
設けたことを特徴とする管内を搬送媒体により搬送され
る高濃度粉体の流量測定装置。
7. A tube having openings opposed to each other on a line orthogonal to the axis, and light transmission inserted into the openings and projecting so as to oppose each other at a constant tip interval. Measuring tube, a tip interval adjusting device attached to the light transmitting measuring tube, a light source for light beam incidence arranged at the rear end of one measuring tube, and at the rear end of the other measuring tube. A light transmittance detecting section having a light amount detecting end, a detecting end for measuring the flow velocity of the carrier medium, and a powder average concentration and a medium average flow velocity are respectively calculated from their output signals, and these are multiplied to obtain a powder A flow rate measuring device comprising a device for calculating a body flow rate, wherein the light source additional current control device of the light source body receives a detection signal from the light amount level setting circuit and the light transmittance detecting end, and the signal level and range thereof are received. The light intensity level setting circuit compares the A flow measuring device for high-concentration powder conveyed by a conveying medium in a pipe, characterized in that a comparison means for issuing a replacement command signal is provided.
【請求項8】 軸芯に直交する線上に位置して対向させ
た開口部を有する管と、それらの開口部に挿入され、一
定の先端間隔で対向するように突出して配設された光透
過用測定管と、光透過用測定管に付設した先端間隔調節
装置と、一方の測定管の後端部に配置された光束入射用
の光源体と、他方の測定管の後端部に配置された光量検
出端を具備した光透過率検出部と、搬送媒体の流速を測
定する検出端と、それらの出力信号から粉体平均濃度と
媒体平均流速とを各々算出し、これらを乗算し、粉体流
量を演算する装置を組合わせてなる流量測定装置であっ
て、少なくとも1個の光透過量を減衰するシャッターと
該シャッターを前記光源体からの測定用光路に装入、退
避させる移動装置と前記光透過率検出端の検出信号を受
けてその信号レベルと域値と比較し前記移動装置に装
入、退避の指令信号を発する比較手段を配設したことを
特徴とする管内を搬送媒体により搬送される高濃度粉体
の流量測定装置。
8. A tube having openings opposed to each other on a line orthogonal to the axis, and a light transmitting member inserted into the openings and protruding so as to oppose each other at a constant tip interval. Measuring tube, a tip interval adjusting device attached to the light transmitting measuring tube, a light source for light beam incidence arranged at the rear end of one measuring tube, and at the rear end of the other measuring tube. A light transmittance detecting section having a light amount detecting end, a detecting end for measuring the flow velocity of the carrier medium, and a powder average concentration and a medium average flow velocity are respectively calculated from their output signals, and these are multiplied to obtain a powder A flow measuring device comprising a device for calculating a body flow rate, comprising: a shutter for attenuating at least one light transmission amount; and a moving device for loading and unloading the shutter in an optical path for measurement from the light source body. The signal level of the detection signal received by the light transmittance detection end And a threshold value for comparing with the threshold value and for issuing a command signal for charging and retracting to the moving device, a flow rate measuring device for high-concentration powder conveyed by a conveying medium in a pipe.
【請求項9】 軸芯に直交する線上に位置して対向させ
た開口部を有する管と、それらの開口部に挿入され、一
定の先端間隔で対向するように突出して配設された光透
過用測定管と、光透過用測定管に付設した先端間隔調節
装置と、一方の測定管の後端部に配置された光束入射用
の光源体と、他方の測定管の後端部に配置された光量検
出端を具備した光透過率検出部と、搬送媒体の流速を測
定する検出端と、それらの出力信号から粉体平均濃度と
媒体平均流速とを各々算出し、これらを乗算し、粉体流
量を演算する装置を組合わせてなる流量測定装置であっ
て、その平行光束の光密度の異なる複数のコリメーテイ
ングレンズ装置と該コリメーテイングレンズ装置を前記
光源体と前記測定管の間の光軸に装入、退避させる移動
装置と前記光透過率検出端の検出信号を受けてその信号
レベルと域値と比較し前記移動装置に装入、退避の指令
信号を発する比較手段を配設したことを特徴とする管内
を搬送媒体により搬送される高濃度粉体の流量測定装
置。
9. A tube having openings opposed to each other on a line orthogonal to the axis, and a light transmission member inserted into those openings and projecting so as to oppose each other at a constant tip interval. Measuring tube, a tip interval adjusting device attached to the light transmitting measuring tube, a light source for light beam incidence arranged at the rear end of one measuring tube, and at the rear end of the other measuring tube. A light transmittance detecting section having a light amount detecting end, a detecting end for measuring the flow velocity of the carrier medium, and a powder average concentration and a medium average flow velocity are respectively calculated from their output signals, and these are multiplied to obtain a powder A flow rate measuring device comprising a combination of devices for calculating body flow rate, wherein a plurality of collimating lens devices having different light densities of parallel light fluxes are provided between the light source body and the measuring tube. Device for loading and retracting on the optical axis of Comparing means for receiving the detection signal from the detection end and comparing the signal level with the threshold value and issuing a command signal for loading and retracting to the moving device is provided with a high-conveyance medium in the pipe. Concentrated powder flow rate measuring device.
JP19863893A 1993-08-10 1993-08-10 Flow measurement method for high concentration powder conveyed in pipe Expired - Fee Related JP2861742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19863893A JP2861742B2 (en) 1993-08-10 1993-08-10 Flow measurement method for high concentration powder conveyed in pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19863893A JP2861742B2 (en) 1993-08-10 1993-08-10 Flow measurement method for high concentration powder conveyed in pipe

Publications (2)

Publication Number Publication Date
JPH0755524A true JPH0755524A (en) 1995-03-03
JP2861742B2 JP2861742B2 (en) 1999-02-24

Family

ID=16394543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19863893A Expired - Fee Related JP2861742B2 (en) 1993-08-10 1993-08-10 Flow measurement method for high concentration powder conveyed in pipe

Country Status (1)

Country Link
JP (1) JP2861742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155478A (en) * 2004-12-01 2006-06-15 Optex Co Ltd Crime prevention sensor with light intensity attenuation plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155478A (en) * 2004-12-01 2006-06-15 Optex Co Ltd Crime prevention sensor with light intensity attenuation plate
JP4660664B2 (en) * 2004-12-01 2011-03-30 オプテックス株式会社 Security sensor with light attenuation plate

Also Published As

Publication number Publication date
JP2861742B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
RU2163713C2 (en) Method recording electromagnetic waves emitted by melt and device for its embodiment
US11346781B2 (en) Optical fiber laser induced breakdown spectroscopy detection device and method
US6834992B2 (en) Acoustic pyrometer
US20050023132A1 (en) Device for measuring the profile of a metal film sputter deposition target, and system and method employing same
JPH01216232A (en) Optical fine particle size measuring apparatus
JP4734273B2 (en) Laser-induced fluorescence analyzer
US4651976A (en) Method for operating a converter used for steel refining
JPH0755524A (en) Method and instrument for measuring flow rate of high-concentration powder carried on carrying medium in pipe
CN100507511C (en) Particle monitor and processing apparatus therewith
KR101348258B1 (en) Device and method for the dynamic control of combined burners and of lances for blowing oxygen into an oven
CN100514041C (en) Method and device for spectroscopy of the optical emission of a liquid excited by a laser
JPS62291521A (en) Spectral analyzer for converter or other vessel or furnace filled with molten metal
JPS61178645A (en) Apparatus for measuring density of particle
KR20070085060A (en) Device for detecting the temperature and for analyzing molten masses in metallurgical vessels
JPH0682288A (en) Method and equipment for measuring flow rate of high-concentration powder carried by carriage medium through pipe
JPH0682287A (en) Method and equipment for measuring flow rate of high-concentration powder carried by carriage medium through pipe
Michaud et al. Measurements of ne (r) and T e (r) in TdeV boundary layer by injection of laser ablated Li and C
KR101406993B1 (en) Apparatus for componential analysis using laser
JP4788089B2 (en) Molten metal component measuring device
JPH08271424A (en) Microparticle sensor
Gerhardt et al. H α detector system for the Helically Symmetric Experiment
JP2000258333A (en) Analyzing system for particulate matter
JP2005024446A (en) Method and monitor for monitoring molten metal in refining furnace
TWI246537B (en) Method for monitoring blast furnace tuyere raceway and its equipment
TW202347036A (en) Droplet detection metrology utilizing metrology beam scattering

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees