JPH0755383A - Structure for supporting heat transfer tube for steam generator - Google Patents

Structure for supporting heat transfer tube for steam generator

Info

Publication number
JPH0755383A
JPH0755383A JP5205437A JP20543793A JPH0755383A JP H0755383 A JPH0755383 A JP H0755383A JP 5205437 A JP5205437 A JP 5205437A JP 20543793 A JP20543793 A JP 20543793A JP H0755383 A JPH0755383 A JP H0755383A
Authority
JP
Japan
Prior art keywords
heat transfer
wall
perforated plates
transfer tube
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5205437A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kato
潔 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP5205437A priority Critical patent/JPH0755383A/en
Publication of JPH0755383A publication Critical patent/JPH0755383A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve supporting strength by a method wherein a plurality of outwardly attached perforated plates are arranged on the outer surface of a cylindrical inner wall through the through holes of the outwardly attached perforated plates while inwardly attached perforated plates are arranged integrally with the inner surface of a cylindrical outer wall between the outwardly attached perforated plates through the through holes of the inwardly attached perforated plates. CONSTITUTION:When a plurality of layers of heat transfer tube 27 are arranged, the heat transfer tube 27, positioned at inside relatively, are provided sequentially through the outwardly attached perforated plates 31, attached to the outer surface of a cylindrical inner wall 25 with a space circumferentially. In this case, the heat transfer tubes 27 at the outside are provided alternately through the through holes 31a, 32a so as to interpose the inwardly attached perforated plates 32 between the outwardly attached perforated plates 31. The heat transfer tubes 27 for all layers are bent so as to have a helical coil shape and, thereafter, the outside parts of the inwardly attached perforated plates 32 are attached integrally to the inner surface of the cylindrical outer wall 24 through coupling devices 33. According to this method, the supporting strength can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸気発生器用伝熱管の
支持構造物に係り、特に、伝熱管の支持強度を向上さ
せ、流体振動の発生を抑制するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a support structure for a heat transfer tube for a steam generator, and more particularly to improving the support strength of the heat transfer tube and suppressing the occurrence of fluid vibration.

【0002】[0002]

【従来の技術】図2は、特開平3−252593号公報
(燃料集合体の交換装置)、特開平3−252594号
公報(燃料集合体の交換装置)、特開平3−25259
5号公報(燃料集合体の交換装置)に記載されている軽
水冷却型原子炉の例を示すものである。
2. Description of the Related Art FIG. 2 is a Japanese Unexamined Patent Publication No. 3-252593 (fuel assembly exchange device), Japanese Unexamined Patent Publication No. 3-252594 (fuel assembly exchange device), and Japanese Unexamined Patent Publication No. 3-25259.
5 shows an example of a light water cooled nuclear reactor described in Japanese Patent Publication No. 5 (fuel assembly exchange device).

【0003】図2において、符号1は原子炉圧力容器、
2は炉心、3は蒸気発生器、6は一次冷却水ポンプ、1
5はライザ管、16はポイズンタンク、17は冷却水入
口、18は水圧作動弁、19はポイズン流通器、Pはほ
う酸水(炉内プール水)である。
In FIG. 2, reference numeral 1 is a reactor pressure vessel,
2 is a core, 3 is a steam generator, 6 is a primary cooling water pump, 1
Reference numeral 5 is a riser pipe, 16 is a poison tank, 17 is a cooling water inlet, 18 is a hydraulically operated valve, 19 is a poison distributor, and P is boric acid water (pool water in the furnace).

【0004】このような構造を有する原子炉にあって
は、一次冷却水及びほう酸水Pが、運転時、ポンプ停止
時の相違によって、以下に記述するように異なった流通
(循環)をする。
In the nuclear reactor having such a structure, the primary cooling water and the boric acid water P flow differently (circulate) as described below depending on the difference between the operation and the stop of the pump.

【0005】運転時にあっては、一次冷却水が、図2に
実線の矢印で示すように、炉心2、ライザ管15、一次
冷却水ポンプ6、蒸気発生器3、冷却水入口17を経由
して炉心2に戻る循環流となるが、ほう酸水Pは、水圧
作動弁18及びポイズン流通器19の部分で隔離され
て、挿通する現象や混合し合う現象の発生が妨げられ、
したがって、一次冷却水中のほう酸水濃度が変化するこ
となく、定常運転状態が維持される。
During operation, the primary cooling water passes through the core 2, the riser pipe 15, the primary cooling water pump 6, the steam generator 3, and the cooling water inlet 17, as shown by the solid arrow in FIG. However, the boric acid water P is isolated by the hydraulically operated valve 18 and the poison distributor 19 to prevent the phenomenon of insertion and the phenomenon of mixing.
Therefore, the steady operation state is maintained without changing the boric acid water concentration in the primary cooling water.

【0006】そして、一次冷却水ポンプ6の停止時にあ
っては、蒸気発生器3への送り込みが行なわれなくなる
とともに、一次冷却水ポンプ6の吐出圧力低下検出によ
って水圧作動弁18が管路を開放した状態となり、ま
た、炉心2において引き続き加熱された一次冷却水の上
昇が生じるために、図2に破線の矢印で示すように、上
昇した一次冷却水がポイズンタンク16の内部に送り出
されるとともに、ほう酸水Pがポイズン流通器19を経
由して炉心2に流れ込み、炉心2のほう酸水濃度が高ま
ることによって核分裂反応が抑制されて自然停止に導か
れる。
When the primary cooling water pump 6 is stopped, the steam generator 3 is not fed, and when the discharge pressure drop of the primary cooling water pump 6 is detected, the hydraulically operated valve 18 opens the pipeline. In addition, since the primary cooling water continuously heated in the core 2 rises, the raised primary cooling water is sent out to the inside of the poison tank 16 as shown by a dashed arrow in FIG. The boric acid water P flows into the core 2 via the poison distributor 19 and the concentration of boric acid in the core 2 increases, whereby the fission reaction is suppressed and the suspension is led to a natural stop.

【0007】このような図2例の原子炉にあっては、ポ
イズンタンク16の内外が高温状態の一次冷却水によっ
て囲まれた状態となっており、原子炉の熱出力に基づく
ほう酸水Pの膨張収縮により液量が変化し、このため、
ポイズン流通器19の部分において一次冷却水とほう酸
水Pとの境界が変動し易く、原子炉出力の制御性が損わ
れ易くなる。
In such a reactor of FIG. 2, the inside and outside of the poison tank 16 are surrounded by the primary cooling water at a high temperature, and the boric acid water P based on the heat output of the reactor is The volume of liquid changes due to expansion and contraction.
At the portion of the poison distributor 19, the boundary between the primary cooling water and the boric acid water P is likely to change, and the controllability of the reactor output is likely to be impaired.

【0008】次いで、図3例は、軽水冷却型原子炉の他
の構造例(計画例)を示すものである。該計画例にあっ
ては、原子炉格納容器21のプール水Wの中に、原子炉
圧力容器1が水漬状態に配され、ポイズンタンク22も
プール水Wの中に配される。そして、原子炉圧力容器1
とポイズンタンク22との間が、給液系配管23によっ
て接続される。
Next, FIG. 3 shows another structural example (plan example) of the light water cooling type reactor. In the plan example, the reactor pressure vessel 1 is placed in the pool water W of the reactor containment vessel 21 in a state of being immersed in water, and the poison tank 22 is also placed in the pool water W. And the reactor pressure vessel 1
The poison tank 22 and the poison tank 22 are connected by a liquid supply system pipe 23.

【0009】この構造とすることによって、ポイズンタ
ンク22が低温状態のプール水Wに収容されて、原子炉
圧力容器1からの熱的な隔離と、一次冷却水とほう酸水
Pとの隔離とを行なうとともに、落差及び比重差を利用
したほう酸水Pの供給と、一次冷却水の循環流の下部位
置にほう酸水Pを合流させる設定を行なうことにより、
水圧作動弁18の作動時に、高濃度のほう酸水を図3の
矢印で示すように、下方から炉心2に送り込んで、原子
炉を速やかに自然停止状態に導くことができ、加えて、
ほう酸水Pの容量を大容量として安全性を向上させるこ
とができる。
With this structure, the poison tank 22 is housed in the pool water W in a low temperature state, and the thermal isolation from the reactor pressure vessel 1 and the isolation between the primary cooling water and the boric acid water P are performed. By carrying out the setting and supplying the boric acid water P using the drop and the specific gravity difference and merging the boric acid water P at the lower position of the circulation flow of the primary cooling water,
At the time of actuation of the hydraulically operated valve 18, high-concentration boric acid water can be fed into the reactor core 2 from below as shown by the arrow in FIG. 3 to promptly bring the reactor to a natural shutdown state.
It is possible to improve the safety by increasing the capacity of the boric acid water P.

【0010】また、図3例の原子炉に内蔵される蒸気発
生器3にあっては、原子炉圧力容器1とライザ管15と
の間の環状空間に設置される。該蒸気発生器3は、図4
及び図5に示すように、同心円状に配される円筒状外壁
24及び円筒状内壁25と、円筒状外壁24及び円筒状
内壁25の間に形成され一次冷却水が下方に向かって挿
通される熱交換室26と、熱交換室26の内部に複数本
並列に配されるヘリカルコイル状の伝熱管27と、これ
らの伝熱管27に接続される給水入口28及び蒸気出口
29と、円筒状内壁25の外表面に周方向に間隔を空け
て溶接等により一体に取り付けられ円筒状外壁24に対
して近接状態の複数の多孔板30と、多孔板30に明け
られ伝熱管27を挿通させる貫通孔30aとを有してい
る。
The steam generator 3 incorporated in the nuclear reactor of FIG. 3 is installed in the annular space between the reactor pressure vessel 1 and the riser pipe 15. The steam generator 3 is shown in FIG.
Further, as shown in FIG. 5, the cylindrical outer wall 24 and the cylindrical inner wall 25 arranged concentrically, and the primary cooling water formed between the cylindrical outer wall 24 and the cylindrical inner wall 25 are inserted downward. The heat exchange chamber 26, a plurality of helical coil-shaped heat transfer pipes 27 arranged in parallel inside the heat exchange chamber 26, a feed water inlet 28 and a steam outlet 29 connected to these heat transfer pipes 27, and a cylindrical inner wall A plurality of perforated plates 30 that are integrally attached to the outer surface of 25 at intervals in the circumferential direction by welding or the like and are in close proximity to the cylindrical outer wall 24; 30a.

【0011】このような蒸気発生器の伝熱管27は、円
筒状内壁25に多孔板30を取り付けた状態で、パイプ
をくせづけしながら、多数の貫通孔30aに順次螺旋状
に通す作業を、並列層の分だけ繰り返す等の方法によっ
て組み付けられる。
In the heat transfer tube 27 of such a steam generator, while the perforated plate 30 is attached to the cylindrical inner wall 25, the work of passing the pipe in a spiral shape sequentially while bending the pipe, It is assembled by a method such as repeating for the parallel layers.

【0012】[0012]

【発明が解決しようとする課題】しかし、複数の多孔板
30は、図5に示すように、必然的に放射状に配される
ために、伝熱管27の支持ピッチが、外側位置で大きく
なって強度が低下し易くなる。この場合、多孔板30の
設置枚数を増加し外側位置での支持ピッチを小さくさせ
ることは、内側位置での支持ピッチをより小さくするた
め、伝熱管27と多孔板30との熱膨張差から大きな熱
応力を発生させてしますことが多く、従来構造での多孔
板30の設置枚数には限界がある。このため、外側位置
で流体振動が発生し易くなる等の課題が残されている。
However, since the plurality of perforated plates 30 are necessarily arranged radially as shown in FIG. 5, the support pitch of the heat transfer tubes 27 becomes large at the outer position. The strength tends to decrease. In this case, increasing the number of the perforated plates 30 to reduce the support pitch at the outer position makes the support pitch at the inner position smaller, which is large due to the difference in thermal expansion between the heat transfer tube 27 and the perforated plate 30. Since thermal stress is often generated, there is a limit to the number of perforated plates 30 that can be installed in the conventional structure. Therefore, there remains a problem that fluid vibration is likely to occur at the outer position.

【0013】本発明は、上記課題を有効に解決するもの
で、伝熱管の組み付け性を損うことなく、支持強度の向
上と流体振動の発生抑制とを図ることを目的としてい
る。
The present invention effectively solves the above problems, and an object thereof is to improve the support strength and suppress the occurrence of fluid vibration without impairing the assembling property of the heat transfer tube.

【0014】[0014]

【課題を解決するための手段】かかる課題を解決する手
段として、円筒状外壁と円筒状内壁との間に熱交換室が
区画されるとともに、該熱交換室の内部にヘリカルコイ
ル状の伝熱管が配される蒸気発生器とする場合に、円筒
状内壁の外表面に周方向に間隔を空けて円筒状外壁に近
接状態に配され貫通孔に伝熱管が挿通される複数の外向
多孔板と、該外向多孔板の間に円筒状外壁の内表面に対
して一体にかつ円筒状内壁に対して半径方向に間隔を空
けて配され貫通孔に伝熱管が挿通される複数の内向多孔
板とを具備する構成を採用している。
As means for solving such a problem, a heat exchange chamber is defined between a cylindrical outer wall and a cylindrical inner wall, and a helical coil heat transfer tube is provided inside the heat exchange chamber. In the case of a steam generator in which is arranged a plurality of outward perforated plates in which the heat transfer tubes are inserted into the through holes, which are arranged in proximity to the cylindrical outer wall with a circumferential interval on the outer surface of the cylindrical inner wall. A plurality of inward perforated plates which are arranged between the outward perforated plates integrally with the inner surface of the cylindrical outer wall and at intervals in the radial direction with respect to the cylindrical inner wall and through which the heat transfer tubes are inserted into the through holes. The configuration is adopted.

【0015】[0015]

【作用】伝熱管が複数層ヘリカルコイル状に配される場
合、相対的に内側に位置する伝熱管と相対的に外側に位
置する伝熱管との取り付け方を相違させる。内側の伝熱
管にあっては、円筒状内壁の外表面に複数の外向多孔板
を周方向に間隔を空けて配して、その貫通孔を挿通させ
るようになし、外側の伝熱管にあっては、複数の外向多
孔板の間に複数の内向多孔板を介在させて、その貫通孔
に伝熱管を挿通させ、内向多孔板を円筒状外壁の内表面
に対して一体に取り付けるようにする。外側位置の伝熱
管は、両多孔板の貫通孔を挿通することによって、支持
距離が小さくなり、内向多孔板を円筒状外壁に取り付け
ることにより、支持強度が確保される。
When the heat transfer tubes are arranged in the shape of a multi-layer helical coil, the heat transfer tubes located relatively inside and the heat transfer tubes located relatively outside are attached differently. In the inner heat transfer tube, a plurality of outward perforated plates are arranged at intervals in the circumferential direction on the outer surface of the cylindrical inner wall so that the through holes are inserted, and the outer heat transfer tube is The plurality of inwardly directed porous plates are interposed between the plurality of outwardly directed porous plates, the heat transfer tubes are inserted through the through holes, and the inwardly directed porous plates are integrally attached to the inner surface of the cylindrical outer wall. The support distance of the heat transfer tube at the outer position is reduced by inserting the through holes of both porous plates, and the supporting strength is secured by attaching the inward porous plate to the cylindrical outer wall.

【0016】[0016]

【実施例】以下、本発明に係る蒸気発生器用伝熱管の支
持構造物の一実施例について、図1に基づいて説明す
る。該一実施例においても、図3に示した原子炉格納容
器21のプール水Wの中に、原子炉圧力容器1が水漬状
態に配される軽水冷却型原子炉に適用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a heat transfer tube support structure for a steam generator according to the present invention will be described below with reference to FIG. Also in this embodiment, the present invention is applied to a light water cooling type reactor in which the reactor pressure vessel 1 is placed in the pool water W of the reactor containment vessel 21 shown in FIG.

【0017】図1において、符号31は外向多孔板、3
2は内向多孔板、33は締結具である。
In FIG. 1, reference numeral 31 is an outward porous plate, 3
2 is an inward porous plate, and 33 is a fastener.

【0018】前記外向多孔板31にあっては、前述の図
5例の多孔板30と同程度のピッチまたは大きなピッチ
で、円筒状内壁25の外表面に、周方向に間隔を空け
て、円筒状外壁24に近接状態に配される。該外向多孔
板31には、熱交換室26に配される伝熱管27の全層
分を、それぞれヘリカルコイル状に挿通させるための貫
通孔31aが、その上下方向及び半径方向に沿って複数
形成される。
In the outward perforated plate 31, the outer surface of the cylindrical inner wall 25 is circumferentially spaced at a pitch similar to or larger than that of the perforated plate 30 shown in FIG. The outer wall 24 is arranged in the vicinity of the outer wall 24. A plurality of through holes 31a for inserting all layers of the heat transfer tubes 27 arranged in the heat exchange chamber 26 into helical coils are formed in the outward porous plate 31 along the vertical direction and the radial direction. To be done.

【0019】前記内向多孔板32は、図1に示すよう
に、外向多孔板31の間に配されるとともに、円筒状外
壁24の内表面に対してボルト等の締結具33によって
一体に取り付けられる。そして、内向多孔板32にあっ
ては、その内側部が、円筒状内壁25に対して半径方向
に大きな間隔を空けて配され、半径方向に並列に配され
る伝熱管27のうち、外側位置の一部の層についてこれ
らを挿通させる貫通孔32aが上下方向及び半径方向に
沿って複数形成される。
As shown in FIG. 1, the inward facing porous plate 32 is arranged between the outward facing porous plates 31, and is integrally attached to the inner surface of the cylindrical outer wall 24 by a fastener 33 such as a bolt. . Then, in the inward porous plate 32, the inner portion thereof is arranged at a large radial interval with respect to the cylindrical inner wall 25, and the outer position of the heat transfer tubes 27 arranged in parallel in the radial direction. A plurality of through-holes 32a are formed in some of the layers along the vertical and radial directions.

【0020】前記締結具33は、図1に示すように、円
筒状外壁24に明けられた穴から、内向多孔板32の外
側部に明けられたねじ穴にボルトをねじ込む等によっ
て、円筒状外壁24と内向多孔板32との一体化を行な
うものである。
As shown in FIG. 1, the fastener 33 has a cylindrical outer wall formed by, for example, screwing a bolt from a hole formed in the cylindrical outer wall 24 into a screw hole formed in the outer portion of the inward porous plate 32. 24 and the inward porous plate 32 are integrated.

【0021】このような構造の蒸気発生器用伝熱管の支
持構造物に基づく伝熱管27の組み付け方法について以
下説明する。
A method of assembling the heat transfer tube 27 based on the support structure of the heat transfer tube for a steam generator having such a structure will be described below.

【0022】伝熱管27が複数層配される場合、相対的
に内側に位置する分の伝熱管27については、円筒状内
壁25の外表面に、複数の外向多孔板31を周方向に間
隔を空けて溶接等によって取り付けて、くせづけされた
伝熱管27を外向多孔板31の貫通孔31aに順次通す
ことにより、ヘリカルコイル状に仕上げる。
When the heat transfer tubes 27 are arranged in a plurality of layers, a plurality of outward perforated plates 31 are circumferentially spaced on the outer surface of the cylindrical inner wall 25 for the heat transfer tubes 27 which are located relatively inside. The heat transfer tube 27, which is vacant and attached by welding or the like, is passed through the through hole 31a of the outward porous plate 31 in order to finish it into a helical coil shape.

【0023】その際に、外側の伝熱管27にあっては、
外向多孔板31の間に内向多孔板32を介在させるよう
にして、貫通孔31a,貫通孔32aを交互に挿通させ
ることにより、ヘリカルコイル状に仕上げる。
At that time, in the outer heat transfer tube 27,
The inward porous plate 32 is interposed between the outward porous plates 31, and the through holes 31a and the through holes 32a are alternately inserted to complete the helical coil shape.

【0024】全層分の伝熱管27をヘリカルコイル状に
仕上げた後、内向多孔板32の外側部を締結具33によ
って円筒状外壁24の内表面に対して一体に取り付ける
ことにより、図1に示す組み付け状態とする。
After finishing the heat transfer tubes 27 for all layers into a helical coil shape, the outer portion of the inwardly directed porous plate 32 is integrally attached to the inner surface of the cylindrical outer wall 24 by the fasteners 33, so that FIG. Set as shown.

【0025】このように伝熱管27を挿通することによ
って、内側に位置する層は、図5例と同様に支持される
が、相対的に外側に位置する分の伝熱管27は、外向多
孔板31及び内向多孔板32の両貫通孔31a,32a
を挿通するために、図5例と比較して支持距離が約半分
に小さくなり、かつ伝熱管27全体の支持強度が向上す
ることになる。
By inserting the heat transfer tubes 27 in this way, the layers located inside are supported in the same manner as in the example of FIG. 5, but the heat transfer tubes 27 located relatively outside are the outward facing porous plates. 31 and both through holes 31a, 32a of the inward porous plate 32
As a result, the supporting distance is reduced to about half as compared with the example of FIG. 5, and the supporting strength of the entire heat transfer tube 27 is improved.

【0026】〔他の実施態様〕本発明に係る蒸気発生器
用伝熱管の支持構造物にあっては、以下の技術を採用す
ることができる。 a)外向多孔板31と内向多孔板32との数を異なるも
のとすること。 b)その場合に、外向多孔板31のピッチを一部狭め
て、内向多孔板32の配置を省略すること。 c)外向多孔板31の間に、内方への突出長さの異なる
内向多孔板32を複数配すること。 d)内向多孔板32の外側部を折り曲げて締結具33に
より固定すること。
[Other Embodiments] The following techniques can be adopted for the support structure of the heat transfer tube for a steam generator according to the present invention. a) The number of outward porous plates 31 and the number of inward porous plates 32 should be different. b) In that case, the pitch of the outward perforated plate 31 is partially narrowed and the arrangement of the inward perforated plate 32 is omitted. c) Disposing a plurality of inward porous plates 32 having different inward protruding lengths between the outward porous plates 31. d) Bending the outer part of the inward porous plate 32 and fixing it with the fastener 33.

【0027】[0027]

【発明の効果】本発明に係る蒸気発生器用伝熱管の支持
構造物によれば、以下の効果を奏する。 (1) 円筒状内壁の外表面に周方向に間隔を空けて複
数の外向多孔板が配され、外向多孔板の貫通孔に複数層
ヘリカルコイル状の伝熱管が挿通されるとともに、外向
多孔板の間に円筒状外壁の内表面に対して内向多孔板が
一体に配され、内向多孔板の貫通孔に伝熱管が挿通され
るものであるから、伝熱管を外向多孔板及び内向多孔板
にまたがって支持させて、支持強度の向上を図り、加え
て流体振動の発生抑制を図ることができる。 (2) 外向多孔板を円筒状外壁に近接状態に、内向多
孔板を円筒状内壁に対して半径方向に間隔を空けた状態
に配することにより、伝熱管の組み付け性を損うことな
く、特に外側位置の伝熱管の支持ピッチを小さくして、
支持強度向上及び流体振動発生抑制を図ることができ
る。
According to the support structure of the heat transfer tube for the steam generator of the present invention, the following effects can be obtained. (1) A plurality of outward perforated plates are arranged at intervals in the circumferential direction on the outer surface of the cylindrical inner wall, and a multi-layer helical coil-shaped heat transfer tube is inserted into the through hole of the outward perforated plate and between the outward perforated plates. Since the inward porous plate is arranged integrally with the inner surface of the cylindrical outer wall and the heat transfer tube is inserted into the through hole of the inward porous plate, the heat transfer tube is spread over the outward porous plate and the inward porous plate. By supporting it, the supporting strength can be improved, and in addition, the occurrence of fluid vibration can be suppressed. (2) By disposing the outward porous plate close to the cylindrical outer wall and arranging the inward porous plate in a state in which a space is provided in the radial direction with respect to the cylindrical inner wall, the assembling property of the heat transfer tube is not impaired. Especially, the support pitch of the heat transfer tube at the outer position is reduced,
It is possible to improve the support strength and suppress the occurrence of fluid vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る蒸気発生器用伝熱管の支持構造物
の一実施例を示す要部の平面図である。
FIG. 1 is a plan view of a main part showing an embodiment of a support structure for a heat transfer tube for a steam generator according to the present invention.

【図2】軽水冷却型原子炉の従来例を示す正断面図であ
る。
FIG. 2 is a front sectional view showing a conventional example of a light water cooling type nuclear reactor.

【図3】軽水冷却型原子炉の計画例を示す正断面図であ
る。
FIG. 3 is a front sectional view showing an example of a plan of a light water cooling type reactor.

【図4】図3の蒸気発生器の部分を示す正断面図であ
る。
FIG. 4 is a front sectional view showing a part of the steam generator of FIG. 3.

【図5】図4の蒸気発生器の支持構造物を示す要部の平
面図である。
5 is a plan view of essential parts showing a supporting structure of the steam generator of FIG. 4. FIG.

【符号の説明】[Explanation of symbols]

1 原子炉圧力容器 2 炉心 3 蒸気発生器 6 一次冷却水ポンプ 21 原子炉格納容器 21a トップカバー 24 円筒状外壁 25 円筒状内壁 26 熱交換室 27 伝熱管 28 給水入口 29 蒸気出口 31 外向多孔板 31a 貫通孔 32 内向多孔板 32a 貫通孔 33 締結具 G 間隙 P ほう酸水(炉内プール水) W プール水 1 Reactor Pressure Vessel 2 Core 3 Steam Generator 6 Primary Cooling Water Pump 21 Reactor Containment Vessel 21a Top Cover 24 Cylindrical Outer Wall 25 Cylindrical Inner Wall 26 Heat Exchange Chamber 27 Heat Transfer Tube 28 Water Supply Inlet 29 Steam Outlet 31 Outer Perforated Plate 31a Through hole 32 Inward porous plate 32a Through hole 33 Fastener G Gap P Boric acid water (reactor pool water) W Pool water

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円筒状外壁と円筒状内壁との間に熱交換
室が区画されるとともに、該熱交換室の内部にヘリカル
コイル状の伝熱管が配される蒸気発生器であって、円筒
状内壁の外表面に周方向に間隔を空けて円筒状外壁に近
接状態に配され貫通孔に伝熱管が挿通される複数の外向
多孔板と、該外向多孔板の間に円筒状外壁の内表面に対
して一体にかつ円筒状内壁に対して半径方向に間隔を空
けて配され貫通孔に伝熱管が挿通される複数の内向多孔
板とを具備することを特徴とする蒸気発生器用伝熱管の
支持構造物。
1. A steam generator in which a heat exchange chamber is defined between a cylindrical outer wall and a cylindrical inner wall, and a helical coil-shaped heat transfer tube is arranged inside the heat exchange chamber. A plurality of outward perforated plates, which are arranged in a state of being close to the cylindrical outer wall in a circumferential direction on the outer surface of the inner wall, and in which heat transfer tubes are inserted into the through holes, Support for a heat transfer tube for a steam generator, characterized in that the heat transfer tube for a steam generator is provided with a plurality of inwardly directed perforated plates which are arranged integrally with each other and are radially spaced from a cylindrical inner wall and through which the heat transfer tubes are inserted. Structure.
JP5205437A 1993-08-19 1993-08-19 Structure for supporting heat transfer tube for steam generator Withdrawn JPH0755383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5205437A JPH0755383A (en) 1993-08-19 1993-08-19 Structure for supporting heat transfer tube for steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5205437A JPH0755383A (en) 1993-08-19 1993-08-19 Structure for supporting heat transfer tube for steam generator

Publications (1)

Publication Number Publication Date
JPH0755383A true JPH0755383A (en) 1995-03-03

Family

ID=16506861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5205437A Withdrawn JPH0755383A (en) 1993-08-19 1993-08-19 Structure for supporting heat transfer tube for steam generator

Country Status (1)

Country Link
JP (1) JPH0755383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103384802A (en) * 2011-02-21 2013-11-06 凯洛格·布朗及鲁特有限公司 Particulate cooler
CN106767105A (en) * 2017-01-19 2017-05-31 清华大学天津高端装备研究院 A kind of support system of big coils heat exchanger heat-exchanging tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103384802A (en) * 2011-02-21 2013-11-06 凯洛格·布朗及鲁特有限公司 Particulate cooler
CN103384802B (en) * 2011-02-21 2015-11-25 凯洛格·布朗及鲁特有限公司 Particle cooler
CN106767105A (en) * 2017-01-19 2017-05-31 清华大学天津高端装备研究院 A kind of support system of big coils heat exchanger heat-exchanging tube

Similar Documents

Publication Publication Date Title
RU2392045C2 (en) Shell-and-tube reactors with liquid cooling under pressure
US8971477B2 (en) Integral helical coil pressurized water nuclear reactor
US3213833A (en) Unitized vapor generation system
RU2466783C2 (en) System for attachment of heat-exchanger plates in isothermic chemical reactors
JP7190485B2 (en) Pool-Type Liquid Metal Fast Spectrum Reactor Using Printed Circuit Heat Exchangers for Connection to Energy Conversion Systems
KR20160099541A (en) Steam generator for nuclear steam supply system
KR102538650B1 (en) nuclear pile
US9188328B2 (en) Helical coil steam generator
WO2009024854A3 (en) Nuclear reactor with compact primary heat exchanger
KR101744319B1 (en) Externally Integrated Steam generator Small Modular Reactor
US4072189A (en) Immersion-tube heat exchanger
KR101744318B1 (en) Externally Integrated Once-Through Steam generator Small Modular Reactor
JPH0755383A (en) Structure for supporting heat transfer tube for steam generator
EP0141158A1 (en) Double tank type fast breeder reactor
JP2013092260A (en) Waste heat boiler
KR102295616B1 (en) Concrete air cooling system using the embedded pipe
US4324617A (en) Intermediate heat exchanger for a liquid metal cooled nuclear reactor and method
KR100286518B1 (en) Separate Perfusion Spiral Steam Generator
KR20130020319A (en) Flange type nozzle with concentric inner cylinder
KR102593579B1 (en) Nuclear reactor
JPH07181291A (en) Helical coil type heat exchanger
KR102679937B1 (en) Once Through Inverted Steam Generator with Double Walled Tubes
US20230162879A1 (en) Stress relieving attachment of tube to tubesheet, such as in a pressure vessel shell of a nuclear reactor power system
US4445568A (en) Superheated steam generator
JP2000111682A (en) Core internal structure of pressurized water reactor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031