JPH0755152A - Apparatus and method for high-frequency heating - Google Patents

Apparatus and method for high-frequency heating

Info

Publication number
JPH0755152A
JPH0755152A JP19813193A JP19813193A JPH0755152A JP H0755152 A JPH0755152 A JP H0755152A JP 19813193 A JP19813193 A JP 19813193A JP 19813193 A JP19813193 A JP 19813193A JP H0755152 A JPH0755152 A JP H0755152A
Authority
JP
Japan
Prior art keywords
temperature
food
high frequency
time
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19813193A
Other languages
Japanese (ja)
Other versions
JP3257168B2 (en
Inventor
Akiko Mori
章子 森
Haruo Matsushima
治男 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP19813193A priority Critical patent/JP3257168B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to DE69330469T priority patent/DE69330469T2/en
Priority to DE69309645T priority patent/DE69309645T2/en
Priority to EP96109296A priority patent/EP0746180B1/en
Priority to EP93120410A priority patent/EP0607586B1/en
Priority to AU52571/93A priority patent/AU665288B2/en
Priority to US08/170,889 priority patent/US5491323A/en
Publication of JPH0755152A publication Critical patent/JPH0755152A/en
Application granted granted Critical
Publication of JP3257168B2 publication Critical patent/JP3257168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Electric Ovens (AREA)

Abstract

PURPOSE:To suppress a temperature difference of food due to a position to about 1 deg.C by emitting a high-frequency wave for a predetermined time at the time of a specific surface temperature of food, and then alternately repeating an operation for continuing a state that the wave is not emitted for a predetermined time. CONSTITUTION:Triacs 22, 23 as means for turning ON and OFF a high-frequency wave emitting source (rotary antenna) are provided. When a surface temperature of food 3 is a TEMP2 or higher of a low temperature and a TEMP1 or lower of a high temperature, a heating operation with power of predetermined high-frequency power POWER1 for an emission continuing time PTIME1 hour and a heating operation for continuing a state that a high-frequency wave is not emitted for an emitting stopping time STIME1 hour are alternately repeated. Thus, uniform heating in which a temperature difference of the food 3 at a position is suppressed to about 1 deg.C can be conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は近年広く普及し始めた真
空調理法の加熱を高周波加熱装置を用いて行なう方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating a vacuum cooking method, which has become widespread in recent years, by using a high frequency heating device.

【0002】[0002]

【従来の技術】真空調理とは真空パックされた食品を湯
煎またはスチームオーブンを用い、55℃程度から95
℃程度までの低温で調理するものであり、真空パックさ
れているので風味が損なわれない、低温であるため筋や
繊維等が固くならず柔らかである、タンパク質の分水が
起こらない温度での調理であるため歩留まりが非常に高
い、一週間程度の保存が可能でありホテルの宴会等の大
量供給に便利等の長所があり急速に普及しだしたもので
ある。
2. Description of the Related Art Vacuum cooking is a process in which vacuum-packed food is roasted in a hot water bath or a steam oven at a temperature of 55 ° C. to 95 ° C.
It is cooked at a low temperature up to about ℃, and it is vacuum packed so that the flavor is not impaired.Because the temperature is low, the muscles and fibers are not hard and soft, and at a temperature where protein division does not occur. Since it is cooked, the yield is very high, it can be stored for about a week, and it has the advantage of being convenient for large-scale supply at hotel banquets, etc., and it has spread rapidly.

【0003】[0003]

【発明が解決しようとする課題】しかし湯温42から4
3℃程度の浴室内の湿度環境から容易に推測される様
に、60℃程度またはそれ以上の高温の湯が置かれてい
る厨房の湿度環境は決して好ましいものではなく、改善
が強く望まれていた。また湯温を維持するための燃費も
馬鹿にならずこれも改善がのぞまれている。スチームオ
ーブンに於いても大同小異である。
However, the bath temperature 42 to 4
As is easily inferred from the humidity environment in the bathroom of about 3 ° C, the humidity environment of the kitchen where hot water of about 60 ° C or higher is placed is not preferable and improvement is strongly desired. It was In addition, the fuel efficiency for maintaining the hot water temperature is not ridiculous and is expected to be improved. Even in the steam oven, it is almost the same.

【0004】この解決案として電子レンジ等の高周波加
熱装置を用いる事が考えられたが真空調理で要求される
仕上がり温度幅は1℃前後であり、とても実現できるレ
ベルではなく、電子レンジの従来技術における仕上がり
温度幅は20℃程度が上限であった。
As a solution to this problem, it has been considered to use a high-frequency heating device such as a microwave oven, but the finishing temperature range required for vacuum cooking is about 1 ° C., which is not a level that can be realized and the conventional technique of the microwave oven. The upper limit of the finishing temperature range was about 20 ° C.

【0005】本発明は従来不可能であった高周波加熱装
置による仕上がり温度幅1℃を実現せんとするものであ
る。
The present invention is intended to realize a finishing temperature range of 1 ° C. by a high-frequency heating device which has been impossible in the past.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
本発明は下記の構成とした。
In order to solve the above problems, the present invention has the following constitution.

【0007】加熱室と、扉と、高周波照射源と、食品載
置台と、食品表面温度検出手段と、制御手段とを有し、
制御手段は、(1)被加熱食品の種類、重量、形状、仕
上がり温度等の関数として食品の最高温度部分が仕上が
り温度T1を越えない様、かつ最低温度部分が周囲から
の熱伝導で温度上昇する様に決定された五つの数値、即
ち、高い温度であるTEMP1、低い温度であるTEM
P2と、一定の高周波電力POWER1および前記高周
波電力の照射継続時間PTIME1、高周波の照射を停
止する時間であるSTIME1との各々の値を記憶する
手段と、(2)時間計測手段と、(3)高周波照射源を
断続する手段と、(4)食品表面温度検出手段の出力を
取り込む手段とを有し、食品表面温度がTEMP2以上
TEMP1以下の時はPOWER1電力でPTIME1
時間高周波照射し、次に高周波照射しない状態をSTI
ME1時間持続する動作を交互に繰り返す構成とする。
It has a heating chamber, a door, a high frequency irradiation source, a food placing table, a food surface temperature detecting means, and a control means.
The control means (1) keeps the highest temperature portion of the food from exceeding the finishing temperature T1 as a function of the type, weight, shape, and finishing temperature of the food to be heated, and raises the temperature of the lowest temperature portion by heat conduction from the surroundings. Five numerical values determined to do, namely, high temperature TEMP1 and low temperature TEM
P2, a constant high frequency power POWER1, an irradiation duration PTIME1 of the high frequency power, a means for storing respective values of STIME1 which is a time for stopping the high frequency irradiation, (2) a time measuring means, and (3) It has means for connecting and disconnecting the high-frequency irradiation source, and (4) means for taking in the output of the food surface temperature detecting means. When the food surface temperature is TEMP2 or more and TEMP1 or less, POWER1 electric power causes PTIME1
STI for high frequency irradiation for a long time, and then not high frequency irradiation
An operation in which the ME lasts for 1 hour is alternately repeated.

【0008】またこの構成に於いてTEMP1、TEM
P2、STIME1、PTIME1の決定は以下のよう
に行う。少なくとも二つの感温素子を持つ光ファイバー
式温度計を用い、一方の感温素子を食品の最高温度部分
に、他方を最低部分に挿入し、手動操作等により食品を
一定の電力で高周波照射し、食品の最高温部が仕上がり
温度T1に達した時点に於ける前記食品表面温度検出手
段の出力をTEMP2と決めた後、食品の最高温度が仕
上がり温度より1℃程度低い設定温度T2に低下するま
で高周波照射を停止し、再びT1に到達するまで今度は
POWER1電力で高周波照射し、この高周波照射と停
止とを繰り返して食品の最高温度がT1とT2との間を
上下せしめ、最低温度部分がT2に達した時点の食品表
面温度検出手段の出力をTEMP1と決め、T1とT2
間の複数回の加熱時の実質的な平均時間および温度低下
時の実質的な平均時間値をそれぞれPTIME1および
STIME1と決める。
Further, in this structure, TEMP1, TEM
The determination of P2, STIME1, and PTIME1 is performed as follows. Using an optical fiber thermometer with at least two temperature sensitive elements, one temperature sensitive element is inserted in the highest temperature part of the food, the other is inserted in the lowest part, and the food is irradiated with high frequency by constant power by manual operation, After determining the output of the food surface temperature detection means at the time when the highest temperature part of the food reaches the finishing temperature T1 as TEMP2, until the maximum temperature of the food decreases to a set temperature T2 which is about 1 ° C lower than the finishing temperature. High frequency irradiation is stopped, and high frequency irradiation is performed with POWER1 power until T1 is reached again. This high frequency irradiation and stop are repeated until the maximum temperature of the food rises and falls between T1 and T2, and the minimum temperature portion is T2. The output of the food surface temperature detecting means at the time when the temperature reaches T is determined to be TEMP1, and T1 and T2
Substantially average time values during a plurality of heatings during the interval and substantial average time values during a temperature decrease are defined as PTIME1 and STIME1, respectively.

【0009】[0009]

【作用】本発明は、上記した構成により、食品表面温度
検出手段の出力と食品の最高温度部位および最低温度部
位の温度の対応ができており、同時に食品の加熱、熱拡
散の熱的性質を考慮した照射時間、停止時間に置き直し
たPTIME1、STIME1を導入することによって
食品表面温度TEMP2を越えた時点からPOWER1
なる電力でPTIME1時間高周波照射止STIME1
時間同照射を停止する動作を繰り返すことにより、食品
は最高温度部位の温度でも仕上がり温度T1を越す事な
く加熱および高温部位から低温部位への熱拡散が行わ
れ、次第に食品の最低温度部位の温度が上昇し、ついに
T2〔=仕上がり温度−略1℃〕にまで到達する。その
ときに食品表面温度はTEMP1になっているはずであ
るから(何故ならばTEMP1は定数設定実験において
予め最低温度部位の温度がT2になるときの食品表面温
度設定値として決めてあるからである)前記照射、停止
の繰り返しを食品表面温度がTEMP2からTEMP1
の間で行うことにより食品を部位による温度差1℃程度
に抑えた一様加熱が実現できる。
According to the present invention, with the above-described structure, the output of the food surface temperature detecting means and the temperatures of the maximum temperature portion and the minimum temperature portion of the food can be corresponded, and at the same time, the thermal properties of the food heating and heat diffusion can be determined. By introducing PTIME1 and STIME1 that have been replaced with the irradiation time and stop time taken into consideration, from the time when the food surface temperature TEMP2 is exceeded, POWER1
With high power PTIME for 1 hour High frequency irradiation stop STIME1
By repeating the operation of stopping the irradiation for the same time, the food is heated even at the temperature of the highest temperature part without exceeding the finishing temperature T1 and the heat is diffused from the high temperature part to the low temperature part, and the temperature of the lowest temperature part of the food is gradually increased. And finally reaches T2 [= finishing temperature−approximately 1 ° C.]. At that time, the food surface temperature should be TEMP1 (because TEMP1 is previously determined as a food surface temperature set value when the temperature of the lowest temperature portion becomes T2 in the constant setting experiment. ) Repeating the irradiation and stopping as the food surface temperature changes from TEMP2 to TEMP1.
By performing the heating between them, it is possible to realize uniform heating while suppressing the temperature difference of the food product by about 1 ° C.

【0010】またこれらの定数決定に於いて、光ファイ
バー温度計を用い加熱による食品の最高最低温度をモニ
ターし、食品表面温度検出手段の出力との相関を求めて
行うので正確な温度が容易に得られる。
In determining these constants, the maximum and minimum temperatures of the food due to heating are monitored by using an optical fiber thermometer, and the correlation with the output of the food surface temperature detecting means is obtained to obtain an accurate temperature easily. To be

【0011】[0011]

【実施例】以下本発明の実施例を図面を用いて説明す
る。図1は本発明の高周波加熱装置の加熱室内部の斜視
図および電気回路図の組み合わせである。二点鎖線で示
した加熱室1の内部に食品載置台2を設け、その上に食
品3(図1では真空パックされた豚肉)を置く。後述す
るが食品載置台2にはサーミスター4、5および6が組
込まれ(図3、4に示す。従って図1ではリード線のみ
が描かれ)、三つのサーミスターは制御回路7に接続さ
れる。電気回路は電源用コンセント8、両極に挿入され
たフューズ9、ノイズフィルター用コイル10、加熱室
照明用ランプ11、ランプ用リレー12、マグネトロン
用ヒータートランス13、同リレー14、扉に連動した
三つのラッチスイッチ15、16および17、メインリ
レー18および19、扉に連動したショートスイッチ2
0および21、トライアック22および23、トライア
ック制御回路24および25、高圧トランス26および
27、マグネトロン28および29とを有す。また制御
回路7にはコイル10の後ろから電源ラインを接続す
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a combination of a perspective view and an electric circuit diagram of the inside of the heating chamber of the high-frequency heating device of the present invention. A food placing table 2 is provided inside the heating chamber 1 indicated by a chain double-dashed line, and a food item 3 (vacuum-packed pork in FIG. 1) is placed thereon. As will be described later, the thermistors 4, 5 and 6 are incorporated in the food placing table 2 (shown in FIGS. 3 and 4. Therefore, only the lead wire is drawn in FIG. 1), and the three thermistors are connected to the control circuit 7. It The electric circuit includes a power outlet 8, a fuse 9 inserted in both poles, a noise filter coil 10, a heating chamber lighting lamp 11, a lamp relay 12, a magnetron heater transformer 13, a relay 14, and three door-linked relays. Latch switches 15, 16 and 17, main relays 18 and 19, short switch 2 linked to the door
0 and 21, triacs 22 and 23, triac control circuits 24 and 25, high voltage transformers 26 and 27, and magnetrons 28 and 29. A power supply line is connected to the control circuit 7 from the back of the coil 10.

【0012】図2は本発明の加熱装置を右側から見た要
部断面図である。加熱室1はステンレス薄板で構成され
略直方体である。側面には耐熱樹脂製の固定具30を前
後に一つずつ設ける。この上に前記食品載置台2を載せ
る。加熱室後面壁にはチョーク(電波迷路)31を設
け、食品載置台2の一部を貫通させる。加熱室の天面お
よび底面各々の中央には回転アンテナ32、33および
回転用スタラーモーター34および35、これらとマグ
ネトロン28および29とを結ぶ導波管36および37
を設ける。回転アンテナ保護用に天面にはポリプロピレ
ン樹脂製、底面には結晶化ガラス製の保護板38および
39を設け、また加熱室の開口部には扉40を回動自在
に設け、さらにマグネトロン冷却用ファンモーター4
1、排気風路42、そして扉上方に操作部43とを設け
る。
FIG. 2 is a sectional view of the main part of the heating device according to the present invention as viewed from the right side. The heating chamber 1 is made of a stainless thin plate and has a substantially rectangular parallelepiped shape. On the side surface, one fixture 30 made of heat-resistant resin is provided at the front and the rear. The food placing table 2 is placed on this. A choke (radio wave maze) 31 is provided on the rear wall of the heating chamber to penetrate a part of the food placing table 2. Rotating antennas 32 and 33 and rotating stirrer motors 34 and 35 are provided at the centers of the top and bottom of the heating chamber, and waveguides 36 and 37 connecting these to the magnetrons 28 and 29.
To provide. To protect the rotating antenna, polypropylene resin protective plates 38 and 39 are provided on the top surface and crystallized glass on the bottom surface, and a door 40 is rotatably provided at the opening of the heating chamber for magnetron cooling. Fan motor 4
1, an exhaust air passage 42, and an operation portion 43 above the door.

【0013】図3は前記食品載置台2の平面、側面およ
び正面図である。厚さ0.3ミリメートルのステンレス
薄板製で断面が上部に内径1.5ミリメートルの円、そ
の下部に続く10ミリ程の直線である棒状体44を21
本(但し図3では煩雑になる事を避けて9本のみ描い
た)長さ15ミリのスペーサー45を介して等間隔に並
べ、長いビス46とナット47とで上端および下端を固
定する。下端中央部は厚さ1ミリ程のステンレス製断面
略コの字状の引き出し金具48およびそれに固定された
チューブ49とをビス50でビス止めする。平面図の中
央部に描かれた三つの×印はその位置にサーミスター
4、5および6が在ることを意味する。
FIG. 3 is a plan view, a side view, and a front view of the food placing table 2. A rod-shaped body 44, which is made of a stainless steel plate having a thickness of 0.3 mm and whose cross section is a circle having an inner diameter of 1.5 mm in the upper part and a straight line of about 10 mm following the lower part, is formed.
Books (however, in FIG. 3, only nine are drawn to avoid complication) are arranged at equal intervals through a spacer 45 having a length of 15 mm, and the upper end and the lower end are fixed by long screws 46 and nuts 47. At the central portion of the lower end, a stainless steel lead metal fitting 48 having a substantially U-shaped cross section and a tube 49 fixed to the metal fitting 48 are fixed with screws 50. The three crosses drawn in the center of the plan view mean that the thermistors 4, 5 and 6 are at that position.

【0014】図4は前記食品載置台2の各部分の斜視図
であり、(a)は前記棒状体44の部分破断斜視図であ
る。前後両端に孔51を開け、中央部にはサーミスター
4が挿入される。(b)は前記スペーサー45の斜視図
である。前記孔51と同一径の孔52を設ける。(c)
は引き出し金具48を取り外した状態の部分斜視図であ
る。棒状体44の間にはスペーサー45の代わりに前後
上下面にタップ53が切られ、左右に貫通孔54が開け
られた取付金具55が設けられ、引き出し金具48は中
央部56が少し膨らみ、この部分に前記チューブ49を
固定する。引き出し金具48の上下および後面には前記
タップ53に対応した位置に孔57を開ける。(a)に
描かれたサーミスターのリード線は中央部56と取付金
具55との隙間を通り、チューブ49の内部を通り、外
部に引き出される。
FIG. 4 is a perspective view of each portion of the food placing table 2, and FIG. 4A is a partially cutaway perspective view of the rod-shaped body 44. Holes 51 are formed at both front and rear ends, and the thermistor 4 is inserted in the central portion. (B) is a perspective view of the spacer 45. A hole 52 having the same diameter as the hole 51 is provided. (C)
[Fig. 6] is a partial perspective view showing a state in which a drawer fitting 48 is removed. Instead of the spacer 45, taps 53 are cut on the front and rear and upper and lower surfaces between the rod-like bodies 44, and mounting fittings 55 having through holes 54 on the left and right are provided. The tube 49 is fixed to the portion. Holes 57 are formed in the top and bottom and the rear surface of the drawer metal 48 at positions corresponding to the taps 53. The lead wire of the thermistor shown in (a) passes through the gap between the central portion 56 and the mounting bracket 55, passes through the inside of the tube 49, and is drawn out to the outside.

【0015】図5は制御回路7内部の部分回路図であ
る。電源トランス58の一次側は図1に示す様にコイル
10の後ろに接続される。二次側は直流回路59を介し
マイクロプロセッサー60のVCC端子に接続される。
直流回路59の前から分岐してトランジスター一個で構
成された波形整形回路61を介してマイクロプロセッサ
ー60のP4端子に接続される。前記のサーミスター
4、5および6は各々片側を+5V電源に接続され、反
対側は抵抗を介し接地されると共にマイクロプロセッサ
ー60のAD変換機能付き端子IN1、2および3に接
続される。マイクロプロセッサー60のP20からP2
5端子は各々駆動回路62、63、64、65、66お
よび67を介し、前記トライアック制御回路24および
25、リレー12、14、18および19に接続され
る。キーボード68はマイクロプロセッサー60のR
0、R1、R2、R3、P0、P1、P2およびP3端
子に接続される。制御回路7にはこれ以外に各種回路が
含まれ、マイクロプロセッサー60にも各種回路が接続
されているが煩雑になると共に本発明の本質部分ではな
いので省略する。またマイクロプロセッサー60内部に
は中央演算部、レジスター、RAM、ROM、各種入出
力端子、割り込み端子等があるが、常識にもなりつつあ
る内容であるから説明を省く。
FIG. 5 is a partial circuit diagram of the inside of the control circuit 7. The primary side of the power transformer 58 is connected behind the coil 10 as shown in FIG. The secondary side is connected to the VCC terminal of the microprocessor 60 via the DC circuit 59.
It branches from the front of the DC circuit 59 and is connected to the P4 terminal of the microprocessor 60 via a waveform shaping circuit 61 composed of one transistor. One side of each of the thermistors 4, 5 and 6 is connected to a + 5V power source, and the other side is grounded via a resistor and is also connected to the terminals IN 1, 2 and 3 with AD conversion function of the microprocessor 60. Microprocessor 60 P20 to P2
The five terminals are connected to the triac control circuits 24 and 25 and the relays 12, 14, 18 and 19 via drive circuits 62, 63, 64, 65, 66 and 67, respectively. Keyboard 68 is R of microprocessor 60
0, R1, R2, R3, P0, P1, P2 and P3 terminals are connected. Various circuits are included in the control circuit 7 in addition to these, and various circuits are connected to the microprocessor 60, but it is complicated and is not an essential part of the present invention, and therefore the description thereof is omitted. Further, a central processing unit, a register, a RAM, a ROM, various input / output terminals, an interrupt terminal and the like are provided inside the microprocessor 60, but description thereof will be omitted because they are becoming common sense.

【0016】次にマイクロプロセッサー60のROMに
書き込まれたプログラムの概要の一部を説明する。図6
はプログラムのフローチャートの前半部である。図5の
制御回路を起動させると、先ずTEMP1の入力が要求
される。図6および図1には表示部が省略され描かれて
ないが、表示部にTEMP1?が表示される。操作者が
キーボード68を叩いて温度、例えば59℃を入力す
る。入力が終了すると次にON1の入力が要求され、順
次同様にOFF1、PTIME1、STIME1、TE
MP2、ON2、OFF2、PTIME2、STIME
2を入力する。これら定数は各々任意の一定RAM領域
に記憶される。全ての定数が入力されると次にスタート
ボタン待ち状態になる。スタートが押されるとまずRA
と名付けた任意の一定RAM領域にPTIME2の値を
代入する。次いで任意に定めたフラッグ領域と呼ぶRA
Mの一部の中の、CYCLEと名付けた特定ビットを1
にする。同様にしてRBにON2の値を代入し、DUT
Yフラッグのビットを1にする。
Next, a part of the outline of the program written in the ROM of the microprocessor 60 will be described. Figure 6
Is the first half of the program flow chart. When the control circuit of FIG. 5 is activated, first, the input of TEMP1 is requested. Although the display section is omitted and not shown in FIGS. 6 and 1, TEMP1? Is displayed. The operator taps the keyboard 68 to input a temperature, for example, 59 ° C. When the input is completed, the input of ON1 is requested next, and similarly OFF1, PTIME1, STIME1, TE
MP2, ON2, OFF2, PTIME2, STIME
Enter 2. Each of these constants is stored in an arbitrary fixed RAM area. When all the constants have been entered, the start button wait state is entered. When the start is pressed, RA first
The value of PTIME2 is substituted into an arbitrary fixed RAM area named as. RA, which is called a flag area, which is then arbitrarily determined
1 in a specific bit named CYCLE in part of M
To Similarly, assign the value of ON2 to RB, and DUT
Set the Y flag bit to 1.

【0017】次に単位時間が経過したか否かをチェック
する。図5に示した様に、マイクロプロセッサー60の
P4端子には波形整形回路61を介して交流電源波形が
接続されているので、P4端子には交流のプラス側のみ
に対応した方形波が入力される。この方形波をカウント
する事により時間計測ができる。単位時間とはこの方形
波一つ分の時間または50個ないし60個カウントした
1秒が普通である。本発明では方形波一つ分の時間とし
た。従って上記のON1、OFF1等を秒単位で入力し
た場合には以降の演算ではそれを50または60倍し、
方形波一つ分の時間に変換する必要がある事は言うまで
もない。単位時間経過すればT側に進み前記RAに記憶
されている数値から1を引く演算を実施し、その結果を
RAに記憶させる。次に同様にRBも数値から1を引
く。次に温度チェックに進む。先ほどの単位時間経過し
ていない場合にはF側に進みRA、RBをスキップして
温度チェックに進む。
Next, it is checked whether or not the unit time has elapsed. As shown in FIG. 5, since the AC power supply waveform is connected to the P4 terminal of the microprocessor 60 via the waveform shaping circuit 61, the square wave corresponding to only the positive side of the AC is input to the P4 terminal. It Time can be measured by counting this square wave. The unit time is usually one square wave or one second counted from 50 to 60 square waves. In the present invention, the time is one square wave. Therefore, if you input the above ON1, OFF1 etc. in seconds, it will be multiplied by 50 or 60 in the following calculations,
It goes without saying that it is necessary to convert the time into one square wave. When a unit time has elapsed, the process proceeds to the T side, the operation of subtracting 1 from the numerical value stored in the RA is executed, and the result is stored in the RA. Similarly, RB also subtracts 1 from the numerical value. Then proceed to the temperature check. If the unit time has not elapsed, the process proceeds to the F side, skips RA and RB, and proceeds to the temperature check.

【0018】図5に示した様にサーミスター4、5およ
び6は各々抵抗と直列にされ+5Vの一定直流値に接続
されており、温度が上昇するとサーミスターの抵抗値は
減少するのでIN1、IN2およびIN3端子には各々
サーミスター4、5および6の温度に対応した電圧が入
力される。これら三つの入力電圧はAD変換され、デジ
タル値で扱われる。さてこの三つの温度とTEMP2と
の比較が行われ、三つのうち一つでもTEMP2と比べ
て等しいか大きければT側に進み、B即ち図7のプログ
ラムに進む。これは後述する。三つの温度全てがTEM
P2より低い場合はF側に進み次いでCYCLEフラッ
グをチェックする。このビットが1ならばT側へ進み次
いでDUTYフラッグのチェックに進み、1ならばT
側、RBの数値チェックへと進む。RBが0でないなら
ばF側、RAの数値チェックに進み、これも0でなけれ
ばF側へ進み電波ON、つまり前記マイクロプロセッサ
ー60のP20からP25端子まで全て1を出力する。
その後前述の単位時間経過チェックへ戻る。以降このル
ープを何度も回り、単位時間経過毎にRAおよびRBの
数値を1ずつ減じる。その内にRBが0になる。すると
RBチェックのT側へ進み、今度はRBにOFF2の数
値を代入し、次いでDUTYフラッグを0に変え、RA
チェックに進む。0でなければF側へ進み再び単位時間
経過チェックに戻る。再度同じルートを進むが今度はD
UTYフラッグが0であるからフラッグチェックでF側
に進み、RBチェックでF側へ進み、RAチェックでF
側へ進み電波OFFを実行する。これは図5のP20お
よびP21端子の出力を0にする事である。再び単位時
間経過チェックに戻り、この新ルートを周回する。その
うちRBが0になり、T側のRAチェックに進み、RA
がまだ0になっていないのでF側へ進み、単位時間経過
チェックより二つ上のRBにON2を代入する処理へ戻
る。こうしてON2とOFF2とを繰り返している間に
RAが0になる。すると図6の最下部に記載されている
電波OFF、RAにSTIME2代入、CYCLEフラ
ッグを0にするルートを通り再び単位時間経過チェック
に戻る。今度はCYCLEフラッグが0になっているの
で右のF側に進み、電波OFF、RAチェックの後RA
が0になるまでの間単位時間経過チェックに戻る小さな
ループを巡回する。RAが0になればT側へ進みスター
トの次へ戻る。こうしてPTIME2とSTIME2と
を交互に繰り返し、温度がTEMP2に到達したら図7
のBに進む。
As shown in FIG. 5, the thermistors 4, 5 and 6 are respectively connected in series with a resistor and connected to a constant DC value of +5 V. When the temperature rises, the resistance value of the thermistor decreases, so IN1, Voltages corresponding to the temperatures of the thermistors 4, 5 and 6 are input to the IN2 and IN3 terminals, respectively. These three input voltages are AD converted and handled as digital values. Now, these three temperatures are compared with TEMP2. If any one of the three temperatures is equal to or larger than TEMP2, the process proceeds to the T side, and the process proceeds to B, that is, the program of FIG. This will be described later. All three temperatures are TEM
If it is lower than P2, proceed to F side and then check the CYCLE flag. If this bit is 1, proceed to the T side, then proceed to check the DUTY flag, and if 1 then T
Side, proceed to the numerical check of RB. If RB is not 0, proceed to the F side and RA numerical value check. If this is also not 0, proceed to F side and turn on the radio wave, that is, output all 1s from terminals P20 to P25 of the microprocessor 60.
After that, the process returns to the above unit time elapsed check. Thereafter, this loop is repeated many times, and the numerical values of RA and RB are decremented by 1 each time a unit time elapses. RB becomes 0 in that. Then, proceed to the T side of the RB check, substitute the numerical value of OFF2 into RB this time, then change the DUTY flag to 0, RA
Proceed to check. If not 0, the process proceeds to the F side and returns to the unit time elapsed check again. Follow the same route again, but this time D
Since the UTY flag is 0, the flag check advances to the F side, the RB check advances to the F side, and the RA check advances to the F side.
Go to the side and execute the radio wave OFF. This is to set the outputs of the P20 and P21 terminals in FIG. 5 to zero. Return to the unit time elapsed check again and go around this new route. Among them, RB becomes 0, proceed to RA check on the T side, and RA
Since it has not become 0 yet, the process proceeds to the F side, and the process returns to the process of substituting ON2 into RB two higher than the unit time elapsed check. In this way, RA becomes 0 while repeating ON2 and OFF2. Then, the radio wave is turned off, RA is substituted for STIME2, and the CYCLE flag is set to 0 at the bottom of FIG. This time, the CYCLE flag is 0, so proceed to the F side on the right, turn off the radio wave, check the RA, and then RA
It goes through a small loop that returns to the unit time elapsed check until is zero. When RA becomes 0, the operation proceeds to the T side and returns to the next step after the start. In this way, PTIME2 and STIME2 are alternately repeated, and when the temperature reaches TEMP2,
Go to B.

【0019】図7はプログラムフローチャートの後半で
あり、図6のスタート以降と全く同一構成であり、違う
点はON2、OFF2、PTIME2、STIME2お
よびTEMP2の各々の2が1に代わっている事と、温
度チェックのT側が終了になっている事のみである。従
って説明は省略する。終了とはP20からP25までの
全ての出力を0にし、図6の起動直後の状態に戻す事で
ある。なお図6および図7のプログラムフローでは説明
が煩雑になる事を避け、上下二つのマグネトロン28お
よび29を同時に動作させる方式としたが、実際には交
流波形のプラス側波形の時に一方を動作させ、マイナス
側波形の時に他方を動作させる方式あるいは数秒間一方
を動作させ、続く数秒間休止させ、その間他方を動作さ
せると言った方式等を用い、全く同時に二つのマグネト
ロンを動作させる事はスパーク防止等の観点から殆どな
く、本実施例もそれに習うが、当業者には常識でもあ
り、これを省いても本質には代わり無いので煩雑を避け
る事を優先させた。
FIG. 7 is the latter half of the program flow chart, which has exactly the same structure as that after the start of FIG. 6, except that each 2 of ON2, OFF2, PTIME2, STIME2 and TEMP2 is replaced by 1. It is only that the T side of the temperature check is finished. Therefore, the description is omitted. The end means to reset all outputs from P20 to P25 to 0 and return to the state immediately after the start-up in FIG. In the program flow of FIGS. 6 and 7, the description is not complicated, and the two upper and lower magnetrons 28 and 29 are operated at the same time. However, one of them is actually operated when the plus side waveform of the AC waveform is used. , It is a spark prevention to operate two magnetrons at the same time by using the method of operating the other when the waveform is negative or operating one for a few seconds and then resting for a few seconds and then operating the other. Although there is almost no point in view of the above, and this embodiment also learns from it, it is also common knowledge to those skilled in the art, and even if this is omitted, there is no substitute for the essence, so priority is given to avoiding complexity.

【0020】次に本実施例の作用を説明する。図8は横
軸に時間、縦軸に温度を表したグラフおよび部分的に縦
軸に高周波照射強度を表したグラフである。前述のプロ
グラムフローチャート説明では煩雑になる事を避け、本
発明の請求の範囲に関する部分のみに限定したが、一般
に電子レンジ等の高周波加熱装置では自動調理機能以外
に高出力(高周波連続照射)および低出力(高周波断続
照射)での動作機能を有していることは常識でもあり、
本実施例に於いても同様とし、詳細説明は省略する。さ
て前記食品載置台2の上に真空パックされた食品例えば
豚肉を載せ、適当な低出力で加熱する。この時、豚肉の
最も加熱され易い部分と、最も加熱されにくい部分とに
光ファイバー式温度計の感温素子を挿入し、その部分の
温度をモニターしておく。同時に前記マイクロプロセッ
サー60のIN1、2および3端子の電圧もモニターす
る。
Next, the operation of this embodiment will be described. FIG. 8 is a graph in which the horizontal axis represents time, the vertical axis represents temperature, and the vertical axis partially represents high frequency irradiation intensity. In the above description of the program flow chart, to avoid complication, only the portion related to the scope of the claims of the present invention is limited, but generally, in a high frequency heating device such as a microwave oven, in addition to the automatic cooking function, high output (high frequency continuous irradiation) and low It is common knowledge that it has an operation function with output (high frequency intermittent irradiation),
The same applies to the present embodiment, and detailed description thereof will be omitted. Now, the vacuum-packed food such as pork is placed on the food placing table 2 and heated at an appropriate low output. At this time, the temperature sensitive element of the optical fiber type thermometer is inserted in the most easily heated portion and the least heated portion of the pork, and the temperature of that portion is monitored. At the same time, the voltage at the IN1, 2 and 3 terminals of the microprocessor 60 is also monitored.

【0021】図8に於いて、二点鎖線で描いたのは豚肉
の最も加熱され易い部分の温度、一点鎖線で描いたのは
最も加熱されにくい部分の温度であり、実線はサーミス
ター4、5または6のうちの最高値(前記IN1、2お
よび3端子電圧を温度換算したもの)である。二点鎖線
で示した温度がT3(たとえば50℃)に達する迄は一
定(例えばON2として3秒高周波照射し、OFF2と
して3秒停止する事を交互に繰り返す)低出力で加熱
し、T3以上T1(例えば65℃)まではこの低出力を
前述のPTIME2時間動作させ、STIME2時間高
周波を完全停止する事を交互に繰り返す。T1温度に達
した時のサーミスター4、5または6の値のなかの最高
温度をTEMP2とする。なお同じくT3到達時の温度
をTEMP3とする。
In FIG. 8, the two-dot chain line shows the temperature of the portion of the pork most easily heated, the one-dot chain line shows the temperature of the least heated portion, and the solid line shows the thermistor 4. It is the highest value of 5 or 6 (temperature conversion of the IN1, 2 and 3 terminal voltages). Until the temperature indicated by the chain double-dashed line reaches T3 (for example, 50 ° C.), the temperature is kept constant (for example, high frequency irradiation of ON2 for 3 seconds and stop of OFF2 for 3 seconds are repeated alternately). Up to (for example, 65 ° C.), this low output is operated for the above-mentioned PTIME for 2 hours and the high frequency is completely stopped for STIME for 2 hours. The maximum temperature among the values of the thermistor 4, 5 or 6 when the T1 temperature is reached is TEMP2. Similarly, the temperature when reaching T3 is TEMP3.

【0022】T1到達以降は高周波照射を完全停止し、
この二点鎖線の温度がT2(例えば64℃)に低下する
まで待つ。T1からT2迄の時間を記録しておく。T2
になったら再び一定(例えばON1として3秒高周波照
射し、OFF1として3秒停止する事を交互に繰り返
す)低出力(POWER1と呼ぶ)で加熱しT2からT
1迄上昇する時間をこれも記録しておく。T1とT2と
の間を交互に繰り返し、一点鎖線で示した最も加熱され
にくい部分の温度がT2になるのを待つ。T2に達した
時点のサーミスター4、5または6の最高温度をTEM
P1とする。またT1からT2へ下がる時間の平均をS
TIME1、T2からT1へ加熱する時間の平均をPT
IME1とする。
After reaching T1, the high frequency irradiation is completely stopped,
Wait until the temperature of the chain double-dashed line drops to T2 (for example, 64 ° C.). Record the time from T1 to T2. T2
Once again, the temperature is kept constant (for example, high frequency irradiation for 3 seconds is turned on for 1 second, and then stopped for 3 seconds for off 1 is repeated alternately).
Also record the time to rise to 1. The cycle between T1 and T2 is repeated alternately and waits until the temperature of the portion that is most difficult to be heated, which is indicated by the alternate long and short dash line, becomes T2. The maximum temperature of the thermistor 4, 5 or 6 when reaching T2 is TEM
Let P1. In addition, the average of the time from T1 to T2 is S
The average time of heating from TIME1, T2 to T1 is PT
IME1.

【0023】これら得られた定数を用いて再び同一形
状、材質の豚肉を用い、本実施例の高周波加熱装置を動
作させる。光ファイバー温度計も用い、再度豚肉の温度
をモニターする。最も加熱され易い部分の温度がT1を
越えることなく再現できればその定数がそのまま今後の
豚肉加熱に採用される。T1を越える場合には定数の値
を若干修正し、再度豚肉加熱を行う。一般的には破線で
示すような徐々に温度が上昇する傾向が望ましい。また
これらの定数を用い、光ファイバー温度計を用いず、つ
まり真空パックに感温素子を貫通させる事なしに豚肉を
加熱し、加熱後に各部分の温度を測定し、65℃を越え
る部分があれば再度定数を若干修正し再確認する。
Using the obtained constants, the high-frequency heating apparatus of this embodiment is operated again using pork of the same shape and material. Use a fiber optic thermometer to monitor the pork temperature again. If the temperature of the most easily heated portion can be reproduced without exceeding T1, the constant will be used as it is for future pork heating. If it exceeds T1, the value of the constant is slightly modified and the pork is heated again. Generally, it is desirable that the temperature gradually increases as shown by the broken line. Also, using these constants, without using an optical fiber thermometer, that is, heating the pork without penetrating the temperature sensing element into the vacuum pack, measuring the temperature of each part after heating, and if there is a part exceeding 65 ° C Correct the constants again and check again.

【0024】一例として豚肉170gを65℃でしあげ
るときの定数を紹介すると、TEMP1=59℃、TE
MP2=44℃、ON2=3秒、OFF2=3秒、PT
IME2=18秒、STIME2=18秒、ON1=3
秒、OFF1=3秒、PTIME1=12秒、STIM
E1=33秒である。
As an example, the constants when 170 g of pork is cooked at 65 ° C. are introduced. TEMP1 = 59 ° C., TE
MP2 = 44 ° C, ON2 = 3 seconds, OFF2 = 3 seconds, PT
IME2 = 18 seconds, STIME2 = 18 seconds, ON1 = 3
Seconds, OFF1 = 3 seconds, PTIME1 = 12 seconds, STIM
E1 = 33 seconds.

【0025】以上作用を述べたが、本発明の主旨を整理
する意味で従来技術との相違を中心に説明する。従来電
子レンジ等の高周波加熱装置で仕上がり温度幅1℃の調
理は不可能であった。電子レンジを用いれば食品の内部
から加熱すると一般に言われるが当業者には良く知られ
る様に材質によって定まる半減深度と呼ばれる深さで電
波の強さは半分になってしまい、食品内部では電波が大
幅に弱まってしまう。加わる電波の強度に当初から差が
あるので加熱結果に差が生じる事は当然と言える。最高
温度部分と最低温度部分との温度差は加えられる電波の
強度が強ければ強いほど大きくなる事は容易に理解さ
れ、従って電波強度を弱めれば均一加熱が達成され得る
かの錯覚が生じ易い。しかし実際には起こり得ない事は
当業者が広く経験しているところである。また皮肉な見
方をすれば均一加熱に関する数限りないアイデアが特許
あるいは新案として出願されている事実が逆に均一加熱
が達成されていない事の裏付けとも言える。
Although the operation has been described above, the difference from the prior art will be mainly described for the purpose of arranging the gist of the present invention. Conventionally, it was impossible to cook with a finishing temperature range of 1 ° C. using a high-frequency heating device such as a microwave oven. It is generally said that if a microwave oven is used, the food is heated from the inside, but as is well known to those skilled in the art, the strength of the radio wave is halved at a depth called the half depth determined by the material, and the radio wave is emitted inside the food. Will be significantly weakened. Since there is a difference in the strength of the applied radio waves from the beginning, it can be said that there will be a difference in the heating results. It is easy to understand that the temperature difference between the highest temperature part and the lowest temperature part increases as the strength of the applied radio wave increases, so it is easy to give the illusion that uniform heating can be achieved if the radio wave strength is weakened. . However, it is widely experienced by those skilled in the art that things that cannot actually occur. From an ironic point of view, the fact that numerous ideas for uniform heating have been filed as patents or new patents can be said to support the fact that uniform heating has not been achieved.

【0026】これに対し最高最低の温度幅1℃以内の加
熱を達成している湯煎やスチームオーブンの場合は食品
周囲の熱源からの熱伝導により内部が加熱されているの
である。本発明は高周波照射停止期間に於けるこの食品
周囲から内部への熱伝導を積極的に取り入れ、結果とし
て最高最低の温度幅1℃以内の加熱を達成したものであ
る。こう説明すると、高周波照射を停止させ均一加熱を
達成せんとした技術は従来から広く用いられており、本
発明の主旨と何等変わり無しとの主張もでてこよう。し
かしこれら従来の技術と本発明の本質的な差は三つあ
り、第一は目的であり、第二はその結果としての時間あ
るいは使用頻度の差であり、第三は温度検出手段および
その出力値の取扱いである。まず目的であるが、従来技
術に於ける高周波断続照射は上述の電波強度を弱める事
による均一加熱指向であり、従ってその電力を絞るた
め、例えば北米向け輸出用モデルに於いては10段階の
電力値が選択可能なものまで生産されている。ON(高
周波を照射させる)時間とOFF(停止させる)時間と
の比率を10種類設け、ONとOFFを交互に繰り返す
事により10段階の電力調節を行っていたものである。
On the other hand, in the case of a hot water bath or a steam oven which achieves heating within the maximum and minimum temperature range of 1 ° C., the inside is heated by heat conduction from a heat source around the food. The present invention positively incorporates the heat conduction from the periphery of the food to the inside during the high frequency irradiation stop period, and as a result, achieves the heating within the maximum and minimum temperature range of 1 ° C. Explaining in this way, the technique of stopping the high frequency irradiation and achieving uniform heating has been widely used, and it can be argued that there is no difference from the gist of the present invention. However, there are three essential differences between these conventional techniques and the present invention, the first is the purpose, the second is the resulting difference in time or frequency of use, and the third is the temperature detection means and its output. It is the handling of values. First of all, the high-frequency intermittent irradiation in the prior art is directed to uniform heating by weakening the above-mentioned radio wave intensity. Therefore, in order to reduce the power, for example, in the model for export to North America, the power of 10 steps is used. Values are produced up to selectable ones. 10 kinds of ratios of ON (irradiate high frequency) time and OFF (stop) time are provided, and power is adjusted in 10 steps by alternately repeating ON and OFF.

【0027】またこれとは別にスタンディングタイムと
称し高周波照射源を全く動作させずに単に加熱室内に食
品を放置する時間を通常の加熱時間の終了後に設定する
方法が同じく北米向け輸出モデルに採用されていた。こ
れはまさに本発明のSTIME1または2に相当すると
の主張もでてこよう。しかしこのスタンディングタイム
の目的は加熱によって生じた不均一の漠然とした緩和で
あり、かつ一回だけの利用であり、本発明の様な積極的
あるいは食品の最高最低温度と関連づけた定量的な利用
ではない。つまり本発明に於いては高周波加熱による食
品の最高温度部分の温度が仕上がり温度T1から1℃程
度低い一定温度T2まで低下させる為にSTIME1を
用いているのである。これが第一に挙げた目的の差であ
る。これに伴い第二の時間および頻度の点で、従来のス
タンディングタイムが加熱終了直後一回であるのに対し
本発明のSTIME1または2は、PTIME1または
2と交互に繰り返し用いられ、食品表面温度検出手段の
出力がTEMP1に達するまで何回も用いられるのであ
る。
Aside from this, a method called standing time, in which the high frequency irradiation source is not operated at all and the time for leaving the food in the heating chamber simply is set after the end of the normal heating time, is also adopted in the North American export model. Was there. It can be argued that this is exactly equivalent to STIME 1 or 2 of the present invention. However, the purpose of this standing time is vague relaxation of non-uniformity caused by heating, and is only one-time use, and in the positive use as in the present invention or quantitative use in relation to the maximum and minimum temperature of food, Absent. That is, in the present invention, STIME1 is used to lower the temperature of the highest temperature portion of the food product by high frequency heating from the finishing temperature T1 to a constant temperature T2 which is lower by about 1 ° C. This is the first difference in purpose. Accordingly, in terms of the second time and frequency, the conventional standing time is once immediately after the end of heating, whereas STIME 1 or 2 of the present invention is repeatedly used alternately with PTIME 1 or 2 to detect food surface temperature. It is used many times until the output of the means reaches TEMP1.

【0028】第三の温度検出手段の出力、特に表面温度
は、従来技術に於いては正確な値が得られるものとの前
提に立った取扱いがなされていた。例えば特開昭54−
7641では表面温度5℃到達時点で電波照射停止し、
0℃まで低下した時点で再投入し、これを交互に繰り返
す技術が開示されている。しかしながら表面温度5℃あ
るいは0℃の検出は実際問題として不可能である。なぜ
ならば高周波加熱された食品は一般に不均一な温度分布
をしており、温度の値を限定できない。また仮に平均値
等を限定したとしてもそれを捉える事が出来ない。例え
ば赤外線温度計を用いたと仮定する。良く知られる様に
赤外線温度計には視野角があり、この視野角内からの全
輻射エネルギーが出力される。食品の大きさと視野角の
大きさとが完全に一致することは実際上有り得ないから
食品の一部分が視野に含まれないか、あるいは食品以外
の輻射が視野内に含まれてしまうかのどちらかである、
どちらにしても誤差になり、食品の大きさ、形状が変わ
ればそれに伴い誤差も大きく変化する。
The output of the third temperature detecting means, particularly the surface temperature, has been handled in the prior art on the premise that an accurate value can be obtained. For example, JP-A-54-
In the case of 7641, when the surface temperature reaches 5 ° C, radio wave irradiation is stopped
A technique is disclosed in which the temperature is lowered to 0 ° C. and then re-input, and this process is repeated alternately. However, detection of a surface temperature of 5 ° C. or 0 ° C. is practically impossible. This is because foods heated by high frequency generally have a non-uniform temperature distribution, and the temperature value cannot be limited. Moreover, even if the average value is limited, it cannot be grasped. For example, assume that an infrared thermometer is used. As is well known, an infrared thermometer has a viewing angle, and all radiant energy is output from within this viewing angle. It is practically impossible for the size of the food and the size of the viewing angle to be exactly the same, so either a part of the food is not included in the field of view, or radiation other than the food is included in the field of view. is there,
Either way, an error will occur, and if the size or shape of the food changes, the error will also change significantly.

【0029】これに対し本発明はこの誤差を前提とし、
光ファイバー温度計を用いて食品の種類、形状等の関数
である誤差を定量把握しその分だけ補正した値で制御す
るものである。これが第三の差である。赤外線温度計を
用いるにせよ本実施例の様に食品載置台にサーミスター
を組み込んだものを用いるにしろ食品の温度あるいは光
ファイバー温度計との間に食品の種類、形状、重量およ
び仕上げ温度等による相関が得られる事が必須要件とな
る。また本実施例の様に金属製棒状体からなる食品載置
台を用いると食品の棒状体に接する部分が過加熱される
事が考えられるが、高周波照射時間が短く、熱伝導の時
間が十分あるためか、豚肉にこの様な過加熱部は生じな
かった。
On the other hand, the present invention presupposes this error,
An optical fiber thermometer is used to quantitatively ascertain the error that is a function of the type and shape of food, and control is performed with a value that is corrected accordingly. This is the third difference. Even if an infrared thermometer is used, it is necessary to use a food placing table with a thermistor as in this embodiment, depending on the temperature of the food or the type, shape, weight and finishing temperature of the food with the optical fiber thermometer. Obtaining correlation is an essential requirement. Further, when a food placing table made of a metal rod-shaped body is used as in this example, it is possible that the portion of the food which comes into contact with the rod-shaped body is overheated, but the high frequency irradiation time is short and the time for heat conduction is sufficient. Perhaps, pork did not have such an overheated part.

【0030】PTIME1、STIME1等は実験的に
決定されるがON1および2、OFF1および2、PT
IME2、STIME2等は任意に設定可能である。し
かしながら食品の種類、形状、重量および仕上げ温度等
によって狭い範囲内の数値に限定されてしまう。この範
囲外では食品最高温度部分が仕上げ温度T1を越えてし
まったり、食品最低温度部分がいくら長時間かけても温
度上昇しないと言った結果を招いてしまう。被加熱食品
毎に何度も予備実験を行いこれらの定数を決定した上で
用いるものである。従って従来のOFF時間やスタンデ
ィングタイムとは長さや使用頻度が異なるだけでなく、
被加熱食品およびその仕上げ温度の関数である定数を採
用した点が大きくことなり、さらに光ファイバー温度計
を用いることによりこれら定数の決定が大幅に容易にな
ったものである。
PTIME1, STIME1, etc. are experimentally determined, but ON1 and 2, OFF1 and 2, PT
IME2, STIME2, etc. can be set arbitrarily. However, it is limited to a numerical value within a narrow range depending on the type, shape, weight and finishing temperature of the food. Outside this range, the highest temperature portion of the food may exceed the finishing temperature T1, or the lowest temperature portion of the food may not rise in temperature for any long time. It is used after conducting preliminary experiments many times for each food to be heated and determining these constants. Therefore, not only the length and frequency of use differ from the conventional OFF time and standing time,
The fact that the constants that are a function of the food to be heated and the finishing temperature thereof are adopted is largely different, and the determination of these constants is greatly facilitated by using the optical fiber thermometer.

【0031】以上本願の主旨を要約すると、 (1)食品表面の温度を検出する手段がある。 (1a)その検出出力が光ファイバー温度計の出力と相
関がある。 (2)食品表面温度検出手段の出力値に対し二つの値が
設定される。 (2a)その一つTEMP2は光ファイバー温度計で測
定した食品最高温度部分が仕上がり温度T1に到達した
時点の値であり、他の一つTEMP1は光ファイバー温
度計で測定した食品最低温度部分が仕上がり温度T1よ
り1℃程度低いT2温度に到達した時点の値である。 (3)食品表面温度検出手段の出力がTEMP2以上T
EMP1以下の時、定められた時間比率、高周波照射を
ON1時間、停止をOFF1時間、交互に繰り返し行う
PTIME1と、全く高周波照射を停止するSTIME
1との二つの時間を設定し、これを交互に繰り返す。な
おON1時間高周波照射、OFF1時間高周波照射停止
を交互の繰り返す事をPOWER1電力で高周波照射す
ると呼ぶ。 (3a)PTIME1は光ファイバー温度計で測定され
た食品最高温度部分がT2からT1まで上昇する時間で
あり、STIME1はT1からT2まで低下する時間で
ある。 (4)上記数値TEMP1、TEMP2、STIME
1、PTIME1およびPOWER1(またはON1お
よびOFF1)は全て被加熱食品の種類、形状、重量お
よび仕上げ温度等の関数であり、食品の最高温度部分が
仕上がり温度T1を越えないように決定され、最低温度
部分が高周波照射停止期間に温度上昇する様に決定され
る。
The main points of the present application are summarized as follows: (1) There is a means for detecting the temperature of the food surface. (1a) The detected output correlates with the output of the optical fiber thermometer. (2) Two values are set for the output value of the food surface temperature detecting means. (2a) One of them, TEMP2, is the value at the time when the highest temperature portion of the food measured by the optical fiber thermometer reaches the finishing temperature T1, and the other one TEMP1 is the lowest temperature portion of the food measured by the optical fiber thermometer. It is a value at the time when the temperature reaches T2 temperature which is lower than T1 by about 1 ° C. (3) The output of the food surface temperature detection means is TEMP2 or more T
When EMP1 or less, PTIME1 that alternately repeats high frequency irradiation for 1 hour and stop for 1 hour at a predetermined time ratio, and STIME that completely stops high frequency irradiation
Set two times with 1 and repeat this alternately. It should be noted that alternating high-frequency irradiation for ON 1 hour and high-frequency irradiation for OFF 1 hour are alternately repeated is referred to as high-frequency irradiation with POWER1 power. (3a) PTIME1 is the time when the maximum food temperature portion measured by the optical fiber thermometer rises from T2 to T1, and STIME1 is the time when it falls from T1 to T2. (4) Above numerical values TEMP1, TEMP2, STIME
1, PTIME1 and POWER1 (or ON1 and OFF1) are all functions of the type, shape, weight and finishing temperature of the food to be heated, and are determined so that the highest temperature part of the food does not exceed the finishing temperature T1 and the lowest temperature. It is determined that the temperature of the portion rises during the high frequency irradiation stop period.

【0032】なお上記(4)に記述した定数は本実施例
に於いては文字どうり一定の値であるが種々の理由、例
えば食品のバラツキを吸収し、より安定した均一加熱を
達成するため、あるいは本発明に抵触する事を避けるだ
けの目的等により、時間と共に値を増加あるいは減少さ
せるといった事は容易に考えられるがあくまでも被加熱
食品の関数たる値との定義の範疇である。またSTIM
E1、PTIME1等複数回繰り返す間に被加熱食品の
関数としての値からかけ離れた値を一二度挿入させる等
の事も同様に容易に考えられる。
The constant described in (4) above is a constant value depending on the characters in the present embodiment, but for various reasons, for example, to absorb variations in food and to achieve more stable and uniform heating. It is easily conceivable to increase or decrease the value with time for the purpose of avoiding the conflict with the present invention, but it is only within the definition of the value as a function of the food to be heated. See also STIM
It is similarly possible to insert a value such as E1 and PTIME1 which is far from the value as a function of the food to be heated once or twice during repetition.

【0033】また以上の説明は全て光ファイバー温度計
との関連づけて行ったが、必ずしも光ファイバー温度計
は必須ではない。真空調理の目的が所定の温度に食品を
加熱する事であり、短時間低電力の電波照射で食品の周
囲をより強く、中心部を弱く加熱し、引き続く電波照射
停止期間に食品周囲から中心部へ熱伝導させ、これを交
互に繰り返す事により緩やかに食品を加熱する事が本発
明の主旨であるから、例えば食品の仕上がり温度T1に
対し十分低い値TEMP5を設定し、食品表面温度検出
手段の出力がTEMP5になるまで一定の電力POWE
R5をPTIME5時間照射、STIME5時間照射停
止、これを交互に繰り返し、TEMP5に到達した時点
で食品各部の温度がT1を越えていない事を確認し、次
にTEMP5より若干高い温度TEMP4を設定し、同
様にPOWER4、PTIME4、STIME4で動作
させ、TEMP4に到達したら再度食品各部の温度がT
1を越えていない事を確認する。同様にさらに高い温度
TEMP3、TEMP2と少しずつ高い温度および対応
する適切な電力、時間を設定し、徐々に食品温度を上昇
させ、最終的にT1に到達させる事が可能である。つま
り光ファイバー温度計がなくとも木目細かい温度設定を
行い、温度に対応した適切な定数を試行錯誤等で求め、
その定数で設定温度まで加熱し、徐々にSTIMEの比
率を高める事により食品の最高温度部分と最低温度部分
の温度差を少なくする技術である。本発明はその最終部
分を特許請求したものである。
Although the above description has been made in connection with the optical fiber thermometer, the optical fiber thermometer is not always necessary. The purpose of vacuum cooking is to heat food to a specified temperature, and the radio wave with low power for a short time heats the surrounding area of the food stronger and weakens the central part, and during the subsequent radio wave irradiation stop period, the area around the food will disappear. The purpose of the present invention is to heat the food slowly by alternately conducting heat to the food, and for example, to set a sufficiently low value TEMP5 to the finished temperature T1 of the food and set the food surface temperature detecting means. Power constant until the output becomes TEMP5
Irradiate R5 for 5 hours for PTIME, stop irradiation for 5 hours for STIME, and repeat this alternately, and confirm that the temperature of each part of the food does not exceed T1 when it reaches TEMP5, then set a temperature TEMP4 slightly higher than TEMP5, Similarly, operate with POWER4, PTIME4, and STIME4, and when the temperature reaches TEMP4, the temperature of each part of the food is again T
Make sure that it does not exceed 1. Similarly, it is possible to set higher temperatures TEMP3 and TEMP2 and gradually higher temperatures and corresponding appropriate power and time to gradually raise the food temperature and finally reach T1. In other words, even if you do not have an optical fiber thermometer, you can set the fine grain temperature and find the appropriate constant corresponding to the temperature by trial and error.
It is a technique to reduce the temperature difference between the highest temperature portion and the lowest temperature portion of the food by heating to a set temperature with the constant and gradually increasing the STIME ratio. The present invention claims the final portion thereof.

【0034】また食品表面温度検出手段として本発明で
はサーミスター等の感温素子を内部に設けた金属製棒状
体を平行に並べた食品載置台を用いたが、赤外線温度計
等の従来から良く知られた手段を利用する事もできる。
これらに比べ、本実施例は安価であるだけでなく、赤外
線温度計と異なり、出力値と食品温度との差が食品の大
きさによってそれほど変化しないので食品の大きさに関
係なく正確な仕上がり温度が得られる。
Further, in the present invention, as the food surface temperature detecting means, a food placing table in which metal rods having a temperature sensitive element such as a thermistor provided inside are arranged in parallel is used. It is also possible to use known means.
Compared to these, this example is not only inexpensive, but unlike the infrared thermometer, the difference between the output value and the food temperature does not change much depending on the size of the food, so the accurate finish temperature regardless of the size of the food. Is obtained.

【0035】また本実施例では上記定数を加熱前に操作
者が入力する方式としたが、予めマイクロプロセッサー
のROMに記録させておく方法あるいは食品の名称や絵
が描かれたバーコードで入力させる方法等もある。しか
しROM等に特定の数値を記録させてしまえば変更は不
可能であるが、本発明の様に加熱の都度入力する方式で
あれば変更あるいは微調整が容易である。POWER1
もON1とOFF1で構成せずに、図1の高圧トランス
26とマグネトロン28との間に設けられた進相コンデ
ンサーの値を十分小さくする事により所定の低電力を発
生させ、PTIME1時間の間、高周波照射し続ける方
式によっても可能である。但しこの方式は電力値の微調
整が行いにくいという欠点がある。
In this embodiment, the operator inputs the constants before heating. However, the constants are recorded in the ROM of the microprocessor in advance, or the bar code with the name of food or a picture is input. There are also methods. However, if a specific numerical value is recorded in the ROM or the like, it cannot be changed, but if it is a method of inputting each time heating is performed as in the present invention, change or fine adjustment is easy. POWER1
1 does not consist of ON1 and OFF1 as well, the value of the phase advancing capacitor provided between the high voltage transformer 26 and the magnetron 28 of FIG. 1 is made sufficiently small to generate a predetermined low electric power, and during the PTIME 1 hour, It is also possible to use a method of continuing high-frequency irradiation. However, this method has a drawback that it is difficult to finely adjust the power value.

【0036】高周波照射方式も非常に多くの種類がある
が、本実施例の様に加熱室の上下面中央から回転アンテ
ナで照射する方法は食品の底部中央に加熱されにくい部
分ができにくいので均一温度を目的とする本発明には有
効であり、さらに金属製簀の子網状の食品載置台を用い
た場合にはこの載置台を通過する高周波電力が減少する
のでより一層効果的である。
There are many kinds of high-frequency irradiation methods, but the method of irradiating from the center of the upper and lower surfaces of the heating chamber with the rotating antenna as in this embodiment is uniform because it is difficult to form a part which is difficult to be heated in the center of the bottom of the food. This is effective in the present invention for the purpose of temperature, and is even more effective when a metal net-like food net is used because the high-frequency power passing through the food stand is reduced.

【0037】さらに言えば、本発明は真空調理に限るこ
となく例えば冷凍食品の解凍にも効果を発揮する。つま
り仕上がり温度T1として0℃あるいは−3℃程度を設
定し、食品の種類、重量、形状等の関数たる適切なPO
WER1、PTIME1、STIME1、TEMP1を
実験によって求めれば温度均一な解凍が実現できる。
Furthermore, the present invention is effective not only for vacuum cooking but also for thawing frozen foods, for example. That is, the finishing temperature T1 is set to about 0 ° C. or −3 ° C., and an appropriate PO serving as a function of food type, weight, shape, etc.
If WER1, PTIME1, STIME1, and TEMP1 are obtained by experiment, uniform temperature thawing can be realized.

【0038】[0038]

【発明の効果】以上述べた様に、本発明の高周波加熱装
置によれば従来不可能と考えられていた高周波照射によ
る真空調理が実現でき、大幅なエネルギー費用の削減、
しいては二酸化炭素排出削減にもつながると共に、高温
多湿であった厨房の環境改善も実現できる。
As described above, according to the high frequency heating apparatus of the present invention, it is possible to realize vacuum cooking by high frequency irradiation, which has been thought to be impossible in the past, and to significantly reduce energy costs.
In addition to reducing carbon dioxide emissions, it can also improve the environment of the kitchen, which was hot and humid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電気回路図と加熱室
内部の斜視図の組み合わせ図
FIG. 1 is a combination view of an electric circuit diagram and a perspective view of the inside of a heating chamber according to an embodiment of the present invention.

【図2】本発明の一実施例における側面からみた要部断
面図
FIG. 2 is a cross-sectional view of the main part as seen from the side in one embodiment of the present invention.

【図3】本発明の実施例における食品載置台の平面、側
面および正面図
FIG. 3 is a plan view, a side view, and a front view of the food placing table according to the embodiment of the present invention.

【図4】本発明の一実施例における食品載置台の各構成
部品の斜視図
FIG. 4 is a perspective view of each component of the food placing table according to the embodiment of the present invention.

【図5】本発明の一実施例における制御回路および同マ
イクロプロセッサの説明図
FIG. 5 is an explanatory diagram of a control circuit and the same microprocessor in one embodiment of the present invention.

【図6】本発明の一実施例におけるプログラムの前半部
分フローチャート
FIG. 6 is a first half flowchart of a program according to an embodiment of the present invention.

【図7】本発明の実施例におけるプログラムの後半部分
フローチャート
FIG. 7 is a second half flowchart of a program in the embodiment of the present invention.

【図8】本発明の一実施例の動作を示す時間と温度の特
性図
FIG. 8 is a characteristic diagram of time and temperature showing the operation of one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 加熱室 2 食品載置台 4、5、6 サーミスター(食品表面温度検出手段) 7 制御回路(制御手段) 22、23 トライアック(高周波照射源を断続する手
段) 32、33 回転アンテナ(高周波照射源) 40 扉 60 マイクロプロセッサー 61 波形整形回路(時間計測手段) 68 キーボード(定数を記憶する手段)
1 Heating Chamber 2 Food Placement Table 4, 5, 6 Thermistor (Food Surface Temperature Detection Means) 7 Control Circuit (Control Means) 22, 23 Triac (Means for Intermitting High Frequency Irradiation Source) 32, 33 Rotating Antenna (High Frequency Irradiation Source) ) 40 door 60 microprocessor 61 waveform shaping circuit (time measuring means) 68 keyboard (means for storing constants)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】加熱室と、扉と、高周波照射源と、食品載
置台と、食品表面温度検出手段と、制御手段とを有し、
制御手段は、(1)被加熱食品の種類、重量、形状、仕
上がり温度等の関数である五つの数値、即ち、高い温度
であるTEMP1、低い温度であるTEMP2と、一定
の高周波電力POWER1および前記高周波電力の照射
継続時間PTIME1、高周波の照射を停止する時間で
あるSTIME1との各々の値を記憶する手段と、
(2)時間計測手段と、(3)高周波照射源を断続する
手段と、(4)食品表面温度検出手段の出力を取り込む
手段とを有し、 食品表面温度がTEMP2以上TEMP1以下の時はP
OWER1電力でPTIME1時間高周波照射し、次に
高周波照射しない状態をSTIME1時間持続する動作
を交互に繰り返す事を特徴とする高周波加熱装置。
1. A heating chamber, a door, a high frequency irradiation source, a food placing table, a food surface temperature detecting means, and a control means,
The control means includes (1) five numerical values that are functions of the type, weight, shape, and finishing temperature of the food to be heated, that is, high temperature TEMP1, low temperature TEMP2, constant high frequency power POWER1 and the above. Means for storing respective values of the irradiation duration PTIME1 of the high frequency power and STIME1 which is the time for stopping the irradiation of the high frequency;
(2) It has a time measuring means, (3) means for connecting and disconnecting the high frequency irradiation source, and (4) means for taking in the output of the food surface temperature detecting means. When the food surface temperature is TEMP2 or more and TEMP1 or less, P
A high-frequency heating device, characterized in that high-frequency irradiation is performed for 1 hour with POWME1 power, and then the operation in which no high-frequency irradiation is continued for 1 hour is alternately repeated.
【請求項2】表面温度検出手段として内部にサーミスタ
ー等の感温素子を設け、互いに平行な複数の金属製棒状
体からなる食品載置台を用いた請求項1記載の高周波加
熱装置。
2. The high frequency heating apparatus according to claim 1, wherein a temperature sensitive element such as a thermistor is provided inside as the surface temperature detecting means, and a food placing table composed of a plurality of metal rod-shaped bodies parallel to each other is used.
【請求項3】加熱室上面および下面の中央に高周波照射
源を設けた請求項1記載の高周波加熱装置。
3. The high frequency heating apparatus according to claim 1, wherein a high frequency irradiation source is provided at the center of the upper surface and the lower surface of the heating chamber.
【請求項4】加熱室と、扉と、高周波照射源と、食品載
置台と、食品表面温度検出手段と、制御手段とを有し、
制御手段は、(1)被加熱食品の種類、重量、形状、仕
上がり温度等の関数である五つの数値、少なくとも二つ
の温度、高い温度であるTEMP1、低い温度であるT
EMP2と、一定の高周波電力POWER1および前記
高周波電力の照射継続時間PTIME1、高周波の照射
を停止する時間であるSTIME1との各々の値を記憶
する手段と、(2)時間計測手段と、(3)高周波照射
源を断続する手段と、(4)食品表面温度検出手段の出
力を取り込む手段とを有し、 食品表面温度がTEMP2以上TEMP1以下の時はP
OWER1電力でPTIME1時間高周波照射し、次に
高周波照射しない状態をSTIME1時間持続する動作
を交互に繰り返す高周波加熱装置に於いて、少なくとも
二つの感温素子を有する光ファイバー式温度測定装置を
用い、光ファイバー式温度測定装置の一つの感温素子を
食品の最も高温となる部分に挿入し、他の感温素子を食
品の最も低温部分に挿入し、手動操作等により食品を一
定電力で高周波照射し、食品の最高温部分に挿入された
感温素子の出力が食品の仕上がり温度T1に達した時点
に於ける前記表面温度検出手段の出力値をTEMP2と
決めた後、高周波照射を停止して食品の温度低下をま
ち、仕上がり温度より1℃程度の一定温度低い値T2に
下がった時点でPOWER1電力で高周波照射し、再度
食品の最高温部分に挿入された感温素子の出力がT1に
達した時に高周波照射を停止してT2に低下するまで待
つという動作を繰り返し、食品の最低温部分に挿入され
た感温素子の出力がT2に達した時点の食品表面温度検
出手段の出力をTEMP1と決め、このT2からT1ま
で複数回上昇した際の各時間の実質的な平均値をPTI
ME1と決め、T1からT2まで下がる際の各時間の実
質的な平均値をSTIME1と決め、これらPOWER
1、PTIME1、STIME1、TEMP1、TEM
P2を前記高周波加熱装置に記憶させた上で動作させる
事を特徴とする高周波加熱方法。
4. A heating chamber, a door, a high frequency irradiation source, a food placing table, a food surface temperature detecting means, and a control means,
The control means includes (1) five numerical values that are functions of the type, weight, shape, and finishing temperature of the food to be heated, at least two temperatures, TEMP1 that is a high temperature, and T that is a low temperature.
Means for storing respective values of EMP2, constant high frequency power POWER1 and irradiation time PTIME1 of the high frequency power, and STIME1 which is a time for stopping high frequency irradiation; (2) time measuring means; and (3) It has means for connecting and disconnecting the high frequency irradiation source and (4) means for taking in the output of the food surface temperature detecting means. When the food surface temperature is TEMP2 or more and TEMP1 or less, P
In a high-frequency heating device that repeats the operation of irradiating PTIME for 1 hour with OWER1 power and then continuing the state without high-frequency irradiation for STIME for 1 hour, using an optical fiber type temperature measuring device having at least two temperature sensitive elements, an optical fiber type Insert one temperature sensitive element of the temperature measuring device into the hottest part of the food, insert the other temperature sensitive element into the coldest part of the food, irradiate the food with high frequency at constant power by manual operation, etc. After the output of the temperature sensitive element inserted in the highest temperature part of the temperature reaches the finishing temperature T1 of the food, the output value of the surface temperature detecting means is determined to be TEMP2, and then the high frequency irradiation is stopped to stop the temperature of the food. When the temperature drops to T2, which is a constant temperature lower than the finishing temperature by about 1 ℃, it is irradiated with high frequency by POWER1 power, and the highest temperature part of the food is reused. When the output of the inserted temperature sensitive element reaches T1, the operation of stopping the high frequency irradiation and waiting until it decreases to T2 is repeated, and the output of the temperature sensitive element inserted in the lowest temperature part of the food reaches T2. The output of the food surface temperature detecting means at that time is determined to be TEMP1, and the substantial average value of each time when the temperature rises a plurality of times from T2 to T1 is PTI.
ME1 and the average value of each time when it goes down from T1 to T2 is STIME1 and these POWER
1, PTIME1, STIME1, TEMP1, TEM
A high-frequency heating method, wherein P2 is stored in the high-frequency heating device and then operated.
JP19813193A 1992-12-21 1993-08-10 High frequency heating equipment Expired - Fee Related JP3257168B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP19813193A JP3257168B2 (en) 1993-08-10 1993-08-10 High frequency heating equipment
DE69309645T DE69309645T2 (en) 1992-12-21 1993-12-17 Method and apparatus for heating with microwaves
EP96109296A EP0746180B1 (en) 1992-12-21 1993-12-17 Microwave heating apparatus and method of making same
EP93120410A EP0607586B1 (en) 1992-12-21 1993-12-17 Microwave heating apparatus and method of making same
DE69330469T DE69330469T2 (en) 1992-12-21 1993-12-17 Microwave oven and method for heating food
AU52571/93A AU665288B2 (en) 1992-12-21 1993-12-20 Microwave heating apparatus and method of making same
US08/170,889 US5491323A (en) 1992-12-21 1993-12-21 High frequency heating apparatus for heating a material and a method of heating a material by high frequency irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19813193A JP3257168B2 (en) 1993-08-10 1993-08-10 High frequency heating equipment

Publications (2)

Publication Number Publication Date
JPH0755152A true JPH0755152A (en) 1995-03-03
JP3257168B2 JP3257168B2 (en) 2002-02-18

Family

ID=16385969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19813193A Expired - Fee Related JP3257168B2 (en) 1992-12-21 1993-08-10 High frequency heating equipment

Country Status (1)

Country Link
JP (1) JP3257168B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180083215A (en) * 2017-01-12 2018-07-20 주식회사 참코청하 High frequency thawing device
CN110543195A (en) * 2018-05-28 2019-12-06 宁波方太厨具有限公司 Temperature control method of oven

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180083215A (en) * 2017-01-12 2018-07-20 주식회사 참코청하 High frequency thawing device
CN110543195A (en) * 2018-05-28 2019-12-06 宁波方太厨具有限公司 Temperature control method of oven
CN110543195B (en) * 2018-05-28 2021-04-16 宁波方太厨具有限公司 Temperature control method of oven

Also Published As

Publication number Publication date
JP3257168B2 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
US12058798B2 (en) Cooking apparatus and control method thereof
KR100889108B1 (en) Speedcooking oven including a convection/bake mode
US20060289489A1 (en) Induction cooktop with remote power electronics
KR20030074709A (en) Thermal/convection oven including halogen lamps
JP2713072B2 (en) Induction heating cooker
JPH102562A (en) Heating cooker
JPH0755152A (en) Apparatus and method for high-frequency heating
JP5496165B2 (en) Cooker
JP3000419B2 (en) High frequency heating method and high frequency heating device
JP2006112722A (en) High frequency heater
JP3402308B2 (en) High frequency heating equipment
JP3305109B2 (en) Cooking device
JPS63297936A (en) Cooker
JPH0138403Y2 (en)
JPH0235899B2 (en)
JPH0777333A (en) High frequency heating method and high frequency heating device
JPH03168532A (en) Microwave oven
JPH0833206B2 (en) Cooking device
JPS6375422A (en) Cooker
CN114514404A (en) Method for operating a cooking oven
JP2994049B2 (en) Control device of cooking device
JPH0523245A (en) Rice-cooking controller of heating cooker
JP2012014837A (en) Induction heating cooker
JPH02301988A (en) Electronic cooking device
JPH0311371B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees