JPH0754640A - Exhaust emission control device - Google Patents
Exhaust emission control deviceInfo
- Publication number
- JPH0754640A JPH0754640A JP20068693A JP20068693A JPH0754640A JP H0754640 A JPH0754640 A JP H0754640A JP 20068693 A JP20068693 A JP 20068693A JP 20068693 A JP20068693 A JP 20068693A JP H0754640 A JPH0754640 A JP H0754640A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- temperature
- passage
- valve
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、エンジンの排気ガスの
排気通路に設けられた排気浄化装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust emission control device provided in an exhaust passage for exhaust gas of an engine.
【0002】[0002]
【従来の技術】従来、エンジンの排気ポートに連通する
排気通路には、エンジンから排出される有害成分が含ま
れる排気ガスを浄化する排気浄化装置が装着されてい
る。特にディーゼルエンジンの排気通路には、普通、窒
素酸化物(Nox)触媒等が装着されており、窒素酸化
物(Nox)を浄化しているが、この他に、ディーゼル
エンジンの排気ガスに含まれる可溶有機成分(SOF成
分)を特に浄化しようとする場合、SOF用酸化触媒を
装着する。2. Description of the Related Art Conventionally, an exhaust gas purification device for purifying exhaust gas containing harmful components discharged from an engine is mounted in an exhaust passage communicating with an exhaust port of the engine. In particular, a nitrogen oxide (Nox) catalyst is usually installed in the exhaust passage of a diesel engine to purify nitrogen oxide (Nox), but in addition to this, it is included in the exhaust gas of a diesel engine. When the soluble organic component (SOF component) is to be particularly purified, an SOF oxidation catalyst is attached.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、これら
各触媒は、ある温度以上でないと有効に触媒として作用
しない触媒活性温度があり、アイドリング時のような排
気温度の比較的低い場合、各触媒は活性温度範囲外に置
かれることとなる。特に、SOF用酸化触媒が、活性温
度範囲外にあるときに排気ガスを同触媒に導入すると、
すなわち、温度の低い排気ガスを活性温度に達していな
い触媒に流すと、触媒中に未燃燃料が浄化されずに蓄積
してしまう。このような状態から発進加速すると、この
未燃燃料が触媒から大気中に放出されて蒸気凝縮し、白
煙が多く発生するという問題点がある。However, each of these catalysts has a catalyst activation temperature at which it does not function effectively as a catalyst unless it exceeds a certain temperature, and when the exhaust temperature is relatively low such as during idling, each catalyst is activated. It will be placed outside the temperature range. In particular, when the exhaust gas is introduced into the SOF oxidation catalyst when it is outside the activation temperature range,
That is, when the exhaust gas having a low temperature is flown to the catalyst that has not reached the activation temperature, unburned fuel accumulates in the catalyst without being purified. When starting and accelerating from such a state, there is a problem that this unburned fuel is released from the catalyst into the atmosphere and vapor-condenses, and a large amount of white smoke is generated.
【0004】[0004]
【課題を解決するための手段】そこで、本発明の排気浄
化装置は、エンジンから排出される排気ガスの排気通路
に設けられた筒型の触媒を保持する第1部材で構成され
る浄化通路と、上記第1部材の内部あるいは外周の少な
くとも何れか一方に一体的に設けられ、上記第1部材を
迂回するバイパス通路を構成する第2部材と、上記排気
ガスの温度が設定温度未満のときに上記第1部材におけ
る浄化通路を閉じ、かつ、上記第2部材によるハイパス
通路を開くと共に、上記排気ガスの温度が設定温度以上
のときに上記浄化通路を開き、かつ上記第2部材による
パイパス通路を閉じるように開閉制御する開閉機構を備
えたことを特徴とする。Therefore, an exhaust gas purification apparatus of the present invention includes a purification passage constituted by a first member for holding a tubular catalyst provided in an exhaust passage for exhaust gas discharged from an engine. A second member that is integrally provided in at least one of the inside and the outer periphery of the first member and that constitutes a bypass passage that bypasses the first member; and when the temperature of the exhaust gas is less than a set temperature. The purification passage in the first member is closed, the high-pass passage by the second member is opened, the purification passage is opened when the temperature of the exhaust gas is equal to or higher than a set temperature, and the bypass passage by the second member is opened. It is characterized by having an opening / closing mechanism for controlling opening / closing so as to close.
【0005】[0005]
【作用】エンジンから排出される排気ガスの温度が設定
温度未満であると、排気通路に設けられ筒型の触媒を保
持する第1部材からなる浄化通路が開閉機構によって閉
じられ、第1部材の内部あるいは外周の少なくとも何れ
か一方に一体的に設けられ第1部材を迂回する第2部材
からなるバイパス通路が開閉機構によって開かれる。排
気ガスの温度が設定温度以上であると、浄化通路が開閉
機構によって開かられ、バイパス通路が開閉機構によっ
て閉じられる。また、第2部材が、触媒を保持する第1
部材と一体的に設けられているので、排気ガスがバイパ
ス通路を流れると排気ガスの熱が第1部材を介して触媒
に伝達されて同触媒が加熱される。さらに、バイパス通
路が触媒を保持する第1部材の内部あるいは外周の少な
くとも何れか一方に設けられているため、排気浄化装置
をほとんど大型化することなくバイパス通路を形成でき
る。When the temperature of the exhaust gas discharged from the engine is lower than the set temperature, the purifying passage, which is provided in the exhaust passage and is composed of the first member holding the cylindrical catalyst, is closed by the opening / closing mechanism, and the first member A bypass passage formed of a second member that is integrally provided in at least one of the inside and the outer circumference and that bypasses the first member is opened by the opening / closing mechanism. When the temperature of the exhaust gas is equal to or higher than the set temperature, the purification passage is opened by the opening / closing mechanism and the bypass passage is closed by the opening / closing mechanism. In addition, the second member is a first member that holds the catalyst.
Since it is provided integrally with the member, when the exhaust gas flows through the bypass passage, the heat of the exhaust gas is transferred to the catalyst via the first member and the catalyst is heated. Furthermore, since the bypass passage is provided in at least one of the inside and the outer periphery of the first member holding the catalyst, the bypass passage can be formed without increasing the size of the exhaust gas purification device.
【0006】[0006]
【実施例】以下、本発明の実施例及び変形例を幾つか説
明するが、各実施例及び変形例における同一部材には、
第1実施例で用いる符号と同一符号を付し、その説明は
第1実施例に留め、重複説明を省略する。EXAMPLES Hereinafter, some examples and modifications of the present invention will be described. The same members in each example and modifications are as follows.
The same reference numerals as those used in the first embodiment are attached, and the description thereof will be limited to the first embodiment, and the duplicated description will be omitted.
【0007】(第1実施例)図1において、符号1は、
ディーゼルエンジンE(以下「エンジンE」と記す)の
排気マニホールド2Aに接続し、プリマフラー2Bを備
える排気ガスの排気通路2に装着される排気浄化装置を
示す。(First Embodiment) In FIG. 1, reference numeral 1 is
1 shows an exhaust emission control device which is connected to an exhaust manifold 2A of a diesel engine E (hereinafter referred to as "engine E") and which is mounted in an exhaust gas exhaust passage 2 including a pre-muffler 2B.
【0008】この排気浄化装置1は、排気通路2に設け
られた筒型の触媒3を保持する第1部材としてのキャニ
スタ容器4の内部に構成される浄化通路5と、キャニス
タ容器4の外周に一体的に設けられバイパス通路6を形
成する第2部材としてのハウジング7とを有する触媒コ
ンバータ9、及び浄化通路5とハイパス通路6の開閉制
御を行う開閉機構8から主に構成される。This exhaust gas purification device 1 has a purification passage 5 formed inside a canister container 4 as a first member for holding a cylindrical catalyst 3 provided in an exhaust passage 2 and an outer periphery of the canister container 4. It is mainly composed of a catalytic converter 9 having a housing 7 as a second member that is integrally provided and forms a bypass passage 6, and an opening / closing mechanism 8 that controls opening / closing of the purification passage 5 and the high-pass passage 6.
【0009】キャニスタ容器4の膨張部4aには、図2
に示すように、触媒3がワイヤーメッシュ10を介して
収納保持されている。キャニスタ容器4の両端4b,4
cは、排気通路2の直径よりも小径にしぼり込まれてい
る。The expansion portion 4a of the canister container 4 has a structure shown in FIG.
As shown in, the catalyst 3 is housed and held via the wire mesh 10. Both ends 4b, 4 of the canister container 4
The diameter c is narrower than the diameter of the exhaust passage 2.
【0010】触媒3は、多数の細路を同一方向に向けて
積層させたハニカム構造を採る例えばセラミック製の担
持体に触媒物質が塗布されたもので、細路の側壁を透過
する際、排気ガスに含まれる有害成分を吸着して浄化す
る酸化触媒である。この触媒3では、特に排気ガスに含
まれる可溶有機成分(SOF成分)を浄化する。The catalyst 3 has a honeycomb structure in which a large number of narrow passages are laminated in the same direction, and a catalyst substance is applied to a carrier made of, for example, ceramic. The catalyst 3 is exhausted when passing through the side wall of the narrow passage. It is an oxidation catalyst that adsorbs and purifies harmful components contained in gas. The catalyst 3 purifies the soluble organic component (SOF component) contained in the exhaust gas.
【0011】ハウジング7は、キャニスタ容器4に慣ら
う形状に、板金等の適当な手法によって形成されてお
り、その両端7a,7bを排気通路2の径と同径となる
ようにしぼり込まれている。つまり、キャニスタ容器4
とハウジンク7の間に排気通路2につながるバイパス通
路6が形成され、キャニスタ容器4内が排気ガスの浄化
通路5となる。The housing 7 is formed by an appropriate method such as sheet metal in a shape that is familiar to the canister container 4, and both ends 7a and 7b of the housing 7 are squeezed so as to have the same diameter as the exhaust passage 2. ing. That is, canister container 4
A bypass passage 6 that connects to the exhaust passage 2 is formed between the housing 7 and the housing 7, and the inside of the canister container 4 serves as an exhaust gas purification passage 5.
【0012】次に、開閉機構8について述べる。開閉機
構8は、図2に示すように、排気通路2内を流動する排
気ガスの温度を検出する温度センサ11、浄化通路5と
バイパス通路6における排気ガス流入口5a,6aを開
閉する弁部材として弁12,13とアクチュエータ1
4,15A,15B及び、温度センサ11の検出温度に
基づいて弁12,13を開閉制御する制御手段16とか
ら構成される。Next, the opening / closing mechanism 8 will be described. As shown in FIG. 2, the opening / closing mechanism 8 includes a temperature sensor 11 for detecting the temperature of the exhaust gas flowing in the exhaust passage 2, and a valve member for opening / closing the exhaust gas inlets 5a, 6a in the purification passage 5 and the bypass passage 6. Valves 12, 13 and actuator 1
4, 15A, 15B and a control means 16 for controlling the opening and closing of the valves 12, 13 based on the temperature detected by the temperature sensor 11.
【0013】温度センサ11は、触媒3より上流側に位
置する排気通路2の周壁2aに固定されて制御手段16
と接続しており、触媒3より上流側の排気通路2内の排
気ガス温度を検出して検出結果である温度情報を制御手
段16に送っている。The temperature sensor 11 is fixed to the peripheral wall 2a of the exhaust passage 2 located upstream of the catalyst 3 and is connected to the control means 16
The temperature of the exhaust gas in the exhaust passage 2 upstream of the catalyst 3 is detected and the temperature information as the detection result is sent to the control means 16.
【0014】弁12は、第1開閉弁をなす周知のバタフ
ライ弁であって、排気ガス流入口5a内に配設されてお
り、アクチュエータ14の可動ロッド14aと連結され
ている。弁12は、エンジン始動時やアイドリング等の
排気ガス温度が比較的低い時に閉じていて、排気ガス温
度が設定温度以上になると2点鎖線で示すように開弁さ
れる。The valve 12 is a well-known butterfly valve which is a first opening / closing valve, is disposed in the exhaust gas inlet 5a, and is connected to the movable rod 14a of the actuator 14. The valve 12 is closed when the engine is started or when the exhaust gas temperature is relatively low such as idling, and is opened as shown by a two-dot chain line when the exhaust gas temperature becomes equal to or higher than the set temperature.
【0015】弁13は、排気ガス流入口6aを開閉する
第2開閉弁であって、図3(a)に示すように、アーチ
状に形成されて上下に二分割された上弁13Aと下弁1
3Bとから構成されている。上弁13Aと下弁13Bの
それぞれの両端13Aa,13Ab及び13Ba,13
Bbには、軸17A,17Bと18A,18Bがそれぞ
れ同軸線上に位置するように固着されて、排気通路2の
周壁2aに回動自在に支持されている。The valve 13 is a second opening / closing valve for opening / closing the exhaust gas inlet 6a, and as shown in FIG. 3 (a), it has an upper valve 13A which is formed in an arch shape and is vertically divided into two parts. Valve 1
3B and 3B. Both ends 13Aa, 13Ab and 13Ba, 13 of the upper valve 13A and the lower valve 13B, respectively.
Shafts 17A, 17B and 18A, 18B are fixed to Bb so as to be positioned on coaxial lines, respectively, and are rotatably supported on the peripheral wall 2a of the exhaust passage 2.
【0016】軸17Aと軸18Bには、通路2の外でリ
ンク19,20の一端がそれぞれ固定されている。この
リンク19,20各他端には、アクチュエータ15A,
15Bのロッド15a,15bがそれぞれ連結されてい
る(図2参照)。One ends of links 19 and 20 are fixed to the shaft 17A and the shaft 18B outside the passage 2, respectively. At the other end of each of the links 19 and 20, the actuator 15A,
Rods 15a and 15b of 15B are connected to each other (see FIG. 2).
【0017】上弁13Aと下弁13Bは、エンジン始動
時やアイドリング等の排気ガス温度が比較的低い時に図
3(b)に示すように、互いに重合して通路内に横たわ
る位置に置かれ、排気ガス温度が設定温度以上になると
図3(a)に示すように、通路断面方向に起きた状態に
置かれる。すなわち、図3(a)に示す弁13の状態
が、バイパス通路6を閉じた時の状態であり、図3
(b)に示す弁13の状態が、バイパス通路6を開いた
時の状態である。As shown in FIG. 3 (b), the upper valve 13A and the lower valve 13B are placed at a position where they are overlapped with each other and lie in the passage when the temperature of the exhaust gas is relatively low at the time of engine starting or idling. When the temperature of the exhaust gas becomes equal to or higher than the set temperature, the exhaust gas is placed in a state of being raised in the passage cross-sectional direction, as shown in FIG. That is, the state of the valve 13 shown in FIG. 3A is the state when the bypass passage 6 is closed.
The state of the valve 13 shown in (b) is the state when the bypass passage 6 is opened.
【0018】また、上弁13Aと下弁13Bが開状態
(図3a)にあるときには、各弁の内側面13Ac,1
3Bcによって、浄化通路5とガス通路3とを連通させ
る開口部21が形成される。なお、弁12は、図2に実
線で示す閉じ状態に、弁13は、図3(b)に示す開状
態をそれぞれのホームポジション(初期位置)とされて
いる。When the upper valve 13A and the lower valve 13B are in the open state (FIG. 3a), the inner surface 13Ac, 1 of each valve is
The opening 21 that connects the purification passage 5 and the gas passage 3 is formed by 3Bc. The valve 12 is in the closed state shown by the solid line in FIG. 2, and the valve 13 is in the open state shown in FIG. 3B as the home position (initial position).
【0019】制御手段16は、周知のマイクロコンピュ
ータをメインとする制御装置であって、その記録回路に
アクチュエータ14,15(A,B)への駆動信号を発
するための排気ガスの設定温度が記録されており、温度
センサ11の検出温度によって弁12,13を切替え制
御する。The control means 16 is a control device mainly including a well-known microcomputer, and the set temperature of exhaust gas for issuing a drive signal to the actuators 14 and 15 (A, B) is recorded in its recording circuit. The valves 12 and 13 are switched and controlled according to the temperature detected by the temperature sensor 11.
【0020】ここで、触媒3の特性について図11を用
いて説明する。図11は、本発明の排気浄化装置1を装
着した車において、アイドル回転で6時間続けた後に急
加速状態にしたときの触媒3(図2)の特性を示す。横
軸は測定時間を示し、縦軸は、触媒下流における炭化水
素(HC)と白煙濃度及び触媒温度を示す。Now, the characteristics of the catalyst 3 will be described with reference to FIG. FIG. 11 shows the characteristics of the catalyst 3 (FIG. 2) when the vehicle equipped with the exhaust emission control device 1 of the present invention is in the rapid acceleration state after 6 hours of idle rotation. The horizontal axis represents the measurement time, and the vertical axis represents the hydrocarbon (HC) and white smoke concentration downstream of the catalyst and the catalyst temperature.
【0021】この図によると、急加速状態がある程度続
いて触媒温度が300℃前後まで上昇すると、白煙及び
HCの濃度が低減することがわかる。すなわち、触媒3
が排気ガスによって加熱されて触媒活性温度になると浄
化効率が向上することがわかる。According to this figure, it can be seen that the concentration of white smoke and HC decreases when the catalyst temperature rises to around 300 ° C. after the rapid acceleration state continues to some extent. That is, the catalyst 3
It can be seen that the purification efficiency is improved when is heated by the exhaust gas to reach the catalyst activation temperature.
【0022】よって、弁12,13を切替える排気ガス
の設定温度は、本実施例に使用されている触媒3の特性
から300℃に設定されている。なお、触媒活性温度
は、触媒の種類等によって異なるので、制御装置に設定
する設定温度は、触媒の種類によって換えることが望ま
しい。Therefore, the set temperature of the exhaust gas for switching the valves 12 and 13 is set to 300 ° C. according to the characteristics of the catalyst 3 used in this embodiment. Since the catalyst activation temperature varies depending on the type of catalyst, it is desirable to change the set temperature set in the control device according to the type of catalyst.
【0023】このような構成における排気浄化装置1の
動作について説明する。エンジンEが運転状態となる
と、内燃機関における所定の運転サイクルが行われた
後、排気ガスが図示しないシリンダ内から排気マニホー
ルド2Aを介して排気通路2に排出される。The operation of the exhaust purification system 1 having such a configuration will be described. When the engine E is in the operating state, after a predetermined operation cycle of the internal combustion engine is performed, exhaust gas is discharged from the inside of a cylinder (not shown) into the exhaust passage 2 via the exhaust manifold 2A.
【0024】そして、この排気ガスの温度が温度センサ
11によって検出され、検出された温度情報が制御装置
16に送られる。この時、センサ11の検出温度が設定
温度以下であると、弁12は排気ガス流入口5aを閉じ
るホームポジション位置にあり、一方、弁13は、排気
ガス流入口6aを開くホームポジション位置に置かれの
で、上流側から流れてくる排気ガスは、バイパス通路6
に導かれる。The temperature of the exhaust gas is detected by the temperature sensor 11, and the detected temperature information is sent to the control device 16. At this time, if the temperature detected by the sensor 11 is below the set temperature, the valve 12 is in the home position position where the exhaust gas inlet 5a is closed, while the valve 13 is located in the home position position where the exhaust gas inlet 6a is opened. Therefore, the exhaust gas flowing from the upstream side is
Be led to.
【0025】この時、バイパス通路6に導かれた排気ガ
スの熱が、キャニスタ容器4を介して触媒3に伝導され
てるので、低温時の排気ガスを触媒3に直接通さなくと
も、ある程度触媒3を加熱することができる。従って、
触媒活性温度になるまでの立上り時間が短くなる。ま
た、低温時の排気ガスを未だ活性温度になっていない触
媒3を通すことなく排出できるので、触媒3へのHCの
蓄積を防止することができる。At this time, since the heat of the exhaust gas introduced into the bypass passage 6 is conducted to the catalyst 3 through the canister container 4, the exhaust gas at low temperature does not have to pass directly to the catalyst 3 but to some extent the catalyst 3 Can be heated. Therefore,
The rise time until reaching the catalyst activation temperature is shortened. Further, since exhaust gas at low temperature can be discharged without passing through the catalyst 3 which has not yet reached the activation temperature, accumulation of HC on the catalyst 3 can be prevented.
【0026】運転状態がしばらく続いて排気ガス温度が
上昇し温度センサ11の検出温度が設定温度以上になる
と、制御装置16から駆動信号が各アクチュエータに送
られ、アクチュエータ14は、弁12を開ける向きに、
アクチュエータ15A,15Bは、弁13A,13Bを
閉じる向きに作用する。従って、排気ガスは、バイパス
通路6には流れずに、キャニスタ容器4内、すなわち浄
化通路5に流入し、触媒3によって浄化された後排出さ
れる。When the exhaust gas temperature rises and the temperature detected by the temperature sensor 11 exceeds the set temperature after the operating state continues for a while, a drive signal is sent from the control device 16 to each actuator, and the actuator 14 opens the valve 12. To
The actuators 15A and 15B act in the direction of closing the valves 13A and 13B. Therefore, the exhaust gas does not flow into the bypass passage 6 but flows into the canister container 4, that is, the purification passage 5, is purified by the catalyst 3, and is then discharged.
【0027】(第1実施例の変形例1)この変形例は、
弁12の取付け位置や弁13の向きを変えたものであ
る。図4,5において、弁13A,13Bは、排気通路
2の断面において、左右に二分割するように配置した第
2バタフライ弁であって、弁13Bを支持する一本の長
軸18Cに第1バタフライ弁としての弁12を溶接等の
適切な方法で固定したものである。(Modification 1 of the first embodiment) This modification is
The mounting position of the valve 12 and the direction of the valve 13 are changed. 4 and 5, the valves 13A and 13B are second butterfly valves arranged so as to be divided into left and right in a cross section of the exhaust passage 2, and a first long shaft 18C that supports the valve 13B has a first butterfly valve. The valve 12 as a butterfly valve is fixed by an appropriate method such as welding.
【0028】弁12は、弁13A,13Bに対して直交
する方向、すなわち、90°位相を変えて弁13Bの軸
18Cを固定されていて、図4に示す状態を開状態と
し、図5に示す状態を閉状態としている。弁13は、図
4に示すように、弁13A,13Bとが互いに同一平面
状にあるときを閉じ状態とし、図5に示すように、互い
に重合した状態を開状態としている。The valve 12 has the shaft 18C of the valve 13B fixed in a direction orthogonal to the valves 13A and 13B, that is, by changing the phase by 90 °, and opens the state shown in FIG. The state shown is a closed state. As shown in FIG. 4, the valve 13 is in a closed state when the valves 13A and 13B are in the same plane, and as shown in FIG.
【0029】このような構成にすると、弁13Bが図2
に示すアクチュエータ15Bで駆動されることで弁12
も駆動されることになるので、第1実施例で弁12を駆
動したアクチュエータ14が不要となり、部品点数の低
減と共に装置の小型化を図ることができる。With such a structure, the valve 13B can be installed in FIG.
The valve 12 is driven by the actuator 15B shown in FIG.
Also, since the actuator 14 that drives the valve 12 in the first embodiment is unnecessary, the number of parts can be reduced and the size of the device can be reduced.
【0030】図6(a)では、図4における弁12を2
分割して半月型の弁12A,12Bとし、同弁を弁13
A,13Bを回転自在に支持する長軸17C,18Cに
固定している。弁12A,12Bは、弁13A,13B
に対して直交する方向に固定されている。In FIG. 6A, the valve 12 in FIG.
Split into half-moon shaped valves 12A and 12B, which are valve 13
A and 13B are fixed to long shafts 17C and 18C that rotatably support them. The valves 12A and 12B are the valves 13A and 13B.
It is fixed in a direction orthogonal to.
【0031】また、この時、図2に示す制御手段16に
は、アクチュエータ15A,15Bを駆動する駆動信号
を発する条件としての設定温度の他に、アクチュエータ
15A,または、アクチュエータ15Bの何れか一方を
駆動する中間温度が設定されている(ここでは、アクチ
ュエータ15Bを駆動する)。この中間温度は、設定温
度より低い温度に設定されている。At this time, the control means 16 shown in FIG. 2 has either one of the actuator 15A and the actuator 15B in addition to the set temperature as a condition for issuing a drive signal for driving the actuators 15A and 15B. The intermediate temperature for driving is set (in this case, the actuator 15B is driven). This intermediate temperature is set to a temperature lower than the set temperature.
【0032】このような構成によると、温度センサ11
の検出温度が中間温度であると、アクチュエータ15B
が駆動され、図6(a)に示すホームポジションに置か
れた弁12A,12B,13A,13Bが、それぞれ図
6(b)に示すように、弁12Bが開かれ、弁13Bが
閉じる状態となる。センサの検出温度が設定温度である
と、アクチュエータ15A,15Bが駆動され、図6
(c)に示すように、弁12A,12Bの開状態と弁1
3A,13Bの全開状態となる。According to this structure, the temperature sensor 11
If the detected temperature of is the intermediate temperature, the actuator 15B
6A is driven, the valves 12A, 12B, 13A and 13B placed in the home position shown in FIG. 6A are in a state where the valve 12B is opened and the valve 13B is closed as shown in FIG. 6B. Become. When the temperature detected by the sensor is the set temperature, the actuators 15A and 15B are driven, and
As shown in (c), the open state of the valves 12A and 12B and the valve 1
3A and 13B are fully opened.
【0033】よって、温度の低い排気ガスの触媒3への
流入を防止でき、触媒3に蓄積される炭化水素HCの量
が低減する。また。弁12A,13Aと弁12B,13
Bを個別に駆動することができるので、バイパス通路6
と浄化通路5への排気ガスの流入量を調整できる。Accordingly, the inflow of exhaust gas having a low temperature into the catalyst 3 can be prevented, and the amount of hydrocarbons HC accumulated in the catalyst 3 can be reduced. Also. Valves 12A and 13A and valves 12B and 13
Since B can be driven individually, the bypass passage 6
The amount of exhaust gas flowing into the purification passage 5 can be adjusted.
【0034】(第1実施例の変形例2)この変形例は、
図7に示すように、固定板22と可動板23とから構成
される弁部材を排気ガス流入口5a,6aに設けたもの
である。固定板22には、扇形空間22aが等間隔で形
成され、各間隔の間に、扇形弁部22bが形成されてお
り、排気ガス流入口5aに当接した状態で排気ガス流入
路6a内に固定されている。(Modification 2 of the first embodiment) This modification is
As shown in FIG. 7, a valve member composed of a fixed plate 22 and a movable plate 23 is provided at the exhaust gas inlets 5a and 6a. In the fixed plate 22, fan-shaped spaces 22a are formed at equal intervals, and fan-shaped valve portions 22b are formed between the intervals, and the fan-shaped valve portions 22b are formed in the exhaust gas inflow passage 6a while being in contact with the exhaust gas inlet 5a. It is fixed.
【0035】可動板23には、その外形部に複数の切欠
き部23aが、扇形空間22aと同一間隔をもって形成
されており、各切欠き部23aの間には、扇形弁部22
bに対応する弁部23bが形成されている。The movable plate 23 has a plurality of notches 23a formed in its outer shape at the same intervals as the fan-shaped spaces 22a, and the fan-shaped valve portion 22 is provided between the notches 23a.
A valve portion 23b corresponding to b is formed.
【0036】弁部23bの外径は、略排気ガス流入口6
aの内径と同寸法に設定されていて、切欠き部23aの
深さは、その底部23cが排気ガス流入口5aを塞ぐ程
度の大きさに形成されている。また、底部23cよりも
内側に位置する各弁部23bには、開孔23dがそれぞ
れ形成されていて、各開口の間に弁部23eが形成され
る。The outer diameter of the valve portion 23b is substantially equal to the exhaust gas inlet 6
The notch 23a is formed to have the same size as the inner diameter of a and the depth of the notch 23a is so large that the bottom 23c closes the exhaust gas inlet 5a. Further, an opening 23d is formed in each valve portion 23b located inside the bottom portion 23c, and a valve portion 23e is formed between each opening.
【0037】可動板23には、ピニオン24aが一端に
形成された軸24が嵌合する孔23fが形成されてい
て、軸24にスペーサリング25を挿通させて固定板2
2の中央に形成した孔22cに挿入され、固定板22に
対して回動自在とされる。可動板23は、ホームポジシ
ョンを弁部23bが扇形弁部22bと重合する位置に置
かれていて、この位置から弁部23bが扇形空間22a
と重合する位置まで回動される。The movable plate 23 is formed with a hole 23f into which the shaft 24 having a pinion 24a formed at one end is fitted, and the spacer ring 25 is inserted through the shaft 24 to fix the fixed plate 2.
It is inserted into a hole 22c formed in the center of 2 and is rotatable with respect to the fixed plate 22. The movable plate 23 is placed at the home position at a position where the valve portion 23b overlaps with the fan-shaped valve portion 22b, and from this position, the valve portion 23b is located in the fan-shaped space 22a.
It is rotated to the position where it overlaps with.
【0038】ピンオン24aには、図示しないアクチュ
エータの可動ロッド26に形成されたラック26aが噛
合され、このラック26aの動きによって、軸24が回
動される。ロッド26は、温度センサの検出温度が設定
温度になると、図1に示す制御装置16から発する駆動
信号によって動作する。A rack 26a formed on a movable rod 26 of an actuator (not shown) meshes with the pin-on 24a, and the shaft 24 is rotated by the movement of the rack 26a. When the temperature detected by the temperature sensor reaches the set temperature, the rod 26 operates according to the drive signal generated from the control device 16 shown in FIG.
【0039】このような構成によると、弁部23bがホ
ームポジションにあるときには、弁部23eが扇形空間
22aに位置することになるので、排気ガス流入口5a
が塞がれて、温度の低い排気ガスが切欠き部23aから
扇形空間22aの一部を通ってバイパス通路の排気ガス
流入口6aに導かれる。According to this structure, when the valve portion 23b is at the home position, the valve portion 23e is located in the fan-shaped space 22a, so that the exhaust gas inlet port 5a.
The exhaust gas having a low temperature is guided from the cutout portion 23a to the exhaust gas inlet port 6a of the bypass passage through a part of the fan-shaped space 22a.
【0040】排気ガス温度が上昇してセンサの検出温度
が設定温度となると、ロッド26によって軸24が回転
駆動されて可動板23が回動する。すると、弁部23e
が扇形弁部22bと重なり、弁部23bが扇形空間22
aに位置することになり、弁部23bと扇形弁部22b
によって排気ガス流入口6aが塞がれ、開孔23dと排
気ガス流入口5aが扇形空間22aを介して連通され
る。従って、温度の高い排気ガスは、排気ガス流入口5
aから図1に示す浄化通路5へ導入され触媒によって浄
化される。When the temperature of the exhaust gas rises and the temperature detected by the sensor reaches the set temperature, the shaft 26 is rotationally driven by the rod 26 and the movable plate 23 is rotated. Then, the valve portion 23e
Overlap with the fan-shaped valve portion 22b, and the valve portion 23b overlaps with the fan-shaped space 22.
The valve portion 23b and the fan-shaped valve portion 22b are located at a position a.
Thus, the exhaust gas inlet 6a is closed, and the opening 23d and the exhaust gas inlet 5a communicate with each other through the fan-shaped space 22a. Therefore, the exhaust gas with a high temperature is exhausted from the exhaust gas inlet 5
It is introduced from a into the purification passage 5 shown in FIG. 1 and purified by a catalyst.
【0041】このように、ロッド26によって可動弁2
3を回転させて排気ガス流入口5a,6aへの排気ガス
の切り替えを行うので、弁動作に使用するアクチュエー
タを変形例1よりさらに低減することができる。加え
て、ロッド26の移動量をコントロールすることで、可
動弁23を回転することで、扇形空間22aと切欠き部
23a及開孔23dとの開度が調整できるので、流入口
5a,6aへの排気ガスの流入量を調整することができ
る。In this way, the movable valve 2 is moved by the rod 26.
Since the exhaust gas is switched to the exhaust gas inflow ports 5a and 6a by rotating the valve 3, the number of actuators used for valve operation can be further reduced as compared with the first modification. In addition, by controlling the amount of movement of the rod 26, the opening of the fan-shaped space 22a and the notch 23a and the opening 23d can be adjusted by rotating the movable valve 23. The inflow amount of exhaust gas can be adjusted.
【0042】(第2実施例)第2実施例は、図8に示す
ように、円筒形の触媒30の中央にガス通路3の上流側
に延びるパイプ27が挿入されいて、同パイプ内が第2
のバイパス通路60とされている。バイパス通路60の
排ガス流入口60aと排ガス流入路5aの近傍には、排
ガス流入路5aを開閉する上下に二分割されたリング状
の弁29A,29Bと排ガス流入口60aを開閉する半
月型の弁28A,28Bがそれぞれ軸17D,17Bに
直交して固定されている(図4乃至図6参照)。(Second Embodiment) In the second embodiment, as shown in FIG. 8, a pipe 27 extending upstream of the gas passage 3 is inserted in the center of a cylindrical catalyst 30, and the inside of the pipe is Two
It is used as a bypass passage 60. Near the exhaust gas inlet 60a and the exhaust gas inflow passage 5a of the bypass passage 60, ring-shaped valves 29A and 29B which are divided into upper and lower parts for opening and closing the exhaust gas inflow passage 5a and a half-moon type valve for opening and closing the exhaust gas inlet 60a. 28A and 28B are fixed orthogonally to the shafts 17D and 17B, respectively (see FIGS. 4 to 6).
【0043】弁29A,29Bは、通常図8に示すよう
に、排ガス流入路5aを閉じる向きに置かれ、弁28
A,28Bは、排ガス流入口60aを開く位置に置かれ
ており、アクチュエータ15A,15Bの駆動により、
それぞれ逆の態位となる。Normally, the valves 29A and 29B are arranged so as to close the exhaust gas inflow passage 5a as shown in FIG.
A and 28B are placed at positions where the exhaust gas inlet 60a is opened, and by driving the actuators 15A and 15B,
Each is in the opposite position.
【0044】アクチュエータ15A,15Bは、軸17
D,18Dがそれぞれ連結されていて、制御装置16か
らの駆動信号によって弁29A,29Bを開くと共に弁
28A,28Bを閉じる向きに軸17D,18Dを回転
駆動させる。The actuators 15A and 15B have a shaft 17
D and 18D are connected to each other, and the drive signals from the control device 16 open the valves 29A and 29B and rotate the shafts 17D and 18D in the directions to close the valves 28A and 28B.
【0045】一方、バイパス通路6の排気ガス流入口6
aの近傍には、弁31が配設されている。この弁31は
舌片形状であって、図9(a),(b)に示すキャニス
タ容器4の外周面に設けられた支持部材32に固定され
て、流入口6aに複数配置されている。On the other hand, the exhaust gas inlet 6 of the bypass passage 6
A valve 31 is arranged near a. The valve 31 has a tongue shape, and is fixed to a support member 32 provided on the outer peripheral surface of the canister container 4 shown in FIGS. 9A and 9B, and a plurality of valves 31 are arranged at the inflow port 6a.
【0046】支持部材32は、形状記憶合金からなり、
通常、図9(a)に示すように、鋭角に折り曲げた形状
をしていて、管内を流れる排気ガスの温度により一定の
温度まで加熱されると図9(b)に示すように、略垂直
となるまで変位するように特性が与えられている。The support member 32 is made of a shape memory alloy,
Normally, as shown in FIG. 9 (a), it has a shape bent at an acute angle, and when it is heated to a certain temperature by the temperature of the exhaust gas flowing in the pipe, it is substantially vertical as shown in FIG. 9 (b). The characteristics are given so that it is displaced until.
【0047】すなわち、通常は、弁31を開弁状態に保
持していて、排気ガスが一定温度以上になると弁31を
閉弁状態に保持する駆動部材として作用する。この支持
部材32は、アクチュエータ15A,15Bが駆動され
る設定温度で復元するようになっている。That is, normally, the valve 31 is held in the open state, and when the exhaust gas reaches a certain temperature or higher, it acts as a drive member for holding the valve 31 in the closed state. The support member 32 is designed to be restored at a set temperature at which the actuators 15A and 15B are driven.
【0048】このような構成によると、温度センサ11
の検出温度が設定温度に達していなければ、弁28A,
28B及び31は、図8に示すように、流入路6a,6
0aを開く態位にあるので、排気ガスは、バイパス通路
6,60へと導かれる。According to such a configuration, the temperature sensor 11
If the detected temperature of has not reached the set temperature, the valve 28A,
28B and 31, as shown in FIG. 8, the inflow passages 6a, 6
The exhaust gas is guided to the bypass passages 6 and 60 because it is in the position to open the 0a.
【0049】温度センサ11の検出温度が設定温度に達
すると、アクチュエータ15A,15Bによって軸14
D,18Dが回動されて弁28A,,28Bが閉じて弁
29A,29Bが開かれ、さらに、弁31が図9(a)
の態位から図9(b)の態位へと変化して閉じられ、浄
化数路5に排気ガスが導入される。なお、ここでは、支
持部材32に舌片状の弁31を固定したが、支持部材3
2を舌片状にして弁部材とすることでも構わない。When the temperature detected by the temperature sensor 11 reaches the set temperature, the actuator 15A, 15B causes the shaft 14 to move.
D and 18D are rotated, valves 28A and 28B are closed, valves 29A and 29B are opened, and further, valve 31 is shown in FIG. 9 (a).
9B is changed to the position shown in FIG. 9B, and the exhaust gas is introduced into the purification passage 5. Although the tongue-shaped valve 31 is fixed to the support member 32 here, the support member 3
It is also possible to make 2 a tongue piece to form a valve member.
【0050】(第3実施例)図10に示す第3実施例
は、排気通路と連通する触媒コンバータ90内に、排気
ガス通路と直交する平面において、等間隔で放射状に分
割した複数の触媒40を形成して同触媒内部を浄化数路
50とし、触媒40の間に放射状の空間からなるバイパ
ス通路61を形成したものである。浄化数路50とバイ
パス通路61は、共に触媒コンバータ90を貫通するよ
うに形成されている。(Third Embodiment) In a third embodiment shown in FIG. 10, a plurality of catalysts 40 are radially divided at equal intervals in a plane orthogonal to the exhaust gas passage in a catalytic converter 90 communicating with the exhaust passage. Is formed as a purification passage 50, and a bypass passage 61 formed of a radial space is formed between the catalysts 40. Both the purification passage 50 and the bypass passage 61 are formed so as to penetrate the catalytic converter 90.
【0051】触媒コンバータ90より上流側には、切替
弁としての回転板34が配置されている。この回転板3
4は、触媒40及びバイパス通路61に対応する開孔部
34aと扇形弁部34bが等間隔で放射状に形成されて
いる。A rotary plate 34 as a switching valve is arranged upstream of the catalytic converter 90. This rotating plate 3
4, the openings 40a and the fan-shaped valve portions 34b corresponding to the catalyst 40 and the bypass passage 61 are radially formed at equal intervals.
【0052】回転板34には、レバー33に設けられた
軸33aが固定される孔34cが形成されていて、この
軸33aは、触媒コンバータ90の中央に設けられた孔
90aに回動自在に支持される。回転板34は、通常、
扇形弁部34bを触媒40と重合する位置に置かれてい
る。The rotary plate 34 is formed with a hole 34c in which the shaft 33a provided in the lever 33 is fixed. The shaft 33a is rotatable in a hole 90a provided in the center of the catalytic converter 90. Supported. The rotating plate 34 is usually
The fan-shaped valve portion 34b is placed at a position where it overlaps with the catalyst 40.
【0053】レバー33の基端に設けられた孔33bに
は、図示しないアクチュエータが連結されている。この
アクチュエータは、図1,図8に示す制御手段16と接
続していて、温度センサの検出温度が設定温度以上にな
るとレバー33を駆動して回転板34を回転させ、扇形
弁部34bをバイパス通路61上に位置させる。An actuator (not shown) is connected to the hole 33b provided at the base end of the lever 33. This actuator is connected to the control means 16 shown in FIGS. 1 and 8, and when the temperature detected by the temperature sensor exceeds a set temperature, the lever 33 is driven to rotate the rotary plate 34 and bypass the fan-shaped valve portion 34b. It is located on the passage 61.
【0054】このような構成によると、検出温度が設定
温度以下であると扇形部34bと触媒40が重合してい
るので、浄化通路50が閉じされ、開孔部34aを通っ
て温度の低い、すなわち、アイドリング時等の排気ガス
がバイパス通路61に流れ込む。According to this structure, when the detected temperature is equal to or lower than the set temperature, the fan-shaped portion 34b and the catalyst 40 are polymerized, so that the purification passage 50 is closed and the temperature is low through the opening portion 34a. That is, the exhaust gas during idling flows into the bypass passage 61.
【0055】排気ガス温度が上昇してがセンサの検出温
度が設定温度になると、アクチュエータによってレバー
33が駆動されて回転板34が回動し、扇形弁部34b
によってバイパス通路61が閉じされ、開孔部34aが
触媒40と対向し、温度の高い排気ガスが浄化通路に導
入されることなる。When the temperature detected by the sensor reaches the set temperature even if the exhaust gas temperature rises, the lever 33 is driven by the actuator to rotate the rotary plate 34, and the fan-shaped valve portion 34b.
By this, the bypass passage 61 is closed, the opening portion 34a faces the catalyst 40, and the exhaust gas having a high temperature is introduced into the purification passage.
【0056】[0056]
【発明の効果】以上、本発明によれば、アイドリング時
等の温度の低い排気ガスの触媒への流入が極めて少なく
なるので、触媒に蓄積される炭化水素の量が低減でき、
急加速時等における白煙の発生の低減につながる。As described above, according to the present invention, since the inflow of exhaust gas having a low temperature at the time of idling into the catalyst is extremely reduced, the amount of hydrocarbons accumulated in the catalyst can be reduced.
This will reduce the generation of white smoke during sudden acceleration.
【0057】また、パイパス通路を触媒を保持する第1
部材と一体的に設けているので、バイパス通路を通過す
る排気ガスの温度が触媒に伝達されるので、触媒が予め
加熱されることとなるため、触媒が活性温度になるまで
の立上り時間が短縮される。従って、触媒に排気ガスを
流入したときにおける浄化作用が早くから行われるの
で、浄化効率の向上につながる。The first passage for holding the catalyst in the bypass passage
Since it is provided integrally with the member, the temperature of the exhaust gas that passes through the bypass passage is transmitted to the catalyst, so the catalyst is preheated, and the rise time until the catalyst reaches the activation temperature is shortened. To be done. Therefore, the purification action when the exhaust gas flows into the catalyst is performed earlier, which leads to an improvement in purification efficiency.
【0058】さらに、バイパス通路が触媒を保持する第
1部材の内部あるいは外周の少なくとも何れか一方に設
けられているので、排気浄化装置をほとんど大型化する
ことなくバイパス通路を形成できるため、車載性を低下
させることがない。Further, since the bypass passage is provided in at least one of the inside and the outer periphery of the first member holding the catalyst, the bypass passage can be formed without increasing the size of the exhaust gas purification device, and therefore the vehicle mountability is improved. Does not decrease.
【図1】本発明の排気浄化装置の概略高伊勢を示す側面
図である。FIG. 1 is a side view showing a schematic height Ise of an exhaust emission control device of the present invention.
【図2】本発明の排気浄化装置の第1実施例を示す側面
断面図である。FIG. 2 is a side sectional view showing the first embodiment of the exhaust emission control device of the present invention.
【図3】(a)は図2に示す排気浄化装置に用いられる
弁部材の閉じ状態を示す斜視図であり、(b)は(a)
に示す弁部材の開状態を示す斜視図である。3 (a) is a perspective view showing a closed state of a valve member used in the exhaust emission control device shown in FIG. 2, and FIG. 3 (b) is (a).
4 is a perspective view showing an open state of the valve member shown in FIG.
【図4】第1実施例における弁部材の変形例を示す斜視
図である。FIG. 4 is a perspective view showing a modified example of the valve member in the first embodiment.
【図5】図4に示す弁部材の初期状態を示す斜視図であ
る。5 is a perspective view showing an initial state of the valve member shown in FIG.
【図6】(a)は図4,5に示す弁部材の変形例である
弁部材の初期状態を示す断面図であり、(b),(c)
は(a)に示す弁部材の動作状態を示す断面図である。6A is a cross-sectional view showing an initial state of a valve member which is a modified example of the valve member shown in FIGS. 4 and 5, and FIGS.
FIG. 6A is a cross-sectional view showing an operating state of the valve member shown in FIG.
【図7】第1実施例における弁部材の変形例を示す斜視
図である。FIG. 7 is a perspective view showing a modified example of the valve member in the first embodiment.
【図8】本発明の第2実施例示す排気浄化装置の構成を
示す側面断面図である。FIG. 8 is a side sectional view showing a configuration of an exhaust emission control device showing a second embodiment of the present invention.
【図9】(a)は第2実施例で用いられる弁と駆動部材
の初期状態を示す側面断面図であり、(b)は(a)に
示す弁と駆動部材の動作状態を示す側面断面図である。9A is a side sectional view showing an initial state of a valve and a driving member used in the second embodiment, and FIG. 9B is a side sectional view showing an operating state of the valve and the driving member shown in FIG. 9A. It is a figure.
【図10】本発明の第3の実施例の要部を示す斜視図で
ある。FIG. 10 is a perspective view showing a main part of a third embodiment of the present invention.
【図11】本発明で用いられる触媒の特性を示す線図で
ある。FIG. 11 is a diagram showing the characteristics of the catalyst used in the present invention.
E エンジン 1 排気浄化装置 2 排気ガス通路 3,30,40 触媒 4 第1部材(キャニスタ容
器) 5 浄化通路 6 バイパス通路 7 第2部材(ハウジング) 8 開閉機構 5a,6a,60 排気ガス流入口 11 温度センサ 16 制御手段 12(A,B),29(A,B) 第1開閉弁 13,17(A,B),31 第2開閉弁 22 固定版 23 移動板 32 駆動部材 34 回転板 34a 開孔部E Engine 1 Exhaust gas purification device 2 Exhaust gas passages 3, 30, 40 Catalyst 4 First member (canister container) 5 Purification passage 6 Bypass passage 7 Second member (housing) 8 Opening / closing mechanism 5a, 6a, 60 Exhaust gas inlet 11 Temperature sensor 16 Control means 12 (A, B), 29 (A, B) First on-off valve 13, 17 (A, B), 31 Second on-off valve 22 Fixed plate 23 Moving plate 32 Driving member 34 Rotating plate 34a Open Hole
Claims (7)
路に設けられた筒型の触媒を保持する第1部材で構成さ
れる浄化通路と、 上記第1部材の内部あるいは外周の少なくとも何れか一
方に一体的に設けられ、上記第1部材を迂回するバイパ
ス通路を構成する第2部材と、 上記排気ガスの温度が設定温度未満のときに上記第1部
材における浄化通路を閉じ、かつ、上記第2部材による
ハイパス通路を開くと共に、上記排気ガスの温度が設定
温度以上のときに上記浄化通路を開き、かつ上記第2部
材によるパイパス通路を閉じるように開閉制御する開閉
機構を備えたことを特徴とする排気浄化装置。1. A purifying passage configured by a first member for holding a tubular catalyst provided in an exhaust passage for exhaust gas discharged from an engine, and at least one of an inside and an outer periphery of the first member. A second member that is integrally provided in the first member and forms a bypass passage that bypasses the first member; and a purification passage in the first member that is closed when the temperature of the exhaust gas is lower than a set temperature, and An opening / closing mechanism is provided which opens and closes the high-pass passage formed by two members, opens the purification passage when the temperature of the exhaust gas is equal to or higher than a preset temperature, and closes the bypass passage formed by the second member. Exhaust gas purification device.
材の排気ガス流入口を開閉する弁部材と、上記設定温度
において上記弁部材を開閉する形状記憶合金からなる駆
動部材とから構成される請求項1記載の排気浄化装置。2. The opening / closing mechanism comprises a valve member for opening / closing the exhaust gas inlet of the first member and the second member, and a drive member made of a shape memory alloy for opening / closing the valve member at the set temperature. The exhaust emission control device according to claim 1.
記触媒の上流側に設けられ排気ガスの温度を検出する温
度センサと、上記第1部材及び第2部材の排気ガス流入
口を開閉する弁部材と、上記温度センサの検出温度に基
づいて上記弁部材を開閉制御する制御手段とを備えたこ
とを特徴とする請求項1記載の排気浄化装置。3. A valve for opening / closing an exhaust gas inlet of each of the first member and the second member, wherein the opening / closing mechanism is provided upstream of the catalyst in the exhaust passage and detects a temperature of exhaust gas. The exhaust emission control device according to claim 1, further comprising: a member and a control unit that controls opening and closing of the valve member based on a temperature detected by the temperature sensor.
入口に設けられた第1開閉弁と、上記第2部材の排気ガ
ス流入口に設けられた第2開閉弁を含むことを特徴とす
る請求項2乃至3記載の排気浄化装置。4. The valve member includes a first opening / closing valve provided at an exhaust gas inlet of the first member and a second opening / closing valve provided at an exhaust gas inlet of the second member. The exhaust emission control device according to claim 2, which is characterized in that.
の排気ガス流入口にそれぞれ設けらた開孔を有する固定
版と回動自在な移動板とから構成されていることを特徴
とする請求項2乃至3記載の排気浄化装置。5. The valve member is composed of a fixed plate having apertures respectively provided at exhaust gas inlets of the first member and the second member and a rotatable movable plate. The exhaust emission control device according to claim 2 or 3.
の排気ガス流入口にそれぞれ設けられた第1及び第2の
バタフライ弁から構成され、上記第1及び第2のバタフ
ライ弁が90°位相を換えて連結されていることを特徴
とする請求項2乃至3記載の排気浄化装置。6. The valve member comprises first and second butterfly valves provided at exhaust gas inlets of the first member and the second member respectively, and the first and second butterfly valves are provided. The exhaust emission control device according to any one of claims 2 to 3, wherein the exhaust gas purification devices are connected by changing their phases by 90 °.
れ、同排気通路と直交する平面において等間隔の放射状
に分割して配置された複数の触媒と、上記触媒間に形成
された複数の放射状の間隙からなり上記触媒を迂回する
バイパス通路とを構成する触媒コンバータと、 上記排気通路における上記触媒コンバータの上流側に設
けられ、上記排気ガスの温度を検出する温度センサと、 上記触媒及びバイパス通路の排気ガス流入口に設けら
れ、上記触媒及び間隙に対応する開孔部を有する回転板
からなる弁部材と、 上記温度センサにより検出される排気ガスの温度が設定
温度未満のときに上記触媒を閉じ、かつ上記バイパス通
路を開くと共に、上記排気ガスの温度が上記設定温度以
上のときに上記触媒を開き、かつ、上記バイパス通路を
閉じるように、上記弁部材を開閉制御する制御手段とを
備えたことを特徴とする排気浄化装置。7. A plurality of catalysts provided in an exhaust passage for exhaust gas of an engine, and arranged in a plane orthogonal to the exhaust passage so as to be divided radially at equal intervals, and a plurality of radials formed between the catalysts. A catalyst converter that forms a bypass passage that bypasses the catalyst and that is formed by a gap between the catalyst, a temperature sensor that is provided upstream of the catalyst converter in the exhaust passage, and detects the temperature of the exhaust gas, the catalyst and the bypass passage. A valve member provided at the exhaust gas inflow port of the rotary plate having an opening corresponding to the catalyst and the gap, and the catalyst when the temperature of the exhaust gas detected by the temperature sensor is lower than a set temperature. Close and open the bypass passage, open the catalyst when the temperature of the exhaust gas is equal to or higher than the set temperature, and close the bypass passage. The exhaust gas purification apparatus characterized by comprising a control means for controlling opening and closing the valve member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20068693A JPH0754640A (en) | 1993-08-12 | 1993-08-12 | Exhaust emission control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20068693A JPH0754640A (en) | 1993-08-12 | 1993-08-12 | Exhaust emission control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0754640A true JPH0754640A (en) | 1995-02-28 |
Family
ID=16428570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20068693A Withdrawn JPH0754640A (en) | 1993-08-12 | 1993-08-12 | Exhaust emission control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0754640A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10230918B4 (en) * | 2001-07-13 | 2012-11-15 | Usui Kokusai Sangyo Kaisha Ltd. | Activation method and apparatus for catalytic converters |
JP2015031250A (en) * | 2013-08-06 | 2015-02-16 | 株式会社三五 | Exhaust heat recovery device |
KR20160011165A (en) * | 2014-07-21 | 2016-01-29 | 게 옌바허 게엠베하 운트 콤파니 오게 | Exhaust gas aftertreatment apparatus |
DE102015207573A1 (en) * | 2015-04-24 | 2016-10-27 | Ford Global Technologies, Llc | Internal combustion engine with combined exhaust aftertreatment system |
US9771892B2 (en) | 2014-05-20 | 2017-09-26 | Ge Jenbacher Gmbh & Co Og | Method of starting up a thermoreactor |
DE102017218302A1 (en) * | 2017-10-13 | 2019-04-18 | Ford Global Technologies, Llc | Valve means for controlling an exhaust gas flow |
JP2019512635A (en) * | 2016-03-02 | 2019-05-16 | ワットロー・エレクトリック・マニュファクチャリング・カンパニー | Heater activated flow bypass |
DE102018204903A1 (en) * | 2018-03-29 | 2019-10-02 | Continental Automotive Gmbh | Apparatus for aftertreatment of exhaust gases |
US10801381B2 (en) | 2015-09-04 | 2020-10-13 | Innio Jenbacher Gmbh & Co Og | Exhaust gas after treatment device |
US20220034245A1 (en) * | 2018-09-28 | 2022-02-03 | Cummins Emission Solutions Inc. | Systems and methods for dynamic control of filtration efficiency and fuel economy |
-
1993
- 1993-08-12 JP JP20068693A patent/JPH0754640A/en not_active Withdrawn
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10230918B4 (en) * | 2001-07-13 | 2012-11-15 | Usui Kokusai Sangyo Kaisha Ltd. | Activation method and apparatus for catalytic converters |
JP2015031250A (en) * | 2013-08-06 | 2015-02-16 | 株式会社三五 | Exhaust heat recovery device |
US9771892B2 (en) | 2014-05-20 | 2017-09-26 | Ge Jenbacher Gmbh & Co Og | Method of starting up a thermoreactor |
KR20160011165A (en) * | 2014-07-21 | 2016-01-29 | 게 옌바허 게엠베하 운트 콤파니 오게 | Exhaust gas aftertreatment apparatus |
US10458299B2 (en) | 2014-07-21 | 2019-10-29 | Innio Jenbacher Gmbh & Co Og | Exhaust gas aftertreatment apparatus |
US9932887B2 (en) | 2015-04-24 | 2018-04-03 | Ford Global Technologies, Llc | Exhaust gas passage with aftertreatment system |
CN106065800A (en) * | 2015-04-24 | 2016-11-02 | 福特环球技术公司 | There is the exhaust passage of after-treatment system |
DE102015207573A1 (en) * | 2015-04-24 | 2016-10-27 | Ford Global Technologies, Llc | Internal combustion engine with combined exhaust aftertreatment system |
CN106065800B (en) * | 2015-04-24 | 2019-12-27 | 福特环球技术公司 | Exhaust passage with aftertreatment system |
DE102015207573B4 (en) | 2015-04-24 | 2023-07-06 | Ford Global Technologies, Llc | Internal combustion engine with combined exhaust aftertreatment system |
US10801381B2 (en) | 2015-09-04 | 2020-10-13 | Innio Jenbacher Gmbh & Co Og | Exhaust gas after treatment device |
JP2019512635A (en) * | 2016-03-02 | 2019-05-16 | ワットロー・エレクトリック・マニュファクチャリング・カンパニー | Heater activated flow bypass |
DE102017218302A1 (en) * | 2017-10-13 | 2019-04-18 | Ford Global Technologies, Llc | Valve means for controlling an exhaust gas flow |
DE102017218302B4 (en) * | 2017-10-13 | 2019-08-29 | Ford Global Technologies, Llc | Valve means for controlling an exhaust gas flow |
DE102018204903A1 (en) * | 2018-03-29 | 2019-10-02 | Continental Automotive Gmbh | Apparatus for aftertreatment of exhaust gases |
CN111989466A (en) * | 2018-03-29 | 2020-11-24 | 纬湃技术有限公司 | Device for exhaust gas aftertreatment |
US11339699B2 (en) | 2018-03-29 | 2022-05-24 | Vitesco Technologies GmbH | Apparatus for the aftertreatment of exhaust gases |
CN111989466B (en) * | 2018-03-29 | 2022-06-24 | 纬湃技术有限公司 | Device for exhaust gas aftertreatment |
DE102018204903B4 (en) * | 2018-03-29 | 2020-10-08 | Vitesco Technologies GmbH | Device for post-treatment of exhaust gases |
US20220034245A1 (en) * | 2018-09-28 | 2022-02-03 | Cummins Emission Solutions Inc. | Systems and methods for dynamic control of filtration efficiency and fuel economy |
US11480082B2 (en) * | 2018-09-28 | 2022-10-25 | Cummins Emission Solutions Inc. | Systems and methods for dynamic control of filtration efficiency and fuel economy |
US11708775B2 (en) | 2018-09-28 | 2023-07-25 | Cummins Emission Solutions Inc. | Systems and methods for dynamic control of filtration efficiency and fuel economy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5787706A (en) | Exhaust gas purification device | |
EP0424966B1 (en) | Exhaust gas purification device in variable combination of absorbent and catalyst according to gas temperature | |
JP3557925B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH0559942A (en) | Cold hc adsorption removal device | |
JP2002004846A (en) | Exhaust emission control device for internal combustion engine | |
JPH0754640A (en) | Exhaust emission control device | |
JP4477718B2 (en) | Reversible flow catalytic converter for internal combustion engines. | |
JP4982162B2 (en) | Exhaust purification device | |
US6820416B2 (en) | Exhaust emission control system for an internal combustion engine | |
JP3656268B2 (en) | Exhaust gas purification device | |
JP2000008841A (en) | Exhaust emission control device | |
JP3629953B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2717892B2 (en) | Exhaust gas purification device | |
JP3178142B2 (en) | Exhaust gas purification device | |
JP2008215277A (en) | Exhaust emission control catalyst system | |
JPH0557138A (en) | Exhaust gas purifying system of engine | |
JP3218929B2 (en) | Catalyst integrated muffler | |
JP2003239730A (en) | Exhaust emission control device for engine | |
CA2251393C (en) | Reversing flow catalytic converter for internal combustion engine | |
JPH0286910A (en) | Exhaust gas purification device for internal combustion engine using alcohol | |
JP4410976B2 (en) | Exhaust purification device | |
JP2003083026A (en) | Exhaust emission control device of internal combustion engine | |
JP3668988B2 (en) | Exhaust gas purification device | |
JP3433461B2 (en) | Exhaust gas purification device | |
JPH1136851A (en) | Exhaust emission control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20001031 |