JPH075421A - Liquid crystal display device and projection type display device using the same - Google Patents

Liquid crystal display device and projection type display device using the same

Info

Publication number
JPH075421A
JPH075421A JP5095839A JP9583993A JPH075421A JP H075421 A JPH075421 A JP H075421A JP 5095839 A JP5095839 A JP 5095839A JP 9583993 A JP9583993 A JP 9583993A JP H075421 A JPH075421 A JP H075421A
Authority
JP
Japan
Prior art keywords
liquid crystal
phase difference
display device
illumination light
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5095839A
Other languages
Japanese (ja)
Other versions
JP2624116B2 (en
Inventor
Yoshihiro Masumoto
吉弘 枡本
Hideki Omae
秀樹 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5095839A priority Critical patent/JP2624116B2/en
Priority to US08/230,036 priority patent/US5490006A/en
Priority to DE69415713T priority patent/DE69415713T2/en
Priority to EP94106231A priority patent/EP0621499B1/en
Publication of JPH075421A publication Critical patent/JPH075421A/en
Application granted granted Critical
Publication of JP2624116B2 publication Critical patent/JP2624116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7441Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133632Birefringent elements, e.g. for optical compensation with refractive index ellipsoid inclined relative to the LC-layer surface

Abstract

PURPOSE:To provide the liquid crystal display device and projection type display device which can obtain a high-contrast display image. CONSTITUTION:An incidence-side polarizing plate 11, 1st and 2nd phase difference plates 12 and 13 which are equal in retardation, a liquid crystal cell 14, and a projection-side polarizing plate 15 are arranged and axes 25 and 26 of polarization are crossed at right angles along rubbing directions 19 and 20. The 1st phase plate 12 crosses a main illumination light beam 24 at right angles and the 2nd phase difference plate 13 is slanted by an angle gamma from the right- angled crossing state. On a plane crossing the main illumination light beam 24 at right angles, projection components of phase delay axes 27 and 28 cross each other at right angles and are at an angle of 45 deg. to projection components of the axes 25 and 26 of polarization. Then the phase difference that the liquid crystal cell 14 applied with a specific voltage gives to the main illumination light beam 24 is canceled by the 2nd phase difference plate 13 whose angle gammais adjusted to put the light projected from the liquid crystal cell 14 closer from elliptic polarized light to linear polarized light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、映像表示を行うために
照明光を空間的に変調する液晶表示装置、および、それ
を用いた投写型表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device which spatially modulates illumination light for displaying an image, and a projection display device using the liquid crystal display device.

【0002】[0002]

【従来の技術】従来、大画面映像を表示するために、映
像信号に応じて駆動されるライトバルブを照明し、ライ
トバルブ上の光学像を投写レンズによりスクリーン上に
拡大投影する方法が知られている。近年では、ライトバ
ルブとして液晶パネルを用いる投写型表示装置が知られ
ている。このような投写型表示装置の多くは、ツイスト
ネマチック(以下、TN)液晶を用い、スイッチング素
子として各画素に薄膜トランジスタ(以下、TFT)を
設けたアクティブマトリックス駆動方式を採用してい
る。これは、主に高画質な投写画像を得るためである。
以下に表わすTN液晶パネルは、特に明示しない限りア
クティブマトリックス駆動されたTN液晶パネルを示
す。
2. Description of the Related Art Conventionally, in order to display a large-screen image, there is known a method of illuminating a light valve driven according to a video signal and enlarging and projecting an optical image on the light valve onto a screen by a projection lens. ing. In recent years, a projection display device using a liquid crystal panel as a light valve is known. Many of such projection display devices employ a twisted nematic (hereinafter, TN) liquid crystal and employ an active matrix driving method in which a thin film transistor (hereinafter, TFT) is provided in each pixel as a switching element. This is mainly for obtaining a high quality projected image.
Unless otherwise specified, the TN liquid crystal panel shown below is an active matrix driven TN liquid crystal panel.

【0003】TN液晶パネルの構成の一例を(図15)
に示す。入射側ガラス基板201と出射側ガラス基板2
02の間に、TN液晶203を封入している。出射側ガ
ラス基板202上に、画素電極204、TFT205、
ゲート及びソース信号線(図示せず)、が形成されてい
る。入射側ガラス基板201上には、対向電極206が
形成され、その上にTFT205と信号線を覆うように
ブラックマトリックス207が形成されている。画素電
極204と対向電極206の上には、配向膜208を形
成している。各画素のTFT205には選択的に任意の
駆動電圧が供給され、画素電極204と対向電極206
間の液晶層203に位相の変調量に応じた電界が加えら
れる。
An example of the structure of a TN liquid crystal panel (FIG. 15)
Shown in. Incidence-side glass substrate 201 and emission-side glass substrate 2
02, the TN liquid crystal 203 is enclosed. On the emission side glass substrate 202, the pixel electrode 204, the TFT 205,
Gate and source signal lines (not shown) are formed. A counter electrode 206 is formed on the incident side glass substrate 201, and a black matrix 207 is formed thereon so as to cover the TFT 205 and the signal line. An alignment film 208 is formed on the pixel electrode 204 and the counter electrode 206. An arbitrary drive voltage is selectively supplied to the TFT 205 of each pixel, and the pixel electrode 204 and the counter electrode 206
An electric field according to the amount of phase modulation is applied to the liquid crystal layer 203 in between.

【0004】電界を加えない時、液晶分子は分子長軸を
基板面におよそ平行とし、しかもその分子長軸を上下基
板間で連続的に90度捩って配向している。その様子を
(図16)に示す。ガラス基板201と202の間の代
表的な液晶分子221の状態を模式的に示す。配向膜を
あらかじめ特定の一方向222と223にこする(ラビ
ング処理)と、配向膜に接する液晶分子221はその分
子長軸をラビング方向に沿わせて配向する。
When no electric field is applied, the liquid crystal molecules have their molecular major axes approximately parallel to the substrate surface, and the molecular major axes are continuously twisted and oriented by 90 degrees between the upper and lower substrates. The situation is shown in (FIG. 16). A state of typical liquid crystal molecules 221 between the glass substrates 201 and 202 is schematically shown. When the alignment film is previously rubbed in the specific one of the directions 222 and 223 (rubbing treatment), the liquid crystal molecules 221 in contact with the alignment film are aligned with their long axes aligned with the rubbing direction.

【0005】この状態で、入射側界面の液晶分子の長軸
と平行あるいは直交する偏光方位の直線偏光を入射させ
ると、液晶分子に沿って偏光方位が回転(旋光)し、入
射した時と直交する偏光方位の直線偏光となって出射す
る。
In this state, when linearly polarized light having a polarization azimuth parallel or orthogonal to the long axis of the liquid crystal molecule at the incident side interface is incident, the polarization azimuth rotates (rotation) along the liquid crystal molecule and is orthogonal to the time of incidence. Then, the light is emitted as a linearly polarized light having a polarization direction.

【0006】最大駆動電圧に対応する電界を加えた時、
液晶分子221は捩れをほどき分子長軸をおよそガラス
基板201と202の法線方向に向けて配向する。その
様子を(図17)に示す。ただし、ガラス基板201と
202近傍の液晶分子221には捩れがわずかに残る。
液晶層中央部の液晶分子221の分子長軸がガラス基板
201と202の法線方向に最も近づくが、その方向は
完全には一致しない。
When an electric field corresponding to the maximum driving voltage is applied,
The liquid crystal molecules 221 are untwisted, and the long axes of the molecules are oriented substantially in the normal direction of the glass substrates 201 and 202. The situation is shown in FIG. However, a slight twist remains in the liquid crystal molecules 221 near the glass substrates 201 and 202.
The molecular long axis of the liquid crystal molecule 221 in the central part of the liquid crystal layer is closest to the normal direction of the glass substrates 201 and 202, but the directions are not completely the same.

【0007】この状態で、入射側界面の液晶分子の長軸
と平行あるいは直交する偏光方位の直線偏光を入射させ
ると、入射時の偏光方位をおよそ維持して出射する。厳
密には、旋光性と複屈折性が僅かに残っており、長軸を
およそ入射時の偏光方位に向けた楕円偏光となる。ただ
し、楕円長軸方向の偏光成分に比べて楕円短軸方向の偏
光成分は非常に小さい。
In this state, when linearly polarized light having a polarization direction parallel or orthogonal to the long axis of the liquid crystal molecules at the incident side interface is made incident, the light is emitted while maintaining the polarization direction at the time of incidence. Strictly speaking, the optical rotatory power and the birefringence are slightly left, and the light is elliptically polarized light whose major axis is oriented in the polarization direction at the time of incidence. However, the polarization component in the minor axis direction of the ellipse is much smaller than the polarization component in the major axis direction of the ellipse.

【0008】ガラス基板201の入射側とガラス基板2
02の出射側に偏光板を配置し、各々の偏光軸(透過す
る光の偏光方向)をラビング方向222、223と一致
させると、電界を加えない状態を白表示とするノーマリ
ホワイト(以下、NW)モードとなる。ラビング方向2
22を画面水平方向に対して+45度、ラビング方向2
23を画面水平方向に対して−45度とすれば、入射側
偏光板の偏光軸と出射側偏光板の偏光軸は直交する。こ
れは、入射側と出射側の偏光板を同時に90度回転させ
た構成であっても同様である。
The incident side of the glass substrate 201 and the glass substrate 2
When a polarizing plate is arranged on the emission side of 02 and the respective polarization axes (polarization directions of transmitted light) are aligned with the rubbing directions 222 and 223, normally white (hereinafter, referred to as “white” when no electric field is applied) NW) mode is set. Rubbing direction 2
22 +45 degrees to the horizontal direction of the screen, rubbing direction 2
When 23 is -45 degrees with respect to the horizontal direction of the screen, the polarization axis of the incident side polarization plate and the polarization axis of the emission side polarization plate are orthogonal to each other. This is the same even when the polarizing plates on the incident side and the outgoing side are simultaneously rotated by 90 degrees.

【0009】これに対し、入射側偏光板の偏光軸と出射
側偏光板の偏光軸を平行にする構成もある。これは、電
界を加えない状態を黒表示とするノーマリブラック(以
下、NB)モードとなる。一般に、NBモードは黒表示
付近で色度変化を生じるという問題があり、投写型表示
装置では、NWモードを用いることが多い。
On the other hand, there is also a configuration in which the polarization axis of the incident side polarization plate and the polarization axis of the emission side polarization plate are parallel to each other. This is a normally black (hereinafter, NB) mode in which black is displayed when no electric field is applied. Generally, the NB mode has a problem that chromaticity changes in the vicinity of black display, and thus the projection display device often uses the NW mode.

【0010】NWモードTN液晶パネルのコントラスト
の視角依存特性の一例を(図18)に示す。層厚が約5
μmの液晶層に約6Vの駆動電圧を加えている。入射側
と出射側の2枚の偏光板は、法線方向から入射する光線
に対する偏光板のみのコントラスト(互いの偏光軸を平
行とした時の光出力強度÷互いの偏光軸を直交させた時
の光出力強度)が1000であるものを用いている。
(図16)中に示す直交座標系を導入し、着目する光線
230を仰角φと方位角θを用いて表わす。液晶層の法
線をZ軸とし、これと光線230の成す角をφとする。
画面水平方向をX軸とし、光線230のX−Y平面への
射影とX軸の成す角をθとおく。回転方向は方位角θの
大きさを、半径方向は仰角φの大きさを示し、各々の同
心円は仰角φを2度きざみで表わし、最外周の円はφ=
14度である。実線、一点鎖線、破線、二点鎖線、点線
は、各々コントラストが、900、700、500、3
00、100、である視角を示す。
An example of the viewing angle dependence characteristic of the contrast of the NW mode TN liquid crystal panel is shown in FIG. Layer thickness is about 5
A driving voltage of about 6 V is applied to the μm liquid crystal layer. The two polarizing plates on the incident side and the outgoing side have a contrast of only the polarizing plate with respect to the light rays incident from the normal direction (light output intensity when the polarization axes of the two are parallel ÷ when the polarization axes of the two are made orthogonal to each other. The light output intensity of is 1000 is used.
The orthogonal coordinate system shown in (FIG. 16) is introduced to represent the light ray 230 of interest by using the elevation angle φ and the azimuth angle θ. The normal line of the liquid crystal layer is the Z axis, and the angle formed by this with the ray 230 is φ.
The horizontal axis of the screen is the X axis, and the angle between the projection of the light ray 230 on the XY plane and the X axis is θ. The rotation direction shows the size of the azimuth angle θ, and the radial direction shows the size of the elevation angle φ. Each concentric circle represents the elevation angle φ in increments of 2 degrees, and the outermost circle is φ =
It is 14 degrees. The contrasts of the solid line, the one-dot chain line, the broken line, the two-dot chain line, and the dotted line are 900, 700, 500, and 3, respectively.
A viewing angle of 00, 100 is shown.

【0011】(図18)から、最適な視角は液晶層の法
線上になく、θ=90度、φ=約3度、のやや斜めから
見た時に最も高いコントラストを得る。垂直表示方向に
比較して水平表示方向の視野範囲が相対的に広く、θ=
270度方向のコントラストが特に低い。黒表示と白表
示のいずれの光透過率についても視角依存特性は存在す
るが、白表示の場合、その絶対透過量に対する変動量は
小さい。従って、コントラストの低下要因は主に黒表示
における光もれに依る。
From FIG. 18, the optimum viewing angle is not on the normal line of the liquid crystal layer, and the highest contrast is obtained when viewed from a slightly oblique angle of θ = 90 degrees and φ = about 3 degrees. The field of view in the horizontal display direction is relatively wider than in the vertical display direction, and θ =
The contrast in the 270 degree direction is particularly low. Although the viewing angle dependence characteristic exists for both black display and white display light transmittance, in the case of white display, the variation amount with respect to the absolute transmission amount is small. Therefore, the factor of lowering the contrast is mainly due to light leakage in black display.

【0012】このようなTN液晶パネルを用いた投写型
表示装置は多数提案されている(例えば、特開昭63−
73782号公報、特開平3−71110号公報)。そ
の構成の一例を(図19)に示す。光源301により液
晶セル302を照明し、液晶セル302上の光学像を投
写レンズ303によりスクリーン304上に拡大投影す
る。305は入射側偏光板、306は出射側偏光板を示
す。
Many projection type display devices using such a TN liquid crystal panel have been proposed (for example, Japanese Patent Laid-Open No. 63-
No. 73782, Japanese Patent Laid-Open No. 3-71110). An example of the configuration is shown in FIG. The liquid crystal cell 302 is illuminated by the light source 301, and the optical image on the liquid crystal cell 302 is enlarged and projected on the screen 304 by the projection lens 303. Reference numeral 305 denotes an incident side polarization plate, and 306 denotes an emission side polarization plate.

【0013】高画質な投写画像を得るために、最大コン
トラストの得られる視角方向と平行に近い光を用いて照
明することが好ましい。そのため、液晶層307と投写
レンズ303の光軸308を直交させたまま、液晶セル
302の画面中心309を投写レンズ303の光軸30
8からずらす。画面中心309と投写レンズ303の入
射瞳310の中心311を結ぶ方向を最適視角方向と一
致させ、照明光束の光軸312をこれに一致させる。
In order to obtain a high-quality projected image, it is preferable to illuminate with light that is nearly parallel to the viewing angle direction where maximum contrast is obtained. Therefore, while the liquid crystal layer 307 and the optical axis 308 of the projection lens 303 are orthogonal to each other, the screen center 309 of the liquid crystal cell 302 is located at the optical axis 30 of the projection lens 303.
Shift from 8. The direction connecting the screen center 309 and the center 311 of the entrance pupil 310 of the projection lens 303 is made to coincide with the optimum viewing angle direction, and the optical axis 312 of the illumination light flux is made to coincide with this.

【0014】投写レンズ303の光軸308と照明光束
の光軸312のなす角が大きい時、入射側偏光板305
と出射側偏光板306を照明光束の光軸312に対して
垂直に配置すると、より良好なコントラストを得ること
ができる。
When the angle formed by the optical axis 308 of the projection lens 303 and the optical axis 312 of the illumination light beam is large, the incident side polarization plate 305
By arranging the emission side polarization plate 306 perpendicularly to the optical axis 312 of the illumination light flux, a better contrast can be obtained.

【0015】より高画質な投写画像を得るために、赤
用、緑用、青用の3枚の液晶パネルを用いる投写型表示
装置がある(例えば、特開昭62−133424号公
報)。投写器とスクリーンを分離した二体型フロント方
式の構成の一例を(図20)に示す。
There is a projection type display device using three liquid crystal panels for red, green and blue in order to obtain a higher quality projected image (for example, Japanese Patent Laid-Open No. 62-133424). An example of a two-body front system configuration in which the projector and the screen are separated is shown in FIG.

【0016】光源351から出射した照明光束を、ダイ
クロイックミラー352および353と平面ミラー35
4により3原色の照明光束に分解し、各照明光束により
液晶セル355、356、357を照明する。液晶セル
355、356、357上には、赤、緑、青の3原色の
光学像が形成され、ダイクロイックミラー358、35
9と平面ミラー360により合成されて、投写レンズ3
61によりスクリーン(図示せず)上にフルカラーの大
画面映像が拡大投影される。フイールドレンズ362、
363、364は、各照明光束を投写レンズ361の入
射瞳上に有効に到達させる。尚、液晶セル355、35
6、357が備えるべき偏光板は、各々の液晶セルに含
めて表わす。
The illumination luminous flux emitted from the light source 351 is dichroic mirrors 352 and 353 and the plane mirror 35.
4 decomposes into three primary color illumination light fluxes, and the respective illumination light fluxes illuminate the liquid crystal cells 355, 356, 357. Optical images of three primary colors of red, green, and blue are formed on the liquid crystal cells 355, 356, 357, and the dichroic mirrors 358, 35 are formed.
9 and the plane mirror 360 to synthesize the projection lens 3
A full-color large-screen image is enlarged and projected on a screen (not shown) by 61. Field lens 362,
The reference numerals 363 and 364 allow the respective illumination light fluxes to effectively reach the entrance pupil of the projection lens 361. Liquid crystal cells 355, 35
The polarizing plates that should be included in Nos. 6 and 357 are included in each liquid crystal cell.

【0017】液晶セル355、356、357の画面中
心は、投写レンズ361の光軸に対して同一方向に一定
量ずらしている。これにより、3原色の照明光束の各光
軸と対応する液晶セルの最適視角方向を一致させ、コン
トラストの良好な投写画像を得る。
The centers of the screens of the liquid crystal cells 355, 356, 357 are displaced by a certain amount in the same direction with respect to the optical axis of the projection lens 361. As a result, the optimum viewing angle directions of the liquid crystal cells corresponding to the respective optical axes of the illumination light fluxes of the three primary colors are made coincident with each other, and a projected image with good contrast is obtained.

【0018】[0018]

【発明が解決しようとする課題】(図19)に示した投
写型表示装置は、コントラストの良好な投写画像が得ら
れる反面、投写レンズの最大画角が大きく、スクリーン
上の明るさ分布に偏りが生じるという問題がある。投写
レンズは画角が大きくなると諸収差の発生量が大きくな
ると共に大口径のレンズを必要とするので問題がある。
The projection type display device shown in FIG. 19 can obtain a projection image with good contrast, but has a large maximum angle of view of the projection lens and biases the brightness distribution on the screen. There is a problem that occurs. The projection lens is problematic because the amount of various aberrations increases as the angle of view increases and a lens with a large aperture is required.

【0019】これに対し、投写レンズの光軸上に液晶セ
ルの画面中心を配置する構成とすれば、次の利点が生じ
る。液晶セルの表示領域の対角方向が投写レンズの光軸
について対称となり、投写レンズの最大画角を小さくで
きる。また、投写画像の明るさ分布を偏りのない回転対
称に近い分布にできる。ただし、コントラストの良好な
投写画像を得るには、液晶セルのコントラストの視角依
存特性を改善する必要がある。
On the other hand, if the screen center of the liquid crystal cell is arranged on the optical axis of the projection lens, the following advantages occur. The diagonal direction of the display area of the liquid crystal cell is symmetrical with respect to the optical axis of the projection lens, and the maximum angle of view of the projection lens can be reduced. In addition, the brightness distribution of the projected image can be made close to a distribution that is close to rotational symmetry with no bias. However, in order to obtain a projected image with good contrast, it is necessary to improve the viewing angle dependence of the contrast of the liquid crystal cell.

【0020】従って、液晶セルの最適視角方向が液晶層
の法線方向と一致しないことは、投写型表示装置を構成
する上で大きな問題となる。最適視角方向をより好まし
くするために、液晶層に加える駆動電圧を高くする方法
が考えられるが、駆動ICの電源電圧が高くなり、発熱
量が増加して液晶パネルに悪影響を与えるので好ましく
ない。
Therefore, the fact that the optimum viewing angle direction of the liquid crystal cell does not coincide with the normal direction of the liquid crystal layer poses a serious problem in constructing the projection display device. In order to make the optimum viewing angle direction more preferable, a method of increasing the driving voltage applied to the liquid crystal layer can be considered, but this is not preferable because the power supply voltage of the driving IC increases and the amount of heat generation increases, which adversely affects the liquid crystal panel.

【0021】一方、照明光束の照射角を大きくすると共
に投写レンズの集光角を大きくすることは、より明るい
投写画像を得るために好ましい。これは、投写レンズと
照明光束のF値をより小さくすることに相当する。照射
角とは、液晶パネルを照明する光線の中で照明光束の光
軸との傾きが最大となる光線の角度をさす。同様に、集
光角とは投写レンズに有効に入射する光線の中で投写レ
ンズの光軸との傾きが最大となる光線の角度をさす。
On the other hand, it is preferable to increase the irradiation angle of the illumination light beam and the converging angle of the projection lens in order to obtain a brighter projected image. This corresponds to making the F value of the projection lens and the illumination light flux smaller. The irradiation angle refers to an angle of a light ray that illuminates the liquid crystal panel and has the maximum inclination with the optical axis of the illumination light beam. Similarly, the converging angle refers to an angle of a light ray that has the maximum inclination with the optical axis of the projection lens among the light rays that are effectively incident on the projection lens.

【0022】(図18)に示したコントラストの視角依
存特性から、仰角φの大きい光線を利用すると投写画像
のコントラストが低下する。従って、実用上、投写レン
ズと照明光束のF値をあまり小さくすることができず、
明るい投写画像を得る上で大きな問題となる。
From the viewing angle dependence characteristic of the contrast shown in FIG. 18, the contrast of the projected image is lowered when a light beam having a large elevation angle φ is used. Therefore, in practice, the F value of the projection lens and the illumination light flux cannot be reduced so much,
This is a big problem in obtaining a bright projected image.

【0023】一方、投写レンズを光軸に直交する方向に
一定量だけ自由に平行移動させれば、投写画像を投写器
本体に対して任意の斜め方向に投影できる。その結果、
投写器本体とスクリーンとの相対的な位置関係が調整で
き、より使いやすい二体型フロント方式の投写型表示装
置を実現できる。この場合も、液晶パネルの最適視角方
向が液晶層の特性で決まることは大きな問題となる。投
写レンズの平行移動によって最適視角方向以外の光線を
より多く利用すると、投写画像のコントラストが低下し
て問題を生じる。
On the other hand, if the projection lens is freely moved in parallel in the direction orthogonal to the optical axis by a fixed amount, the projection image can be projected on the projector body in an arbitrary oblique direction. as a result,
The relative positional relationship between the projector main body and the screen can be adjusted, and a more convenient two-body front type projection display device can be realized. Also in this case, it is a big problem that the optimum viewing angle direction of the liquid crystal panel is determined by the characteristics of the liquid crystal layer. If more light rays in directions other than the optimum viewing angle direction are used due to the parallel movement of the projection lens, the contrast of the projected image is lowered, causing a problem.

【0024】以上述べた全ての問題点は(図20)に示
した投写型表示装置について共通である。
All the problems described above are common to the projection type display device shown in FIG.

【0025】[0025]

【課題を解決するための手段】上記課題を解決するため
に本発明の液晶表示装置は、照明光束を略直線偏光の光
に変換する入射側偏光手段と、前記入射側偏光手段から
出射した光に空間的に異なる位相変化を与える液晶セル
と、前記液晶セルから出射する光の中で特定偏光方位の
光のみを主として選択的に出射せしめる出射側偏光手段
と、前記入射側偏光手段と前記液晶セルの間の光路ある
いは前記液晶セルと前記出射側偏光手段の間の光路のい
ずれかに揃って配置される第1位相差手段および第2位
相差手段とを備え、前記液晶セルは画素電極を有する入
射側透明基板と出射側透明基板の間にツイストネマチッ
ク液晶をねじれ角が略90度となるように挟持してな
り、前記入射側偏光手段から出射する光の主たる偏光方
位は前記入射側透明基板に接する液晶分子の分子長軸と
略平行あるいは略直交し、前記第1位相差手段と前記第
2位相差手段は機能的に正の単軸結晶を近似してなり、
前記第1位相差手段が光学軸に直交して進行する光線に
与える位相差と前記第2位相差手段が光学軸に直交して
進行する光線に与える位相差は略同一とし、前記照明光
束を代表する主たる波長の主たる光線を主照明光線と表
して、前記主照明光線に略直交する1つの平面上におい
て前記入射側偏光手段が出射せしめる光の主たる偏光方
位の射影T1と前記出射側偏光手段が出射せしめる光の
主たる偏光方位の射影T2と前記第1位相差手段の光学
軸の射影S1と前記第2位相差手段の光学軸の射影S2
の各々を定義した場合に、前記T1と前記T2を略直交
せしめ、前記S1と前記S2を略直交せしめ、前記T1
と前記S1のなす角を略45度にせしめ、前記第1位相
差手段中を伝搬する前記主照明光線に直交する平面と前
記第1位相差手段の光学軸のなす角をψ1とし、前記第
2位相差手段中を伝搬する前記主照明光線に直交する平
面と前記第2位相差手段の光学軸のなす角をψ2とし、
最黒表示となるように所定の電圧を印加した前記液晶セ
ルと前記出射側偏光手段とを通過した直後の前記主照明
光線の光強度が最小となるように、前記角ψ1と前記角
ψ2を少なくともいずれか一方が0度でない互いに異な
る所定の大きさとするものである。
In order to solve the above-mentioned problems, a liquid crystal display device according to the present invention comprises an incident side polarization means for converting an illumination light beam into substantially linearly polarized light, and light emitted from the incident side polarization means. A liquid crystal cell that gives spatially different phase changes to each other, an emission side polarization means that mainly selectively emits only light of a specific polarization direction among the light emitted from the liquid crystal cell, the incidence side polarization means, and the liquid crystal. The liquid crystal cell is provided with a first phase difference means and a second phase difference means arranged in alignment either in the light path between the cells or in the light path between the liquid crystal cell and the emission side polarization means, and the liquid crystal cell includes a pixel electrode. The twisted nematic liquid crystal is sandwiched between the incident side transparent substrate and the emission side transparent substrate so that the twist angle is about 90 degrees, and the main polarization direction of the light emitted from the incident side polarization means is the incident side transparent substrate. Molecularly long axis substantially parallel or substantially perpendicular to the liquid crystal molecules in contact with the plate, the first phase difference means and said second phase difference means comprises approximates functionally positive uniaxial crystal,
The phase difference given by the first phase difference means to the light beam traveling orthogonally to the optical axis and the phase difference given to the light ray traveling by the second phase difference means orthogonally to the optical axis are substantially the same, and the illumination light flux is A main light ray having a representative main wavelength is referred to as a main illumination light ray, and a projection T1 of the main polarization direction of light emitted by the incident side polarization means on one plane substantially orthogonal to the main illumination light ray and the emission side polarization means. The projection T2 of the main polarization direction of the light emitted by the light source, the projection S1 of the optical axis of the first phase difference means, and the projection S2 of the optical axis of the second phase difference means.
When each of the above is defined, T1 and T2 are made substantially orthogonal, S1 and S2 are made substantially orthogonal, and
The angle formed by the optical axis of the first retardation means and the plane orthogonal to the main illumination light beam propagating in the first retardation means is defined as ψ1. The angle formed between the plane orthogonal to the main illumination light beam propagating in the two phase difference means and the optical axis of the second phase difference means is ψ2,
The angle ψ1 and the angle ψ2 are set so that the light intensity of the main illumination light beam immediately after passing through the liquid crystal cell to which a predetermined voltage is applied so as to obtain the blackest display and the emission side polarization means is minimized. At least one of them has a predetermined size which is not 0 degree and is different from each other.

【0026】本発明の他の液晶表示装置は、上記液晶表
示装置の備える第1位相差手段と第2位相差手段の代わ
りに、機能的に負の単軸結晶を近似してなる第1位相差
手段と第2位相差手段を用いるものである。
According to another liquid crystal display device of the present invention, instead of the first retardation means and the second retardation means included in the above liquid crystal display device, a first-order functionally negative uniaxial crystal is approximated. The phase difference means and the second phase difference means are used.

【0027】本発明の投写型表示装置は、照明光束を変
調して光学像を形成する液晶表示装置と、前記照明光束
を出力する光源と、前記液晶表示装置から出射する光が
入射し前記光学像をスクリーン上に投写する投写レンズ
とを備え、前記液晶表示装置として上記の液晶表示装置
を用い、特に、前記液晶表示装置の有効表示領域の重心
部近傍を通過して前記投写レンズの入射瞳の中心部近傍
に到る照明光線を主照明光線と定めたものである。
The projection type display device of the present invention is a liquid crystal display device that modulates an illumination light flux to form an optical image, a light source that outputs the illumination light flux, and light emitted from the liquid crystal display device that is incident on the optical display. A projection lens for projecting an image on a screen is used, and the above-mentioned liquid crystal display device is used as the liquid crystal display device. Particularly, the entrance pupil of the projection lens is passed through near the center of gravity of the effective display area of the liquid crystal display device. The illumination light rays reaching the vicinity of the central portion of are defined as the main illumination light rays.

【0028】本発明の他の投写型表示装置は、三原色の
照明光束をそれぞれ変調して三原色に対応する3つの光
学像を形成する3つの液晶表示装置と、三原色の色成分
を含む光を出力する光源と、前記光源から出射する光を
分解して三原色の前記照明光束を形成する色分解手段
と、3つの前記液晶表示装置から出射する三原色の前記
照明光束を1つに合成する光合成手段と、前記光合成手
段から出射する合成された前記照明光束が入射し3つの
前記光学像を重畳形態でスクリーン上に投写する投写レ
ンズとを備え、3つの前記液晶表示装置としていずれも
上記の液晶表示装置を用い、特に、3つの前記液晶表示
装置の各々の有効表示領域の重心部近傍を通過して前記
投写レンズの入射瞳の中心部近傍に到る3つの照明光線
を対応する各々の前記液晶表示装置についての主照明光
線と定めたものである。
Another projection type display device of the present invention outputs three light sources including three liquid crystal display devices for respectively modulating illumination light fluxes of three primary colors to form three optical images corresponding to the three primary colors. A light source, a color separation unit that decomposes light emitted from the light source to form the illumination light fluxes of the three primary colors, and a light combining unit that combines the illumination light fluxes of the three primary colors emitted from the three liquid crystal display devices into one. A liquid crystal display device, wherein the combined illumination light flux emitted from the light combining means is incident and a projection lens for projecting the three optical images in a superposed form on a screen is provided. In particular, each of the three illuminating rays passing through the vicinity of the center of gravity of the effective display area of each of the three liquid crystal display devices and reaching the vicinity of the center of the entrance pupil of the projection lens It is as defined with the main illumination ray of the liquid crystal display device.

【0029】本発明の更に他の投写型表示装置は、照明
光束を変調して光学像を形成する液晶表示装置と、前記
照明光束を出力する光源と、前記液晶表示装置から出射
する光が入射し前記光学像をスクリーン上に投写する投
写レンズとを備え、前記投写レンズは前記投写レンズの
光軸と略直交する方向に平行移動する手段を備え、前記
液晶表示装置として上記の液晶表示装置を用い、特に、
前記液晶表示装置の有効表示領域の重心部近傍を通過し
て前記投写レンズの入射瞳の中心部近傍に到る照明光線
を主照明光線と定め、前記投写レンズの移動に伴って進
行方位の変化する前記主照明光線に合わせて前記液晶表
示装置の備える第1位相差手段または第2位相差手段の
配置状態を変化せしめる手段を備えて角ψ1あるいは角
ψ2の少なくともいずれか一方を変化させるようにした
ものである。
Still another projection display device of the present invention is a liquid crystal display device that modulates an illumination light beam to form an optical image, a light source that outputs the illumination light beam, and light emitted from the liquid crystal display device. A projection lens for projecting the optical image on a screen, the projection lens comprising means for translating in a direction substantially orthogonal to the optical axis of the projection lens, and the liquid crystal display device as the liquid crystal display device. Use, especially,
An illumination light ray that passes through the vicinity of the center of gravity of the effective display area of the liquid crystal display device and reaches the vicinity of the central portion of the entrance pupil of the projection lens is defined as a main illumination light ray, and the traveling direction changes with the movement of the projection lens. A means for changing the arrangement state of the first phase difference means or the second phase difference means provided in the liquid crystal display device is provided in accordance with the main illumination light beam to change at least one of the angle ψ1 and the angle ψ2. It was done.

【0030】[0030]

【作用】本発明の作用を述べるにあたり、楕円偏光の光
を適当な直線位相子(以下、位相子)に入射させると直
線偏光に変換されることを示す。(図1)に示す楕円偏
光を考える。
In describing the operation of the present invention, it is shown that when elliptically polarized light is incident on an appropriate linear retarder (hereinafter, retarder), it is converted into linearly polarized light. Consider the elliptically polarized light shown in (FIG. 1).

【0031】紙面の裏面から手前側に紙面に直交して進
行する光線を考え、進行方向をZ軸として直交座標系を
導入する。Z=一定の紙面上に電界ベクトルEを定義す
ると、電界ベクトルEのX方向振動成分ExとY方向振
動成分Eyは、それぞれ、次式で表わされる。
Considering a light ray traveling from the back side of the paper surface to the front side orthogonal to the paper surface, an orthogonal coordinate system is introduced with the traveling direction as the Z axis. When the electric field vector E is defined on Z = constant paper surface, the X-direction vibration component Ex and the Y-direction vibration component Ey of the electric field vector E are respectively expressed by the following equations.

【0032】[0032]

【数3】 [Equation 3]

【0033】[0033]

【数4】 [Equation 4]

【0034】AxとAyは各々の最大振幅、τは時間と
位置Zの関数、δは位相差でありEyのExに対する位
相の進み度合を表わす。
Ax and Ay are maximum amplitudes of each, τ is a function of time and position Z, and δ is a phase difference and represents the degree of advance of Ey with respect to Ex.

【0035】このような電界ベクトルEの先端の軌跡Q
は、一般に楕円となる。楕円偏光の状態は、例えば基準
方位をX軸にとり、振幅比角α、楕円長軸方位Θ、楕円
率角βを用いて表わせる。各々の定義を(図1)中に示
す。具体的に、振幅比角αと楕円率角βは、次式で定義
される。
The locus Q of the tip of such an electric field vector E
Is generally an ellipse. The state of elliptically polarized light can be represented by, for example, the reference azimuth on the X-axis and the amplitude ratio angle α, the ellipse major axis azimuth Θ, and the ellipticity angle β. The definition of each is shown in (Fig. 1). Specifically, the amplitude ratio angle α and the ellipticity angle β are defined by the following equations.

【0036】[0036]

【数5】 [Equation 5]

【0037】[0037]

【数6】 [Equation 6]

【0038】ただし、振幅比角αは0〜90度の間の値
とする。Caは楕円長軸LAの長さ、Cbは楕円短軸L
Bの長さを表わす。楕円率角βについては正負の符号を
用い、右回り楕円偏光Rに対し正、左回り楕円偏光Lに
対し負、となる。
However, the amplitude ratio angle α is a value between 0 and 90 degrees. Ca is the length of the ellipse major axis LA, Cb is the ellipse minor axis L
Indicates the length of B. Positive and negative signs are used for the ellipticity angle β, which is positive for right-handed elliptically polarized light R and negative for left-handed elliptically polarized light L.

【0039】また、振幅比角α、楕円長軸方位Θ、楕円
率角β、位相差δの間には、次の関係式がある(応用物
理学会光学懇話会編:「結晶光学」、森北出版(株)、
p121、1975年)。
Further, there is the following relational expression among the amplitude ratio angle α, the ellipse major axis azimuth Θ, the ellipticity angle β, and the phase difference δ (Japan Society of Applied Physics, Optics Council: “Crystal Optics”, Morikita). Publishing Co.,
p121, 1975).

【0040】[0040]

【数7】 [Equation 7]

【0041】[0041]

【数8】 [Equation 8]

【0042】Ax=Ayの時(数7)は不定となるが、
この場合は、楕円長軸方位Θ=45度、楕円率角β=δ
/2の楕円偏光となる。位相差δが、±(n−1)π
[nは自然数]の時は方位αの直線偏光となり、±(n
−1/2)π[nは自然数]の時は円偏光となる。
When Ax = Ay (Equation 7) is indefinite,
In this case, ellipse major axis direction Θ = 45 degrees, ellipticity angle β = δ
It becomes / 2 elliptically polarized light. The phase difference δ is ± (n-1) π
When [n is a natural number], it becomes linearly polarized light of azimuth α, and ± (n
When -1/2) π [n is a natural number], circularly polarized light is obtained.

【0043】次に、厚みD、X軸方向の屈折率がNf、
Y軸方向の屈折率がNsである位相子を考える。Ns>
Nfであるとし、屈折率Nsの方向は相対的に位相が遅
れるので遅相軸、屈折率Nfの方向は相対的に位相が進
むので進相軸、と呼ぶ。遅相軸方向の振動成分と進相軸
方向の振動成分の光路長差として、リターデイションΓ
を次式で定義する。ただし、Dは光線の進行方向に沿っ
て測った長さを用いる。
Next, the thickness D, the refractive index in the X-axis direction is Nf,
Consider a retarder having a refractive index of Ns in the Y-axis direction. Ns>
Nf is referred to as a slow axis because the phase is relatively delayed in the direction of the refractive index Ns, and is called a fast axis because the phase is relatively advanced in the direction of the refractive index Nf. The retardation Γ is defined as the optical path length difference between the vibration component in the slow axis direction and the vibration component in the fast axis direction.
Is defined by the following formula. However, D uses the length measured along the traveling direction of the light beam.

【0044】[0044]

【数9】 [Equation 9]

【0045】リターデイションΓを用い、位相子がこれ
を通過する波長λの光線に与える位相差δ’(>0)は
次式となる。
Using retardation Γ, the phase difference δ '(> 0) given to the ray of wavelength λ passing through it by the retarder is given by the following equation.

【0046】[0046]

【数10】 [Equation 10]

【0047】(図1)に示した楕円偏光の位相差δが正
である(Y軸方向振動成分の位相がX軸方向振動成分の
位相より進んでいる)場合、位相子の進相軸方向をx軸
に、遅相軸方向をy軸に合わせる。位相差δが負である
場合、位相子の遅相軸方向をx軸に、進相軸方向をy軸
に合わせる。これらの位相子のリターデイションΓを選
択して次式を成立させ、与えられた楕円偏光を入射させ
れば、出射光は直線偏光に変換される。以下、楕円偏光
に適当な位相子を作用させ、およそ元の楕円の長軸方位
を偏光方位とする直線偏光に変換することを、位相補償
と呼ぶ。
When the phase difference δ of the elliptically polarized light shown in FIG. 1 is positive (the phase of the vibration component in the Y-axis direction is ahead of the phase of the vibration component in the X-axis direction), the fast axis direction of the retarder To the x-axis and the slow axis direction to the y-axis. When the phase difference δ is negative, the slow axis direction of the retarder is aligned with the x axis and the fast axis direction is aligned with the y axis. When the retardation Γ of these phase shifters is selected to satisfy the following equation and the given elliptically polarized light is made incident, the emitted light is converted into linearly polarized light. Hereinafter, the action of applying an appropriate phase shifter to elliptically polarized light to convert it into linearly polarized light having the major axis azimuth of the original ellipse as the polarization azimuth is called phase compensation.

【0048】[0048]

【数11】 [Equation 11]

【0049】基準方位の取り方が変われば振幅比角αが
異なるので、(数8)から楕円率角βが一定であっても
位相差δは異なる。右回り楕円偏光の時は進相軸を基準
方位に、左回り楕円偏光の時は遅相軸を基準方位に定
め、位相子を回転させて基準方位と楕円長軸との成す角
を変化させれば、任意のリターデイションΓを有する位
相子を用いて任意の楕円偏光を位相補償することができ
る。変換後の直線偏光は振幅比角αの方位となるが、楕
円率角βが小さい場合はほぼ楕円長軸方位Θと一致す
る。
Since the amplitude ratio angle α differs if the way of taking the reference azimuth changes, the phase difference δ differs from (Equation 8) even if the ellipticity angle β is constant. For clockwise elliptically polarized light, set the fast axis as the reference azimuth, and for counterclockwise elliptically polarized light, set the slow axis as the reference azimuth, and rotate the retarder to change the angle between the reference azimuth and the ellipse major axis. Then, it is possible to phase-compensate arbitrary elliptically polarized light by using a retarder having an arbitrary retardation Γ. The linearly polarized light after conversion has an azimuth with an amplitude ratio angle α, but when the ellipticity angle β is small, the linearly polarized light substantially agrees with the azimuth major axis Θ.

【0050】リターデイションΓの最も小さい位相子を
用いて位相補償するには、振幅比角αが45度となるよ
うに位相子を配置すればよい。この時の位相子のリター
デイションΓは、位相差δ’が入射楕円偏光の楕円率角
βの2倍となるように選べばよい。
In order to perform the phase compensation using the retarder having the smallest retardation Γ, the retarder may be arranged so that the amplitude ratio angle α becomes 45 degrees. The retarder Γ of the retarder at this time may be selected so that the phase difference δ ′ is twice the ellipticity angle β of the incident elliptically polarized light.

【0051】本発明の作用を以下に述べる。黒表示状態
のTN液晶層に直線偏光が入射すると、楕円偏光が出射
する。出射光の楕円率角は小さく、楕円長軸方位はほぼ
入射側偏光板の偏光軸方位と等しい。この出射光に適当
な位相子を作用させ位相補償を行えば、出射側偏光板を
透過する偏光成分が減少し、黒表示における光出力強度
が低下する。即ち、コントラストを改善できる。位相補
償は、液晶層に入射する光に位相子を作用させても、液
晶層から出射する光に位相子を作用させても、いずれも
同様の効果を得る。
The operation of the present invention will be described below. When linearly polarized light is incident on the TN liquid crystal layer in the black display state, elliptically polarized light is emitted. The ellipticity angle of the emitted light is small, and the major axis direction of the ellipse is almost equal to the polarization axis direction of the incident-side polarization plate. If an appropriate phase shifter is applied to this emitted light to perform phase compensation, the polarization component transmitted through the outgoing side polarizing plate is reduced, and the light output intensity in black display is reduced. That is, the contrast can be improved. In the phase compensation, the same effect can be obtained regardless of whether the phase shifter acts on the light entering the liquid crystal layer or the light exiting from the liquid crystal layer.

【0052】位相補償を行うための条件は、厳密には特
定の波長と特定の進路を進行する光線についてのみ成立
する。これは、液晶層と位相子の与える位相差には波長
依存性と入射光線に対する角度依存性があることによ
る。波長の異なる光に対する補償ずれ、所定方位と異な
る方位に進行する光線に対する補償ずれ、をあまり大き
くしないために、リターデイションのできるだけ小さい
位相子を用いることが好ましい。
Strictly speaking, the condition for performing the phase compensation is satisfied only for a light beam traveling a specific wavelength and a specific path. This is because the phase difference provided by the liquid crystal layer and the retarder has wavelength dependence and angle dependence with respect to the incident light beam. It is preferable to use a retarder having a retardation as small as possible in order to prevent the compensation deviation for light having different wavelengths and the compensation deviation for rays traveling in a different azimuth from a predetermined azimuth from becoming too large.

【0053】従って、振幅比角αを45度とし、液晶層
が与える位相差と同一の位相差を与えることが好まし
い。一般に、黒表示状態のTN液晶層に液晶層の法線方
向に沿って直線偏光を入射させた場合、出射光の楕円率
角βは1〜2度程度である。例えば視感度の高い波長5
40nmの光について、これを補償する位相子のリターデ
イションΓは、1.5〜3nmとなる。
Therefore, it is preferable to set the amplitude ratio angle α to 45 degrees and give the same phase difference as the phase difference given by the liquid crystal layer. Generally, when linearly polarized light is incident on the TN liquid crystal layer in the black display state along the normal direction of the liquid crystal layer, the ellipticity angle β of the emitted light is about 1 to 2 degrees. For example, wavelength 5 with high visibility
For 40 nm light, retardation Γ of the retarder that compensates for this is 1.5 to 3 nm.

【0054】低コストで量産性に優れた位相子として延
伸させた透明樹脂フィルムがある。現状用いられている
フィルムのリターディションは、小さくても数十nm程度
であり、リターデイションが数nmと小さくなると実用性
に乏しい。層厚が薄くなり、リターデイションの絶対値
を安定させること、面内のリターデイションの均一性を
良くすること、が著しく困難となるためである。
There is a transparent resin film stretched as a retarder which is low in cost and excellent in mass productivity. The retardation of the film currently used is about several tens of nm at the smallest, and when the retardation becomes as small as several nm, it is not practical. This is because the layer thickness becomes thin and it becomes extremely difficult to stabilize the absolute value of retardation and to improve the uniformity of retardation in the plane.

【0055】本発明の液晶表示装置は、入射側偏光板と
液晶層の間、あるいは液晶層と出射側偏光板の間、のい
ずれかにリターデイションの比較的大きな2枚の位相子
を備え、各々の遅相軸方向を互いに直交させると共に、
少なくともいずれか一方の位相子を僅かに傾斜させて配
置する。これにより、2枚の位相子を透過する光線に微
少な位相差を与えて位相補償を行い、黒表示時の光出力
強度を低下させる。
The liquid crystal display device of the present invention is provided with two retarders having a relatively large retardation, either between the incident side polarizing plate and the liquid crystal layer or between the liquid crystal layer and the emitting side polarizing plate. While making the slow axis directions of are orthogonal to each other,
At least one of the phase shifters is arranged with a slight inclination. As a result, a slight phase difference is given to the light rays passing through the two retarders to perform phase compensation, and the light output intensity during black display is reduced.

【0056】仮に、入射側から第1位相差板と第2位相
差板を備える。各々、リターデイションの等しい同一の
延伸透明樹脂フィルムとする。ただし、各々の位相差板
は、等価的にフィルム面に沿った方向に光学軸を有する
正の単軸結晶に近似してその機能を考えることができる
ものとする。
Provisionally, a first retardation plate and a second retardation plate are provided from the incident side. The same stretched transparent resin film having the same retardation is used. However, it is assumed that each retardation plate can equivalently approximate its function as a positive uniaxial crystal having an optical axis in the direction along the film surface.

【0057】第1位相差板の法線方向から入射する光線
を考える。各々の位相差板は進行する光線に直交すると
共に、遅相軸を互いに直交させて配置する。この場合、
第1位相差板が与える位相差を第2位相差板が打ち消す
ので、2枚の位相差板を透過した光線に位相差は全く生
じない。
Consider a light ray incident from the direction normal to the first retardation plate. Each retardation plate is arranged so as to be orthogonal to the traveling light beam and have the slow axes orthogonal to each other. in this case,
Since the second phase difference plate cancels the phase difference provided by the first phase difference plate, no phase difference occurs in the light rays transmitted through the two phase difference plates.

【0058】上述の構成から、第2位相差板を遅相軸と
考える光線を含む平面方向に進相軸を回転軸として僅か
に傾斜させると、第2位相差板の与える位相差が僅かに
減少する。第1位相差板が与える位相差に対し、これを
打ち消すために第2位相差板が与える位相差が減少する
ので、2枚の位相差板を透過した光線に僅かな位相差が
生じる。これにより、等価的にリターデイションの小さ
い位相子の効果を容易に得ることができる。等価的な遅
相軸方向は、第1位相差板の遅相軸方向となる。
With the above structure, when the second retardation plate is slightly tilted with the fast axis as the rotation axis in the plane direction including the light beam which is considered as the slow axis, the phase difference given by the second retardation plate is slightly increased. Decrease. Since the phase difference given by the second phase difference plate is reduced to cancel the phase difference given by the first phase difference plate, a slight phase difference is generated in the light rays transmitted through the two phase difference plates. As a result, the effect of the retarder having a small retardation can be easily obtained equivalently. The equivalent slow axis direction is the slow axis direction of the first retardation plate.

【0059】振幅比角αをおよそ45度とするために、
第1位相差板と第2位相差板の遅相軸方向は、各々が入
射側偏光板の偏光軸と45度の角度をなすようにする。
2枚の位相差板の与える微少位相差は、第2位相差板の
傾斜角を変化させて調整できる。具体的に、傾斜角を1
0度程度として、数百nmのリターデイションを有する位
相差板を用いて位相補償を行うことができる。その結
果、コントラストを改善できる。
In order to set the amplitude ratio angle α to about 45 degrees,
The slow axis directions of the first retardation plate and the second retardation plate are each made to form an angle of 45 degrees with the polarization axis of the incident side polarization plate.
The minute phase difference provided by the two phase difference plates can be adjusted by changing the inclination angle of the second phase difference plate. Specifically, the tilt angle is 1
Phase compensation can be performed by using a retardation plate having retardation of several hundreds nm at about 0 degree. As a result, the contrast can be improved.

【0060】上述の構成は、第1位相差板の法線方向か
ら進行する光線について良好な位相補償を行う。この光
線を主照明光線とすれば、主照明光線と角度を成して進
行する光線についても残存位相差を低減させることは重
要である。考える光線が主照明光線と成す角を視角と表
わせば、黒表示状態の液晶層の与える位相差の視角依存
特性と、2枚の位相差板の与える位相差の視角依存特性
を良好に相関させることが好ましい。
The above-described configuration provides good phase compensation for light rays traveling in the direction normal to the first retardation plate. If this light ray is used as the main illumination light ray, it is important to reduce the residual phase difference even with respect to the light ray traveling at an angle with the main illumination light ray. If the angle formed by the light ray to be considered and the main illumination light ray is expressed as a viewing angle, the viewing angle dependence characteristic of the phase difference given by the liquid crystal layer in the black display state and the viewing angle dependence characteristic of the phase difference given by the two retardation plates are well correlated. It is preferable.

【0061】黒表示状態の液晶層の与える位相差の視角
依存特性として、例えば(図18)を参照する。主照明
光線(φ=0度、θ=0度)に対する対称性が、θ=0
度〜180度の方位について特に高く、θ=90度〜2
70度の方位について特に低い。上述の構成において、
2枚の位相差板の与える位相差の視角依存特性は傾斜さ
せる第2位相差板の遅相軸方位について対称性が特に低
いので、これとθ=90度〜270度の方位を同一方位
とすればよい。第2位相差板を傾斜させる方向は、各々
の視角依存特性の非対称性が良好に相関する方向に定め
る。これにより、より広い視角範囲について挿入した位
相差板による補償ずれを小さくできる。
For example, (FIG. 18) is referred to as the viewing angle dependence characteristic of the phase difference provided by the liquid crystal layer in the black display state. The symmetry with respect to the main illumination ray (φ = 0 degree, θ = 0 degree) is θ = 0.
Particularly high for azimuths of degrees to 180 degrees, θ = 90 degrees to 2
Especially low for 70 degree azimuth. In the above configuration,
Since the viewing angle dependence characteristics of the phase difference provided by the two retardation plates have particularly low symmetry with respect to the slow axis azimuth of the second retardation plate to be tilted, the azimuth of θ = 90 ° to 270 ° is regarded as the same azimuth. do it. The direction in which the second retardation plate is tilted is set to a direction in which the asymmetry of the viewing angle dependent characteristics correlates well. This makes it possible to reduce the compensation deviation due to the phase difference plate inserted for a wider viewing angle range.

【0062】次に、本発明の投写型表示装置において、
光源の光軸に沿って進行し液晶表示装置の表示領域の中
心を通過して投写レンズの入射瞳の中心に到達する光線
を主照明光線とする。主照明光線を回転対称軸として、
液晶層から円錐状に放射される光束を考える。円錐の半
頂角は投写レンズの集光角ならびに照明光の照射角に相
当する。円錐の側面上を進行する光線群を考え、これら
を最大傾角照明光線群と表記する。
Next, in the projection display device of the present invention,
A ray of light that travels along the optical axis of the light source, passes through the center of the display area of the liquid crystal display device, and reaches the center of the entrance pupil of the projection lens is the main illumination ray. With the main illumination ray as the axis of rotational symmetry,
Consider a luminous flux emitted from the liquid crystal layer in a conical shape. The half apex angle of the cone corresponds to the converging angle of the projection lens and the irradiation angle of the illumination light. Consider a ray group traveling on the side surface of the cone, and describe these as the maximum tilt illumination ray group.

【0063】(図18)から、最大傾角照明光線群の各
々について得られるコントラストが同一でないことは明
らかである。コントラストのより良い投写画像を得るに
は、主照明光線について最大のコントラストを得ると共
に、最大傾角照明光線群の各々の光線について、できる
だけ同一で高いコントラストを得る必要がある。従っ
て、最大傾角照明光線群の中でも特にコントラストの低
い光線(以下、補助照明光線と表記する)のコントラス
トを向上させることは重要である。
From FIG. 18 it is clear that the contrasts obtained for each of the maximum tilt illumination rays are not the same. In order to obtain a projected image with better contrast, it is necessary to obtain the maximum contrast for the main illuminating light beam and also obtain the same and high contrast as possible for each light beam of the maximum tilt illuminating light beam group. Therefore, it is important to improve the contrast of light rays having a particularly low contrast (hereinafter, referred to as auxiliary illumination light rays) in the maximum tilt illumination light ray group.

【0064】通常、液晶層が主照明光線に与える位相差
と補助照明光線に与える位相差は異なると共に、上述の
構成の2枚の位相差板が各々に与える位相差も異なる。
2枚の位相差板のリターデイションと第2位相差板の傾
斜角は、各々の位相差を整合させるべく適当な値に選べ
ばよい。これにより、主照明光線について位相を補償す
ると共に、補助照明光線についても位相を補償すること
ができる。その結果、投写画像のコントラストをより良
好に改善できる。
Normally, the phase difference given to the main illuminating light beam by the liquid crystal layer and the phase difference given to the auxiliary illuminating light beam are different, and the phase difference given to each of the two phase difference plates having the above-mentioned structure is also different.
The retardation of the two retardation plates and the tilt angle of the second retardation plate may be selected as appropriate values so as to match the respective retardations. As a result, the phase can be compensated for the main illuminating light beam as well as the phase for the auxiliary illuminating light beam. As a result, the contrast of the projected image can be improved better.

【0065】更に、投写レンズをその光軸に対して直交
する方向に平行移動できる投写型表示装置を考える。液
晶パネルの表示領域中央と投写レンズの入射瞳中央を結
ぶ光軸に沿って進行する光線を主照明光線とすると、投
写レンズの位置によって主照明光線の方向が変化する。
ただし、光源はその光軸上を主照明光線が進行するよう
に適当に移動させる。
Further, let us consider a projection display device in which the projection lens can be moved in parallel in a direction orthogonal to its optical axis. When the light ray traveling along the optical axis connecting the center of the display area of the liquid crystal panel and the center of the entrance pupil of the projection lens is the main illumination light ray, the direction of the main illumination light ray changes depending on the position of the projection lens.
However, the light source is appropriately moved on the optical axis so that the main illuminating light ray travels.

【0066】通常は主照明光線の進行方向の変化につれ
て投写画像のコントラストが変化するが、2枚の位相差
板の配置方向、傾斜角を調整することで、進行方向に関
わらず主照明光線に対して位相補償を行うことができ
る。その結果、投写レンズの位置に関わらず、投写画像
のコントラストを常に良好に保つことができる。
Normally, the contrast of the projected image changes as the traveling direction of the main illuminating light beam changes. However, by adjusting the arrangement direction and inclination angle of the two retardation plates, the main illuminating light beam is changed regardless of the traveling direction. On the other hand, phase compensation can be performed. As a result, the contrast of the projected image can always be kept good regardless of the position of the projection lens.

【0067】[0067]

【実施例】以下、図面を参照しながら本発明の液晶表示
装置と投写型表示装置の具体例について詳細に述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific examples of the liquid crystal display device and the projection display device of the present invention will be described in detail below with reference to the drawings.

【0068】(図2)は本発明の液晶表示装置の第1の
実施例を示す構成図である。入射側偏光板11、第1位
相差板12、第2位相差板13、液晶セル14、出射側
偏光板15、から構成される。液晶セル14は入射側ガ
ラス基板16、出射側ガラス基板17に挟持されたTN
液晶層(以下、液晶層)18からなり、入射側ガラス基
板16のラビング方向19と出射側ガラス基板17のラ
ビング方向20は、画面水平方向に対し、それぞれ+4
5度と−45度方向である。
FIG. 2 is a constitutional view showing a first embodiment of the liquid crystal display device of the present invention. It is composed of an incident side polarization plate 11, a first retardation plate 12, a second retardation plate 13, a liquid crystal cell 14, and an emission side polarization plate 15. The liquid crystal cell 14 is a TN sandwiched between an incident side glass substrate 16 and an emission side glass substrate 17.
The rubbing direction 19 of the incident side glass substrate 16 and the rubbing direction 20 of the exit side glass substrate 17 are each +4 with respect to the horizontal direction of the screen.
The directions are 5 degrees and -45 degrees.

【0069】(図2)中に記載した直交座標系を導入す
る。X軸とY軸は液晶セル14の水平表示方向と垂直表
示方向に、Z軸は液晶層18の法線方向に、それぞれ対
応する。着目する光線21の進行方向を仰角φと方位角
θを用いて表わす。光線21とZ軸の成す角を仰角φ、
X−Y平面上への光線21の射影22とX軸の成す角を
方位角θと定義する。Z軸に沿って液晶セル14の表示
領域中心23を通過する光線24(φ=θ=0度)を考
え、これを主照明光線と表わす。便宜上、主照明光線を
波長λの単波長光と考える。
The Cartesian coordinate system described in FIG. 2 is introduced. The X axis and the Y axis correspond to the horizontal display direction and the vertical display direction of the liquid crystal cell 14, and the Z axis corresponds to the normal direction of the liquid crystal layer 18. The traveling direction of the light ray 21 of interest is represented using an elevation angle φ and an azimuth angle θ. The angle between the ray 21 and the Z axis is the elevation angle φ,
The angle between the projection 22 of the light beam 21 on the XY plane and the X axis is defined as the azimuth angle θ. Consider a ray 24 (φ = θ = 0 degrees) passing through the display area center 23 of the liquid crystal cell 14 along the Z-axis, and this is referred to as a main illumination ray. For convenience, the main illuminating light beam is considered as a single wavelength light having a wavelength λ.

【0070】入射側偏光板11と出射側偏光板12は、
いずれも主照明光線24に直交する。入射側偏光板11
の偏光軸25は入射側ガラス基板16のラビング方向1
9と一致させ、出射側偏光板15の偏光軸26は出射側
ガラス基板17のラビング方向20と一致させる。入射
側偏光板11の偏光軸25と出射側偏光板15の偏光軸
26は直交しており、表示モードはNWモードである。
The incident side polarization plate 11 and the emission side polarization plate 12 are
Both are orthogonal to the main illumination ray 24. Incident side polarizing plate 11
The polarization axis 25 of is the rubbing direction 1 of the incident side glass substrate 16.
9, and the polarization axis 26 of the emission side polarization plate 15 is aligned with the rubbing direction 20 of the emission side glass substrate 17. The polarization axis 25 of the incident side polarization plate 11 and the polarization axis 26 of the emission side polarization plate 15 are orthogonal to each other, and the display mode is the NW mode.

【0071】第1位相差板12と第2位相差板13は、
ポリカーボネートから成る延伸透明樹脂フィルムを用
い、リターデイションΓの等しい同一の位相差板とす
る。機能的に、延伸方向に光学軸を有する正の単軸結晶
に近似できるものとし、最大屈折率を有する光学軸方位
を遅相軸方位と表わす。第1位相差板12は主照明光線
24に直交し、その遅相軸方位27をX軸と一致させ
る。第2位相差板13は、主照明光線24に直交すると
共にその遅相軸方位28をY軸と一致させた状態から、
X軸を中心として角γだけ傾ける。遅相軸方位28はY
−Z平面上にある。
The first retardation plate 12 and the second retardation plate 13 are
A stretched transparent resin film made of polycarbonate is used, and the retarders having the same retardation Γ are used. Functionally, it can be approximated to a positive uniaxial crystal having an optical axis in the stretching direction, and the optical axis azimuth having the maximum refractive index is represented as the slow axis azimuth. The first retardation plate 12 is orthogonal to the main illuminating light beam 24 and has its slow axis azimuth 27 aligned with the X axis. The second retardation plate 13 is orthogonal to the main illumination light beam 24 and the slow axis azimuth 28 of which coincides with the Y axis,
Tilt about the X axis by an angle γ. Slow axis direction 28 is Y
-It is on the Z plane.

【0072】正の単軸結晶から成る位相差板の機能を、
(図3)に示す屈折率楕円体50を用いて述べる。Z’
軸を延伸方向、Y’軸を厚み方向とする直交座標系を導
入する。X’軸方向の屈折率をNx、Y’軸方向の屈折
率をNy、Z’軸方向の屈折率をNz、とおく。Z’軸
を光学軸51とする正の単軸結晶であれば、Nx=Ny
<Nzである。光学軸51方向の最大屈折率を遅相軸方
向屈折率Nsとおき、光学軸51と直交する方向の最小
屈折率を進相軸方向屈折率Nfとおく。Ns=Nz、N
f=Nx=Ny、である。
The function of the retardation plate made of a positive uniaxial crystal is
This will be described using the index ellipsoid 50 shown in FIG. Z '
An orthogonal coordinate system is introduced with the axis as the stretching direction and the Y ′ axis as the thickness direction. The refractive index in the X′-axis direction is Nx, the refractive index in the Y′-axis direction is Ny, and the refractive index in the Z′-axis direction is Nz. If the crystal is a positive uniaxial crystal having the Z ′ axis as the optical axis 51, Nx = Ny
<Nz. The maximum refractive index in the optical axis 51 direction is set as the slow axis direction refractive index Ns, and the minimum refractive index in the direction orthogonal to the optical axis 51 is set as the fast axis direction refractive index Nf. Ns = Nz, N
f = Nx = Ny.

【0073】屈折率楕円体50の重心53を通る光線5
2に与える位相差は、光線52に直交する平面54上の
屈折率差から考えれば良い。光線52に直交する平面5
4と光学軸51の成す角をψとおく。光線52につい
て、屈折率が最小である進相軸は光学軸51と光線52
のいずれにも直交する方位であり、遅相軸は平面54上
で進相軸と直交する方位となる。例えば、光線52を
Y’−Z’平面上にとれば、進相軸55はX’軸と一致
し、遅相軸56は光学軸51の平面54への射影方位と
なる。進相軸55方向の屈折率はNfであるが、遅相軸
56方向の屈折率Ns’は、次式となる。角度ψは、位
相差板を構成する媒質中で定義される平面54と光学軸
51の成す角であることに注意する。
A ray 5 passing through the center of gravity 53 of the index ellipsoid 50.
The phase difference given to 2 may be considered from the refractive index difference on the plane 54 orthogonal to the light ray 52. Plane 5 orthogonal to ray 52
The angle between 4 and the optical axis 51 is ψ. For the ray 52, the fast axis having the minimum refractive index is the optical axis 51 and the ray 52.
And the slow axis is the direction orthogonal to the fast axis on the plane 54. For example, if the ray 52 is on the Y′-Z ′ plane, the fast axis 55 coincides with the X ′ axis and the slow axis 56 is the projection direction of the optical axis 51 onto the plane 54. Although the refractive index in the fast axis 55 direction is Nf, the refractive index Ns' in the slow axis 56 direction is given by the following equation. Note that the angle ψ is an angle formed by the optical axis 51 and the plane 54 defined in the medium forming the retardation plate.

【0074】[0074]

【数12】 [Equation 12]

【0075】改めて(図2)を用い、2枚の位相差板の
働きを述べる。第1位相差板12と第2位相差板13
は、いずれも遅相軸(光学軸)方向の屈折率をNs、進
相軸(光学軸と直交する)方向の屈折率をNf、厚みを
D、とする。
Using again (FIG. 2), the function of the two retardation plates will be described. First retardation plate 12 and second retardation plate 13
In each case, the refractive index in the slow axis (optical axis) direction is Ns, the refractive index in the fast axis (orthogonal to the optical axis) direction is Nf, and the thickness is D.

【0076】入射側偏光板11を通過した主照明光線2
4は、X軸に対し方位45度の直線偏光となる。第1位
相差板12は、主照明光線24に対して位相差δ1を与
える。位相差はY軸方向振動成分のX軸方向振動成分に
対する位相の進み量と定義する。位相差が負であれば、
Y軸方向振動成分の位相が相対的に遅れている。位相差
δ1は次式となる。
Main illumination light beam 2 which has passed through the incident side polarization plate 11
4 is linearly polarized light having an azimuth of 45 degrees with respect to the X axis. The first retardation plate 12 gives a phase difference δ1 to the main illumination light beam 24. The phase difference is defined as the amount of advance of the phase of the Y-axis direction vibration component with respect to the X-axis direction vibration component. If the phase difference is negative,
The phase of the Y-axis direction vibration component is relatively delayed. The phase difference δ1 is given by the following equation.

【0077】[0077]

【数13】 [Equation 13]

【0078】第2位相差板13は主照明光線24に対し
て次式で表わされる位相差δ2を与える。
The second retardation plate 13 gives the main illumination light beam 24 a retardation δ2 represented by the following equation.

【0079】[0079]

【数14】 [Equation 14]

【0080】ただし、遅相軸方向の屈折率Ns’は(数
12)に示すもので、角度ψは第2位相差板13中を進
行する主照明光線24に直交する平面と遅相軸方位28
のなす角である。
However, the refractive index Ns' in the slow axis direction is shown in (Equation 12), and the angle ψ is the plane orthogonal to the main illumination light ray 24 traveling in the second retardation plate 13 and the slow axis azimuth. 28
It is the angle formed by.

【0081】第1位相差板12と第2位相差板13の与
える位相差は|δ1+δ2|であり、|δ1|>|δ2
|、δ1+δ2>0、となることは明らかなので、等価
的にX軸を遅相軸とする位相差板と見なせる。
The phase difference given by the first retardation plate 12 and the second retardation plate 13 is | δ1 + δ2 |, and | δ1 |> | δ2
Since |, δ1 + δ2> 0, it can be equivalently regarded as a retardation plate having the X axis as the slow axis.

【0082】第2位相差板13を出射した主照明光線2
4は、黒表示に対応するように駆動された液晶セル14
に入射する。液晶層18は主照明光線24に微少位相差
δ0を与える。液晶層18の等価的な遅相軸方位は、液
晶層18の中央に位置する液晶分子29の長軸30を、
進行する光線に直交する平面上に射影した方向とおよそ
一致する。主照明光線に対しておよそY軸が遅相軸とな
るので、液晶層18の与える微少位相差δ0は負であ
る。
Main illumination light beam 2 emitted from the second retardation plate 13
4 is a liquid crystal cell 14 driven so as to correspond to black display.
Incident on. The liquid crystal layer 18 gives the main illumination light beam 24 a minute phase difference δ0. The equivalent slow axis azimuth of the liquid crystal layer 18 is the long axis 30 of the liquid crystal molecule 29 located at the center of the liquid crystal layer 18,
It is approximately the same as the direction projected on the plane orthogonal to the traveling ray. Since the Y axis is the slow axis with respect to the main illumination light, the minute phase difference δ0 given by the liquid crystal layer 18 is negative.

【0083】従って、第1位相差板12と第2位相差板
13のリターデイションΓと第2位相差板13を傾ける
角度γを適当に選択すれば、次式が成立することは明ら
かであり、主照明光線24について位相補償を実現でき
る。
Therefore, if the retardation Γ of the first retardation plate 12 and the second retardation plate 13 and the angle γ at which the second retardation plate 13 is tilted are appropriately selected, it is clear that the following equation holds. Yes, phase compensation can be realized for the main illumination ray 24.

【0084】[0084]

【数15】 [Equation 15]

【0085】以下、(図4)を用いて本発明の液晶表示
装置の第2の実施例を述べる。(図4)に示す構成は、
(図1)に示す構成の入射側偏光板11と液晶セル14
の間の光路を光学結合している。閉容器35を用いて入
射側偏光板11と液晶セル14の入射側ガラス基板16
との空間を閉空間とし、例えば透明シリコーン樹脂を用
いて閉容器35内を充填する。一部の透明シリコーン樹
脂は、注入時には流体であり注入後にゲル状またはゴム
状に硬化させることができるので都合がよい。他に、透
明液体であるエチレングリコールやシリコーンオイルを
用いてもよい。ガラス基板や位相フィルムの屈折率は
1.5前後なので、屈折率が1.5前後の透明体を充填材
料として使用できる。
The second embodiment of the liquid crystal display device of the present invention will be described below with reference to FIG. The configuration shown in (Fig. 4) is
The incident side polarization plate 11 and the liquid crystal cell 14 having the structure shown in FIG.
The optical paths between are optically coupled. The incident side polarizing plate 11 and the incident side glass substrate 16 of the liquid crystal cell 14 using the closed container 35.
The space is closed and the inside of the closed container 35 is filled with, for example, a transparent silicone resin. Some transparent silicone resins are convenient because they are fluid at the time of injection and can be cured into a gel or rubber after injection. Alternatively, a transparent liquid such as ethylene glycol or silicone oil may be used. Since the glass substrate and the phase film have a refractive index of around 1.5, a transparent body having a refractive index of around 1.5 can be used as the filling material.

【0086】特に、エチレングリコールやシリコーンオ
イルは光学的に等方性であり、これを通過する光線に不
必要な位相差を与えないので都合がよい。これは、ゲル
状に硬化させたシリコーン樹脂についても同様である。
例えば、ゲル状透明シリコーン樹脂として信越化学工業
(株)のKE1051を用いることができる。
In particular, ethylene glycol and silicone oil are optically isotropic and convenient because they do not impart an unnecessary phase difference to a light beam passing therethrough. The same applies to the silicone resin cured in the gel form.
For example, KE1051 of Shin-Etsu Chemical Co., Ltd. can be used as the gel-like transparent silicone resin.

【0087】(図4)に示す構成は、第1位相差板12
と第2位相差板13のリターデイションΓと第2位相差
板13を傾ける角度γを適当に選択し、主照明光線24
について位相補償を実現できる。ただし、第1位相差板
12と第2位相差板13の前後の光路を光学結合する
と、次の効果を得る。
The configuration shown in FIG. 4 has the first retardation plate 12
And the retardation Γ of the second retardation plate 13 and the angle γ at which the second retardation plate 13 is tilted are appropriately selected, and the main illumination light beam 24
Phase compensation can be realized. However, when the optical paths before and after the first retardation plate 12 and the second retardation plate 13 are optically coupled, the following effects are obtained.

【0088】第1に、光学界面の不要反射が低減し、液
晶表示装置の透過率が向上する。これは、より明るい光
学像を形成できるので利点がある。第2に、第2位相差
板13の傾斜角γを相対的に小さくできる。傾斜角γが
小さくなると、光軸方向にコンパクトな液晶表示装置を
実現できる。
First, unnecessary reflection at the optical interface is reduced and the transmittance of the liquid crystal display device is improved. This has the advantage that a brighter optical image can be formed. Secondly, the inclination angle γ of the second retardation plate 13 can be made relatively small. When the tilt angle γ is reduced, a compact liquid crystal display device can be realized in the optical axis direction.

【0089】以上述べたように、本発明の液晶表示装置
の第1と第2の実施例は、特に主照明光線24につい
て、黒表示時の光出力強度を低下せしめてコントラスト
を改善できる。位相補償は主照明光線24と成す角が小
さな光線群についても有効であり、所望の視角方向につ
いてコントラストの良好な液晶表示装置を実現できる。
As described above, in the first and second embodiments of the liquid crystal display device of the present invention, the contrast of the main illuminating light beam 24 can be improved by lowering the light output intensity during black display. The phase compensation is also effective for a group of light rays forming a small angle with the main illumination light ray 24, and a liquid crystal display device having a good contrast in a desired viewing angle direction can be realized.

【0090】以上述べた本発明の液晶表示装置の第1と
第2の実施例において、第2位相差板13中を進行する
主照明光線24に直交する平面と第2位相差板13の遅
相軸28の成す角ψは、(数15)より望ましくは次式
を満たせば良い。
In the first and second embodiments of the liquid crystal display device of the present invention described above, the plane orthogonal to the main illuminating light ray 24 traveling in the second retardation plate 13 and the retardation of the second retardation plate 13 are delayed. The angle ψ formed by the phase axis 28 should preferably satisfy the following expression from (Equation 15).

【0091】[0091]

【数16】 [Equation 16]

【0092】ただし、第1位相差板12と第2位相差板
13について、Nsは遅相軸(光学軸)方向の屈折率、
Nfは進相軸(光学軸と直交する)方向の屈折率、Dは
厚みであり、K=Nf/Ns(<1)である。液晶層の
与える位相差δ0は、振幅比角α=45度と見なして
(数8)から求める。あらかじめ第1位相差板12と第
2位相差板13を備えない状態で、黒表示状態の液晶セ
ル14から出射する主照明光線24について楕円率角β
を明らかにし、δ0=2βとすればよい。ただし、上述
の定義から位相差δ0は負にとる。
However, for the first retardation plate 12 and the second retardation plate 13, Ns is the refractive index in the slow axis (optical axis) direction,
Nf is the refractive index in the fast axis (orthogonal to the optical axis) direction, D is the thickness, and K = Nf / Ns (<1). The phase difference δ0 given by the liquid crystal layer is calculated from (Equation 8), assuming that the amplitude ratio angle α = 45 degrees. The ellipticity angle β with respect to the main illumination light beam 24 emitted from the liquid crystal cell 14 in the black display state in the state where the first retardation plate 12 and the second retardation plate 13 are not provided in advance.
And δ0 = 2β. However, from the above definition, the phase difference δ0 is negative.

【0093】以下、(図5)を用いて本発明の液晶表示
装置の第3の実施例を述べる。(図5)に示す構成は、
機能的に延伸方向に光学軸を有する負の単軸結晶に近似
できる透明樹脂フィルムを、第1位相差板41および第
2位相差板42として用いた場合を示す。このようなフ
ィルム材料として、例えばポリスチレンがある。第1位
相差板41と第2位相差板42を除くその他の構成と導
入する直交座標系の定義は、(図2)に示したものと同
一であり、主照明光線24は、便宜上、単波長光とす
る。
The third embodiment of the liquid crystal display device of the present invention will be described below with reference to FIG. The configuration shown in (Fig. 5) is
The case where the transparent resin film which can functionally approximate a negative uniaxial crystal having an optical axis in the stretching direction is used as the first retardation plate 41 and the second retardation plate 42 is shown. Examples of such a film material include polystyrene. The other configurations except the first retardation plate 41 and the second retardation plate 42 and the definition of the Cartesian coordinate system to be introduced are the same as those shown in (FIG. 2), and the main illumination light ray 24 is a single Wavelength light.

【0094】第1位相差板41と第2位相差板42は、
リターデイションΓの等しい同一の位相差板であり、第
1位相差板41は主照明光線24に直交し、その進相軸
方位43をY軸と一致させる。第2位相差板42は、主
照明光線24に直交すると共にその進相軸方位44をX
軸と一致させた状態から、Y軸を中心として角γ’だけ
傾ける。進相軸方位44はX−Z平面上にある。進相軸
方位とは、位相差板内で最小屈折率を有する方位、ずな
わち光学軸方位を示す。
The first retardation plate 41 and the second retardation plate 42 are
The same retardation film having the same retardation Γ, the first retardation film 41 is orthogonal to the main illumination light beam 24, and the fast axis azimuth 43 thereof is matched with the Y axis. The second retardation plate 42 is orthogonal to the main illumination light beam 24 and its fast axis azimuth 44 is X.
From the state where it is aligned with the axis, tilt by the angle γ ′ around the Y axis. The fast axis azimuth 44 is on the XZ plane. The fast axis azimuth means the azimuth having the minimum refractive index in the retardation plate, that is, the optic axis azimuth.

【0095】負の単軸結晶からなる位相差板の機能を、
(図3)に示した屈折率楕円体50を改めて参照し、補
足する。屈折率楕円体50がZ’軸を光学軸とする負の
単軸結晶を表わす場合、屈折率Nx、Ny、Nz、につ
いて、Nx=Ny>Nzである。従って、本実施例の第
1位相差板41と第2位相差板42については、光学軸
51方向の最小屈折率を進相軸方向屈折率Nfとおき、
光学軸51と直交する方向の最大屈折率を遅相軸方向屈
折率Nsとおく。つまり、Ns=Nx=Ny、Nf=N
z、である。
The function of the retardation plate made of a negative uniaxial crystal is
The index ellipsoid 50 shown in (FIG. 3) will be referred to again and supplemented. When the refractive index ellipsoid 50 represents a negative uniaxial crystal whose optical axis is the Z ′ axis, Nx = Ny> Nz for refractive indices Nx, Ny, and Nz. Therefore, regarding the first retardation plate 41 and the second retardation plate 42 of the present embodiment, the minimum refractive index in the optical axis 51 direction is set to the fast axis direction refractive index Nf,
The maximum refractive index in the direction orthogonal to the optical axis 51 is defined as the slow axis direction refractive index Ns. That is, Ns = Nx = Ny, Nf = N
z.

【0096】正の単軸結晶の場合と同様に、光線52に
与える位相差は平面54上の屈折率を用いる。ただし、
光線52に直交する平面54と光学軸51の成す角は
ψ’と表わす。光線52について、X’軸と一致する5
5を遅相軸と見なし、光学軸51の平面54への射影方
位56を進相軸と見なす。遅相軸方向の屈折率はNsで
あるが、進相軸方向の屈折率Nf’は、次式となる。
As in the case of the positive uniaxial crystal, the refractive index on the plane 54 is used as the phase difference given to the light beam 52. However,
The angle formed by the optical axis 51 and the plane 54 orthogonal to the light ray 52 is represented by ψ ′. For ray 52, coincident with the X'axis 5
5 is regarded as a slow axis, and the projection azimuth 56 of the optical axis 51 onto the plane 54 is regarded as a fast axis. Although the refractive index in the slow axis direction is Ns, the refractive index Nf 'in the fast axis direction is given by the following equation.

【0097】[0097]

【数17】 [Equation 17]

【0098】改めて(図5)を用い、2枚の位相差板の
働きを述べる。ただし、第1位相差板41と第2位相差
板42の厚みをDとする。入射側偏光板11を通過した
主照明光線24に対し、第1位相差板41は次式で表わ
される位相差δ1’を与える。
Using again (FIG. 5), the function of the two retardation plates will be described. However, the thickness of the first retardation plate 41 and the second retardation plate 42 is D. The first retardation plate 41 gives a phase difference δ1 ′ represented by the following equation to the main illumination light ray 24 that has passed through the incident side polarization plate 11.

【0099】[0099]

【数18】 [Equation 18]

【0100】第2位相差板42は主照明光線24に対
し、次式で表わされる位相差δ2’を与える。
The second retardation plate 42 gives the main illumination light beam 24 a phase difference δ2 'represented by the following equation.

【0101】[0101]

【数19】 [Formula 19]

【0102】ただし、進相軸方向屈折率Nf’は(数1
7)に示すもので、角度ψ’は第2位相差板42中を進
行する主照明光線24と進相軸方位44のなす角であ
る。
However, the refractive index Nf 'in the fast axis direction is (Equation 1
As shown in 7), the angle ψ ′ is an angle formed by the main illumination light ray 24 traveling in the second retardation plate 42 and the fast axis azimuth 44.

【0103】第1位相差板41と第2位相差板42の与
える位相差は|δ1’+δ2’|であり、|δ1’|>
|δ2’|、δ1’+δ2’>0、となることは明らか
なので、(図2)に示した構成と同様に、等価的にX軸
を遅相軸とする位相差板と見なせる。
The phase difference given by the first retardation plate 41 and the second retardation plate 42 is | δ1 '+ δ2' |, and | δ1 '|>
Since it is clear that | δ2 ′ | and δ1 ′ + δ2 ′> 0, it can be equivalently regarded as a retardation plate having the X axis as the slow axis, similarly to the configuration shown in FIG.

【0104】従って、第1位相差板41と第2位相差板
42のリターデイションと第2位相差板41を傾ける角
度γ’を適当に選択すれば、次式が成立することは明ら
かであり、主照明光線24について位相補償を実現でき
る。
Therefore, if the retardation of the first retardation plate 41 and the second retardation plate 42 and the angle γ'for inclining the second retardation plate 41 are appropriately selected, the following equation is apparently established. Yes, phase compensation can be realized for the main illumination ray 24.

【0105】[0105]

【数20】 [Equation 20]

【0106】第2位相差板42中を進行する主照明光線
24に直交する平面と第2位相差板42の進相軸44の
なす角ψ’は、(数20)より望ましくは次式を満たせ
ば良い。
The angle ψ ′ formed by the plane orthogonal to the main illuminating light ray 24 traveling in the second retardation plate 42 and the fast axis 44 of the second retardation plate 42 is preferably expressed by the following equation (20). You just have to meet.

【0107】[0107]

【数21】 [Equation 21]

【0108】ただし、K’=Ns/Nf(>1)であ
る。液晶層の与える位相差δ0は(数16)の場合に述
べたものと同様である。
However, K '= Ns / Nf (> 1). The retardation δ0 given by the liquid crystal layer is the same as that described in the case of (Equation 16).

【0109】以下、本発明の液晶表示装置のより好まし
い構成の一実施例を述べる。第1位相差板と第2位相差
板は、機能的に正の単軸結晶で近似される位相差板であ
ることが好ましいと共に、例えば(図4)に示した実施
例において、第2位相差板13の傾斜させる方向を、第
2位相差板13の法線36と黒表示状態の液晶層18の
中央部に位置する液晶分子29の長軸30の成す角がよ
り小さくなるような方向に特に定める。
An example of a more preferable constitution of the liquid crystal display device of the present invention will be described below. The first retardation plate and the second retardation plate are preferably retardation plates that are functionally approximated by a positive uniaxial crystal, and the second retardation plate is, for example, in the embodiment shown in (FIG. 4). The direction in which the phase difference plate 13 is inclined is such that the angle formed by the normal line 36 of the second phase difference plate 13 and the long axis 30 of the liquid crystal molecule 29 located in the center of the liquid crystal layer 18 in the black display state is smaller. Stipulate in particular.

【0110】(図6)と(図7)を用い、この理由を述
べる。(図6)は(図4)に示す構成のY−Z方向断面
を、(図7)は(図4)に示す構成のX−Z方向断面を
示し、液晶セル14、第1位相差板12、第2位相差板
13、のみをそれぞれ模式的に表わす。便宜上、液晶セ
ル14と第1位相差板12と第2位相差板13は、これ
らと近い屈折率を有する媒質中にあるとし、各々の界面
における光線の屈折は無視できるものとする。
The reason for this will be described with reference to FIGS. 6 and 7. (FIG. 6) shows a cross section in the YZ direction of the configuration shown in (FIG. 4), and (FIG. 7) shows a cross section in the XZ direction of the configuration shown in (FIG. 4). 12 and the second retardation plate 13 are each schematically shown. For convenience, it is assumed that the liquid crystal cell 14, the first retardation plate 12 and the second retardation plate 13 are in a medium having a refractive index close to these, and refraction of light rays at each interface can be ignored.

【0111】主照明光線24と、それぞれの断面図上で
主照明光線24と一定の角度をなして進行する光線6
1、62、63、64、を考える。光線61、62、6
3、64、は、液晶層18の中央で主照明光線24と交
わる。説明を簡単にするために、黒表示状態の液晶層1
8の働きを液晶層18の中央に位置する液晶分子29に
代表させて考える。本近似は、本説明のために必要とす
る液晶層の働きの特徴を述べるために充分に妥当であ
る。
The main illuminating light ray 24 and the light ray 6 traveling at a constant angle with the main illuminating light ray 24 on the respective cross-sectional views.
Consider 1, 62, 63, 64. Rays 61, 62, 6
3, 64 intersect the main illumination ray 24 at the center of the liquid crystal layer 18. To simplify the description, the liquid crystal layer 1 in the black display state
The function of 8 is represented by the liquid crystal molecule 29 located in the center of the liquid crystal layer 18. This approximation is sufficiently valid to characterize the function of the liquid crystal layer required for this description.

【0112】黒表示状態の液晶層18の与える位相差の
視角依存特性を考える。ただし、視角とは着目する光線
と主照明光線24の成す角を示す。液晶分子29の長軸
30は、およそY−Z平面上にありZ軸と所定角度を成
す。その向きは液晶セル14のラビング方向から一意に
決まる。液晶分子29は、XーZ平面上を進行する光線
63と光線64に対し、対称性の高い同量の位相差を与
える。これに対し、YーZ平面上を進行する光線61に
与える位相差は、同じく光線62に与える位相差より大
きい。従って、液晶層18の与える位相差の視角依存特
性には、特に対称性の高い方向(X−Z平面方向)と、
特に対称性の低い方向(Y−Z平面方向)がある。
Consider the viewing angle dependence characteristic of the phase difference provided by the liquid crystal layer 18 in the black display state. However, the viewing angle indicates an angle formed by the focused light beam and the main illumination light beam 24. The long axis 30 of the liquid crystal molecule 29 is approximately on the YZ plane and forms a predetermined angle with the Z axis. The direction is uniquely determined from the rubbing direction of the liquid crystal cell 14. The liquid crystal molecules 29 give the same amount of phase difference with high symmetry to the light rays 63 and 64 traveling on the XZ plane. On the other hand, the phase difference given to the ray 61 traveling on the YZ plane is larger than the phase difference given to the ray 62. Therefore, the viewing angle dependence characteristics of the phase difference provided by the liquid crystal layer 18 include a direction with high symmetry (XZ plane direction) and
In particular, there is a direction with low symmetry (YZ plane direction).

【0113】これに対し、2枚の位相差板の与える位相
差の視角依存特性を考える。第1位相差板12と第2位
相差板13は、入射角の等しい光線63と光線64に同
量の位相差を与えるので、X−Z平面方向について対称
性が高い。一方、Y−Z平面方向に傾斜させた第2位相
差板13は、入射角の異なる光線61と光線62に大き
さの異なる位相差を与える。従って、Y−Z平面方向に
ついては対称性が低く、第2位相差板13を傾斜させる
向きが特に重要となる。液晶層18の与える位相差の大
小関係を反映し、光線61に与える位相差を光線62に
与える位相差より大きくするために、第2位相差板13
を液晶分子29の長軸30と法線36の成す角がより小
さくなる方向に傾ける。
On the other hand, consider the viewing angle dependence characteristic of the phase difference provided by the two retardation plates. Since the first retardation plate 12 and the second retardation plate 13 give the same amount of phase difference to the light ray 63 and the light ray 64 having the same incident angle, they have high symmetry in the XZ plane direction. On the other hand, the second retardation plate 13 tilted in the YZ plane direction gives the light beams 61 and 62 having different incident angles different phase differences. Therefore, the symmetry is low in the YZ plane direction, and the direction in which the second retardation plate 13 is tilted is particularly important. In order to reflect the magnitude relation of the phase difference given by the liquid crystal layer 18 and make the phase difference given to the ray 61 larger than the phase difference given to the ray 62, the second retardation plate 13
Is tilted in a direction in which the angle formed by the long axis 30 of the liquid crystal molecule 29 and the normal line 36 becomes smaller.

【0114】従って、上に述べた液晶セル14と傾斜さ
せる第2位相差板13の相対関係は、黒表示状態の液晶
層14の与える位相差の視角依存特性と、第1位相差板
12と第2位相差板13の与える位相差の視角依存特性
を良好に相関させる。その結果、主照明光線24と角度
を成して進行する光線について位相補償のずれを小さく
できるので、より広い視角範囲について良好なコントラ
ストを得る。
Therefore, the relative relationship between the liquid crystal cell 14 and the second retardation plate 13 to be tilted as described above is such that the viewing angle dependence characteristic of the retardation given by the liquid crystal layer 14 in the black display state and the first retardation plate 12 The viewing angle dependence characteristics of the phase difference provided by the second phase plate 13 are well correlated. As a result, it is possible to reduce the deviation of the phase compensation for the light rays that travel at an angle with the main illumination light ray 24, so that good contrast is obtained in a wider viewing angle range.

【0115】以下、(図8)を用いて本発明の投写型表
示装置の第1の実施例を述べる。101は(図4)に示
した本発明の液晶表示装置であり、入射側偏光板11、
第1位相差板12、第2位相差板13、液晶セル14、
出射側偏光板15と、それらの構成は同一である。入射
側偏光板11と液晶セル14の間の光路は、閉容器35
により密閉されエチレングリコールを充填して光学結合
されている。液晶表示装置101上の光学像は光源10
2により照明され、投写レンズ103によりスクリーン
104上に拡大投影される。
The first embodiment of the projection display device of the present invention will be described below with reference to FIG. Reference numeral 101 denotes the liquid crystal display device of the present invention shown in FIG.
The first retardation plate 12, the second retardation plate 13, the liquid crystal cell 14,
The emission side polarization plate 15 and their configurations are the same. The optical path between the incident side polarization plate 11 and the liquid crystal cell 14 is a closed container 35.
It is hermetically sealed by and is filled with ethylene glycol and optically coupled. The optical image on the liquid crystal display device 101 is the light source 10
It is illuminated by 2 and is enlarged and projected on the screen 104 by the projection lens 103.

【0116】光源102の光軸に沿って進行し、液晶表
示装置101の表示領域中央109を通過し、投写レン
ズ103の入射瞳105の中心106を通過して、スク
リーン104の中央107に到る光線を主照明光線10
8とする。主照明光線108は、同時に、液晶層18の
法線と投写レンズ103の光軸に沿って進行する。
The light travels along the optical axis of the light source 102, passes through the center 109 of the display area of the liquid crystal display device 101, passes through the center 106 of the entrance pupil 105 of the projection lens 103, and reaches the center 107 of the screen 104. Main light ray 10
8 The main illuminating light beam 108 simultaneously travels along the normal line of the liquid crystal layer 18 and the optical axis of the projection lens 103.

【0117】液晶表示装置101は黒表示状態の液晶層
18を通過する主照明光線108について良好に位相補
償できるので、本発明の投写型表示装置はコントラスト
の優れた投写画像を投影できる。そのために、例えば黒
表示状態の投写画像の明るさが最も暗くなるように、第
2位相差板13の傾斜角を調整すれば良い。
Since the liquid crystal display device 101 can satisfactorily phase-compensate the main illuminating light beam 108 passing through the liquid crystal layer 18 in the black display state, the projection display device of the present invention can project a projected image with excellent contrast. Therefore, for example, the tilt angle of the second retardation film 13 may be adjusted so that the brightness of the projected image in the black display state becomes the darkest.

【0118】投写レンズ103はテレセントリック性の
高い投写レンズであることが好ましい。テレセントリッ
ク性の高い投写レンズとは、あらゆる画角点における主
光線が投写レンズの光軸に平行であるものを言う。これ
は、液晶表示装置101の表示領域中央109を通過す
る主照明光線108について位相補償を行った条件が、
表示領域の全域における主光線に対して成立するので都
合がよい。つまり、投写画像の全域について良好にコン
トラストの改善された投写型表示装置を実現できる。
The projection lens 103 is preferably a projection lens having high telecentricity. A projection lens with high telecentricity means that the chief ray at any angle of view is parallel to the optical axis of the projection lens. This is because the condition in which the phase compensation is performed for the main illumination light beam 108 passing through the center 109 of the display area of the liquid crystal display device 101 is
This is convenient because it holds for the chief ray in the entire display area. That is, it is possible to realize a projection display device in which the contrast is improved satisfactorily over the entire projected image.

【0119】液晶表示装置101は、液晶層18の法線
方向から入射する光線についてコントラストを改善でき
る。液晶表示装置101の表示領域に対して投写レンズ
103を軸ずらしさせる必要がないので、画角の小さい
投写レンズを利用できると共に、周辺部まで明るさの偏
りの少ない投写画像を得ることができる。
The liquid crystal display device 101 can improve the contrast of light rays incident from the direction normal to the liquid crystal layer 18. Since the projection lens 103 does not need to be off-axis with respect to the display area of the liquid crystal display device 101, it is possible to use a projection lens having a small angle of view and obtain a projected image with less uneven brightness even in the peripheral portion.

【0120】上述の液晶表示装置の全ての実施例におい
て、主照明光線は波長λの単波長光であるとして説明し
たが、一般に液晶表示装置を照明する光はある波長帯域
を持つ。波長の異なる光について補償ずれが生じるが、
照明光の波長帯域を代表する波長について位相補償を実
現すれば、本発明の効果を十分に得ることができる。例
えば、可視光全域の光を変調する液晶表示装置であれ
ば、視感度の高い540nm前後の波長に関して最適に位
相を補償する構成とすれば良い。これは、本発明の投写
型表示装置についても同様である。
In all the embodiments of the liquid crystal display device described above, the main illuminating light beam is described as a single-wavelength light of wavelength λ, but in general, the light for illuminating the liquid crystal display device has a certain wavelength band. A compensation shift occurs for light with different wavelengths,
The effect of the present invention can be sufficiently obtained by implementing the phase compensation for the wavelength that represents the wavelength band of the illumination light. For example, in the case of a liquid crystal display device that modulates light in the entire visible light range, a configuration may be adopted in which the phase is optimally compensated for a wavelength of around 540 nm, which has high visibility. The same applies to the projection display device of the present invention.

【0121】以下、(図9)を用いて本発明の投写型表
示装置の第2の実施例を述べる。これは、3原色に対応
した3枚の液晶表示装置を用い、より高画質なフルカラ
ーの投写画像を得るための構成の一例である。液晶表示
装置の照明光を特定の原色光に限定することで、波長の
異なる光に対する補償ずれの問題を小さくできる。
The second embodiment of the projection type display device of the present invention will be described below with reference to FIG. This is an example of a configuration for obtaining a higher-quality full-color projection image by using three liquid crystal display devices corresponding to the three primary colors. By limiting the illumination light of the liquid crystal display device to a specific primary color light, the problem of compensation shift for light of different wavelengths can be reduced.

【0122】光源124から出射する照明光を、ダイク
ロイックミラー125と126により、赤、青、緑の3
原色の照明光に分解し、対応する液晶表示装置121、
122、123を照明する。平面ミラー127は、光路
を折り曲げるために用いる。液晶表示装置121、12
2、123を照明する照明光は、弱い収束レンズである
フィールドレンズ128、129、130によって、投
写レンズ134の入射瞳136まで有効に伝達される。
液晶表示装置121、122、123上の3原色の光学
像は、ダイクロイクミラー131、132と平面ミラー
133により合成され、フルカラーの投写画像がスクリ
ーン(図示せず)上に拡大投影される。
Illumination light emitted from the light source 124 is converted into red, blue and green by dichroic mirrors 125 and 126.
The corresponding liquid crystal display device 121 is decomposed into primary color illumination light,
Illuminate 122 and 123. The plane mirror 127 is used to bend the optical path. Liquid crystal display device 121, 12
Illumination light illuminating 2, 123 is effectively transmitted to the entrance pupil 136 of the projection lens 134 by the field lenses 128, 129, 130 which are weak converging lenses.
The optical images of the three primary colors on the liquid crystal display devices 121, 122, 123 are combined by the dichroic mirrors 131, 132 and the plane mirror 133, and a full-color projection image is enlarged and projected on a screen (not shown).

【0123】液晶表示装置121、122、123の各
々の前後で、3原色の各々の色を代表する波長の3本の
主照明光線141、142、143を考える。主照明光
線141、142、143は、対応する液晶表示装置1
21、122、123の表示領域中央を通過して投写レ
ンズ134の入射瞳136の中心137に到る光線であ
り、光源124の光軸、対応するフィールドレンズ12
8、129、130の光軸、投写レンズ134の光軸、
に沿って進行する。
Before and after each of the liquid crystal display devices 121, 122 and 123, consider three main illuminating light beams 141, 142 and 143 having wavelengths representative of each of the three primary colors. The main illuminating rays 141, 142, 143 correspond to the corresponding liquid crystal display device 1.
A light ray that passes through the center of the display area of 21, 122, and 123 and reaches the center 137 of the entrance pupil 136 of the projection lens 134, the optical axis of the light source 124, and the corresponding field lens 12.
8, 129, 130 optical axis, projection lens 134 optical axis,
Follow along.

【0124】液晶表示装置121、122、123は、
例えば(図4)に示す液晶表示装置であり、各々に対応
した主照明光線141、142、143について黒表示
状態における位相補償を実現する。主照明光線141、
142、143の波長が異なるので位相補償を実現する
条件が異なるが、第2位相差板の傾斜角を調整して各々
の波長に適した位相補償を実現できる。その結果、赤、
緑、青、のいずれについてもコントラストの良好な光学
像を得ることができ、コントラストの優れた高画質の投
写画像を実現できる。
The liquid crystal display devices 121, 122 and 123 are
For example, the liquid crystal display device shown in (FIG. 4) realizes phase compensation in the black display state for the main illumination rays 141, 142, and 143 corresponding to each. Main illumination light beam 141,
Although the wavelengths of 142 and 143 are different, the conditions for realizing the phase compensation are different, but it is possible to realize the phase compensation suitable for each wavelength by adjusting the inclination angle of the second retardation plate. As a result, red,
An optical image with good contrast can be obtained for both green and blue, and a high-quality projected image with excellent contrast can be realized.

【0125】投写レンズ134は画角の小さい投写レン
ズを利用できるので、周辺部まで明るく、明るさの偏り
の少ない投写画像を得ることができる。また、3原色に
対応した液晶表示装置の各々を同一の部品で構成するこ
とができるので、コストと量産性に優れた投写型表示装
置を実現できる。
Since a projection lens having a small angle of view can be used as the projection lens 134, it is possible to obtain a projection image that is bright to the peripheral portion and has less uneven brightness. Further, since each of the liquid crystal display devices corresponding to the three primary colors can be composed of the same component, it is possible to realize a projection display device excellent in cost and mass productivity.

【0126】以下、本発明の投写型表示装置の第3の実
施例を述べる。(図9)に示した構成において、投写レ
ンズ134をその光軸に対して直交する方向に所定範囲
だけ任意に平行移動できるとする。投写レンズ134の
平行移動に合わせて、光源124を移動させると共に、
液晶表示装置121、122、123の各々が備える第
1位相差板と第2位相差板の少なくともいずれか一方の
配置方向を変化させる。光源124は、その光軸の延長
が投写レンズ134の入射瞳136の中心137に常に
到達するように移動させる。
The third embodiment of the projection type display device of the present invention will be described below. In the configuration shown in FIG. 9, it is assumed that the projection lens 134 can be arbitrarily translated in a predetermined range in the direction orthogonal to its optical axis. While moving the light source 124 in accordance with the parallel movement of the projection lens 134,
The arrangement direction of at least one of the first retardation plate and the second retardation plate included in each of the liquid crystal display devices 121, 122, 123 is changed. The light source 124 is moved so that the extension of its optical axis always reaches the center 137 of the entrance pupil 136 of the projection lens 134.

【0127】主照明光線141、142、143を、光
源124の光軸に沿って進行し、対応する液晶表示装置
121、122、123の表示領域中央を通過して投写
レンズ134の入射瞳136の中心137に到る光線と
する。投写レンズ134の平行移動に伴って主照明光線
141、142、143の進行方向が変化するが、第1
位相差板と第2位相差板の少なくともいずれか一方の配
置方向を変化させることができれば、常に主照明光線に
ついて黒表示状態における位相補償を実現できる。
The main illuminating light rays 141, 142, 143 travel along the optical axis of the light source 124, pass through the center of the corresponding display area of the liquid crystal display device 121, 122, 123, and enter the entrance pupil 136 of the projection lens 134. The light ray reaches the center 137. The traveling directions of the main illuminating light rays 141, 142, 143 change as the projection lens 134 moves in parallel.
If the arrangement direction of at least one of the retardation plate and the second retardation plate can be changed, the phase compensation in the black display state can always be realized for the main illumination light beam.

【0128】従って、上記構成は、投写画像を任意の斜
め方向に投影できるので、スクリーンに対する投写器本
体の設置の自由度を増すことができる利点がある。同時
に、投写レンズを平行移動させても、投写画像のコント
ラストを常に良好に保つことができる。
Therefore, the above configuration has an advantage that the projection image can be projected in an arbitrary oblique direction and the degree of freedom in installing the projector main body with respect to the screen can be increased. At the same time, even if the projection lens is moved in parallel, the contrast of the projected image can always be kept good.

【0129】(図4)に示した本発明の液晶表示装置の
第2の実施例と、(図8)に示した本発明の投写型表示
装置の第1の実施例について、以下に述べる第1の実験
を行い、その効果を確認した。実験は、特に波長540
nm付近に強いスペクトルを持つ緑の光を放射する光源を
用いて行った。
A second embodiment of the liquid crystal display device of the present invention shown in FIG. 4 and a first embodiment of the projection display device of the present invention shown in FIG. 8 will be described below. Experiment 1 was conducted and its effect was confirmed. Experiments, especially at wavelength 540
This was done using a light source that emits green light with a strong spectrum near nm.

【0130】入射側偏光板11と出射側偏光板15は、
偏光要素としてヨウ素を吸着したポリビニルアルコール
延伸フィルムからなる偏光板をガラス基板に貼付したも
のを用いた。主照明光線24に対し、入射側偏光板11
と出射側偏光板15のみを配置した場合、コントラスト
(偏光軸25と26が平行であるときの光出力強度÷偏
光軸25と26が直交しているときの光出力強度)は、
約1000であった。
The incident side polarization plate 11 and the emission side polarization plate 15 are
A polarizing plate made of a stretched polyvinyl alcohol film adsorbing iodine was attached to a glass substrate as a polarizing element. The incident side polarization plate 11 with respect to the main illumination light beam 24
When only the output side polarization plate 15 is arranged, the contrast (light output intensity when the polarization axes 25 and 26 are parallel / light output intensity when the polarization axes 25 and 26 are orthogonal) is:
It was about 1000.

【0131】第1位相差板12、第2位相差板13は、
いずれもポリカーボネート製フィルムからなる位相差板
をガラス基板に貼付したものを用いた。これは、機能的
にフィルム面に沿った方向に光学軸を有する正の単軸結
晶に近似できる位相差板であり、遅相軸(光学軸)方向
の屈折率Nsは約1.589であり、進相軸(光学軸と
直交する)方向の屈折率Nfは約1.582であった。
厚みDは、リターデイションΓが200nmとなるものを
選択した。ただし、各々の値は波長540nmに対する値
である。
The first retardation plate 12 and the second retardation plate 13 are
In each case, a glass plate having a retardation plate made of a polycarbonate film attached thereto was used. This is a retardation plate that can be functionally approximated to a positive uniaxial crystal having an optical axis in the direction along the film surface, and a refractive index Ns in the slow axis (optical axis) direction is about 1.589. The refractive index Nf in the fast axis (perpendicular to the optical axis) direction was about 1.582.
The thickness D was selected so that the retardation Γ was 200 nm. However, each value is a value for a wavelength of 540 nm.

【0132】液晶セル14は一般的なTN液晶材料を用
いて構成した。液晶層18は5μmのギャップ厚であ
り、約6Vの駆動電圧を加えて黒表示状態とした。駆動
電圧を加えない時を白表示状態とした。第1位相差板1
2と第2位相差板13のない状態で液晶セル14から出
射した直後の主照明光線24の楕円率角βを測定した
所、約1度であった。
The liquid crystal cell 14 was constructed using a general TN liquid crystal material. The liquid crystal layer 18 has a gap thickness of 5 μm, and a driving voltage of about 6 V was applied to obtain a black display state. When no drive voltage was applied, the white display was performed. First retardation plate 1
The ellipticity angle β of the main illuminating light beam 24 immediately after being emitted from the liquid crystal cell 14 without the second and second retardation films 13 was about 1 degree.

【0133】第1位相差板12と第2位相差板13を備
えない状態でコントラスト(白表示状態の光出力強度/
黒表示状態の光出力強度)を測定した所、主照明光線に
ついて約600であった。この場合のコントラストの視
角依存特性は(図18)に示したものとほぼ等しく、特
定(θ=90度から270度)方向に偏った視角依存特
性であった。位相差板を備えない状態の液晶表示装置
と、F値が4の投写レンズを用いて(図8)に示す投写
型表示装置を構成した所、スクリーン104の中央10
7で測定されたコントラスト(白表示状態の光出力強度
÷黒表示状態の光出力強度)は、約200であった。
In the state where the first retardation plate 12 and the second retardation plate 13 are not provided, the contrast (light output intensity in white display state /
When the light output intensity in the black display state) was measured, it was about 600 for the main illumination light beam. The viewing angle dependence characteristics of the contrast in this case were almost the same as those shown in FIG. 18, and the viewing angle dependence characteristics were biased in the specific direction (θ = 90 degrees to 270 degrees). A liquid crystal display device without a retardation plate and a projection type display device shown in FIG. 8 using a projection lens having an F value of 4 are formed.
The contrast (light output intensity in white display state / light output intensity in black display state) measured in 7 was about 200.

【0134】第1位相差板12と第2位相差板13を付
加し、入射側偏光板11と液晶セル17の入射側ガラス
基板16との光路をエチレングリコールで充填して光学
結合させた。第2位相差板13をγ=10度となるよう
に傾けた所、主照明光線24について黒表示状態の光出
力強度が最小となった。その時のコントラストは、主照
明光線24について900まで改善された。
A first retardation plate 12 and a second retardation plate 13 were added, and the optical paths between the incident side polarizing plate 11 and the incident side glass substrate 16 of the liquid crystal cell 17 were filled with ethylene glycol for optical coupling. When the second retardation film 13 was tilted so that γ = 10 degrees, the light output intensity of the main illumination light beam 24 in the black display state became the minimum. The contrast was then improved to 900 for the main illumination ray 24.

【0135】コントラストの視角依存特性を測定したと
ころ、(図10)に示す結果となった。(図10)の回
転方向は方位角θの大きさを、半径方向は仰角φの大き
さを示し、各々の同心円は仰角φを2度きざみで表わ
す。最外周の円はφ=14度である。実線、一点鎖線、
破線、二点鎖線、点線は、各々コントラストが、90
0、700、500、300、100、である視角を示
す。やや偏りがあるものの、主照明光線(φ=0度、θ
=0度)を中心に回転対称に近い視角依存特性が得られ
ており、コントラストの特定視角方向への偏りが改善さ
れていた。
When the viewing angle dependence of contrast was measured, the results shown in FIG. 10 were obtained. The rotation direction in FIG. 10 represents the magnitude of the azimuth angle θ, the radial direction represents the magnitude of the elevation angle φ, and each concentric circle represents the elevation angle φ in steps of 2 degrees. The outermost circle is φ = 14 degrees. Solid line, dash-dotted line,
The contrast of the broken line, the chain double-dashed line, and the dotted line is 90
The viewing angles are 0, 700, 500, 300, 100. Despite a slight deviation, the main illuminating light beam (φ = 0 degree, θ
(About 0 degree), a viewing angle dependence characteristic close to rotational symmetry was obtained, and the bias of the contrast in the specific viewing angle direction was improved.

【0136】上記位相補償のなされた液晶表示装置とF
値が4の投写レンズを用いて(図8)に示す投写型表示
装置を構成した所、スクリーン104の中央107で測
定されたコントラストは、約300に改善されていた。
The above-described phase-compensated liquid crystal display device and F
When the projection display device shown in FIG. 8 was constructed using a projection lens having a value of 4, the contrast measured at the center 107 of the screen 104 was improved to about 300.

【0137】以下、(図8)に示す本発明の投写型表示
装置の第1の実施例について、特に好ましい構成を述べ
る。これは、(図2)と(図4)に示す本発明の液晶表
示装置の実施例についても同様である。
A particularly preferable structure of the first embodiment of the projection type display device of the present invention shown in FIG. 8 will be described below. The same applies to the embodiments of the liquid crystal display device of the present invention shown in (FIG. 2) and (FIG. 4).

【0138】液晶表示装置101は主照明光線108に
ついて良好に位相補償を行う条件を満たすように構成さ
れるが、この条件は第1位相差板12と第2位相差板1
3のリターデイションΓを一意に定めるものではない。
位相差板のリターデイションΓと第2位相差板13の傾
斜角γについて、上記条件を満たす複数の組み合わせが
存在する。
The liquid crystal display device 101 is constructed so as to satisfy the condition for favorably compensating the phase of the main illumination light beam 108. The condition is that the first retardation plate 12 and the second retardation plate 1 are used.
It does not uniquely determine the retardation Γ of 3.
Regarding the retardation Γ of the retardation film and the inclination angle γ of the second retardation film 13, there are a plurality of combinations that satisfy the above conditions.

【0139】主照明光線108について良好に位相補償
を行うことを第1の条件とし、以下に述べる第2の条件
を考慮して位相差板のリターデイションΓと傾斜角γに
ついてより最適な値を選択することが好ましい。以下、
液晶表示装置101の満たすべき第2の条件を述べる。
The first condition is to perform good phase compensation for the main illuminating light beam 108, and the more optimum values for the retardation Γ and the tilt angle γ of the retardation plate are taken into consideration in consideration of the second condition described below. Is preferably selected. Less than,
The second condition to be satisfied by the liquid crystal display device 101 will be described.

【0140】投写レンズ103が利用する光線群とし
て、例えば、表示領域の中央109を頂点とし、主照明
光線108を回転対称軸とする円錐を考える。仮に投写
レンズ103のF値を4とすると、投写レンズ103の
集光角は約7度であり、円錐の頂角が約7度となる。コ
ントラストの良好な投写画像を得るためには、上記円錐
に含まれる光線について平均的に高いコントラストを得
る必要がある。そのためには、上記円錐に含まれる光線
の中で最もコントラストの低い光線(以下、補助照明光
線と表わす)について、位相補償を行うことが重要であ
り、これを液晶表示装置101の満たすべき第2の条件
とする。具体的に、仰角φ=7度、方位角θ=270度
の光線を補助照明光線とする。ただし、仰角φと方位角
θの定義は(図4)中に示したものに従う。
As a light ray group used by the projection lens 103, consider, for example, a cone having the center 109 of the display area as an apex and the main illumination light ray 108 as an axis of rotational symmetry. If the F value of the projection lens 103 is 4, the converging angle of the projection lens 103 is about 7 degrees, and the apex angle of the cone is about 7 degrees. In order to obtain a projected image with good contrast, it is necessary to obtain a high contrast on average for the rays included in the cone. For that purpose, it is important to perform phase compensation on a light ray having the lowest contrast (hereinafter referred to as auxiliary illumination light ray) among the light rays included in the cone, and the phase compensation is performed by the second light ray which the liquid crystal display device 101 must satisfy. The condition of. Specifically, a light ray with an elevation angle φ = 7 degrees and an azimuth angle θ = 270 degrees is used as an auxiliary illumination light ray. However, the definitions of the elevation angle φ and the azimuth angle θ follow those shown in (FIG. 4).

【0141】補助照明光線について位相補償を行う手順
は、主照明光線108に関するものと同様である。第1
位相差板12と第2位相差板13を備えない状態で補助
照明光線を入射させ、液晶セル14から出射した直後の
楕円率角β’を明らかにする。第2位相差板13中を進
行する補助照明光線に直交する平面と第2位相差板13
の光学軸の成す角を(数12)中のψと見なせば、第1
位相差板12と第2位相差板13の与える位相差を(数
13)および(数14)と同様にして知ることができ
る。その上で、上記楕円率角β’に対応する位相差δ
0’について(数15)を成立させればよい。
The procedure for performing the phase compensation for the auxiliary illumination light beam is the same as that for the main illumination light beam 108. First
The ellipticity angle β ′ immediately after being emitted from the liquid crystal cell 14 by entering the auxiliary illumination light beam without the retardation plate 12 and the second retardation plate 13 is clarified. A plane orthogonal to the auxiliary illumination light ray traveling through the second retardation plate 13 and the second retardation plate 13
If the angle formed by the optical axis of is considered as ψ in (Equation 12), the first
The phase difference provided by the retardation plate 12 and the second retardation plate 13 can be known in the same manner as in (Equation 13) and (Equation 14). Then, the phase difference δ corresponding to the above ellipticity angle β '
It is sufficient to satisfy (Equation 15) for 0 '.

【0142】言い換えれば、主照明光線108について
上記第1の条件を満たすリターデイションΓと傾斜角γ
の組み合わせを明らかにし、その中で補助照明光線につ
いて上記第2の条件を満たすものを選択すればよい。こ
の場合、補助照明光線について厳密に位相補償を行う必
要はなく、位相差板を備える前に対して残存位相差をで
きるだけ減少させるようにすればよい。
In other words, for the main illumination light beam 108, the retardation Γ and the tilt angle γ satisfying the above first condition.
It is only necessary to clarify the combination and to select the auxiliary illumination light beam that satisfies the second condition above. In this case, it is not necessary to strictly perform phase compensation for the auxiliary illumination light beam, and the residual phase difference may be reduced as much as possible before the phase difference plate is provided.

【0143】以下、上記構成の投写型表示装置における
コントラストの改善効果を確認するために行った第2の
実験について述べる。第2の実験は、第1位相差板12
と第2位相差板13のリターデイションΓの大きさと第
2位相差板13の傾斜角γの大きさを除いて、上記第1
の実験と同一の部品、同一の構成、同一の手順で行っ
た。
A second experiment conducted to confirm the effect of improving the contrast in the projection type display device having the above configuration will be described below. The second experiment is the first retardation plate 12
And the magnitude of the retardation Γ of the second retardation plate 13 and the magnitude of the inclination angle γ of the second retardation plate 13,
The same parts, the same configuration, and the same procedure as those of the experiment were performed.

【0144】第1位相差板12と第2位相差板13を備
えない状態で、主照明光線108と補助照明光線(φ=
7度、θ=270度)を入射させ、液晶セル14から出
射した直後の楕円率角を測定した所、各々、β=1度、
β’=5.5度であった。コントラストを測定した所、
主照明光線108について約600であり、補助照明光
線について約60であった。
In a state where the first retardation plate 12 and the second retardation plate 13 are not provided, the main illumination light beam 108 and the auxiliary illumination light beam (φ =
7 degrees, θ = 270 degrees), and the ellipticity angle immediately after exiting from the liquid crystal cell 14 was measured. Β = 1 degree,
β '= 5.5 degrees. When I measured the contrast,
It was about 600 for the main illuminating ray 108 and about 60 for the auxiliary illuminating ray.

【0145】第1位相差板12、第2位相差板13は、
上記第1の実験に用いたものと同じポリカーボネイト製
延伸透明樹脂フィルムを用い、厚みDのみを異ならせ
て、波長540nmの光に対するリターデイションΓを5
00nmとした。これは、種々の検討から、リターディシ
ョンΓを500nmとした場合に、補助照明光線のコント
ラストが最も改善されたことによる。
The first retardation plate 12 and the second retardation plate 13 are
The same stretched transparent resin film made of polycarbonate as that used in the first experiment was used, and only the thickness D was changed to give a retardation Γ of 5 for light with a wavelength of 540 nm.
00 nm. This is because, from various studies, when the retardation Γ was set to 500 nm, the contrast of the auxiliary illumination light beam was most improved.

【0146】第1位相差板12と第2位相差板13を、
上記第1の実験と同様に付加し、第2位相差板13をγ
=7度となるように傾けた所、主照明光線108につい
て黒表示状態の光出力強度が最小となった。その時のコ
ントラストは、主照明光線108について約900に、
補助照明光線について約250に改善された。補助照明
光線について、液晶セル14を出射した直後の楕円率角
を測定したところ、β=1.5度まで減少していること
を確認した。
The first retardation plate 12 and the second retardation plate 13 are
The second retardation film 13 is added in the same manner as in the first experiment, and
The light output intensity of the main illuminating light beam 108 in the black display state became the minimum when tilted so as to be 7 degrees. The contrast at that time is about 900 for the main illumination light beam 108,
Improved to about 250 for auxiliary illumination light. When the ellipticity angle of the auxiliary illumination light beam immediately after exiting the liquid crystal cell 14 was measured, it was confirmed that β was reduced to 1.5 °.

【0147】比較のために、補助照明光線について上記
第1の実験を再度行いコントラストを測定した所、約1
50であった。従って、第2の実験に用いた構成は、第
1の実験に用いた構成よりも補助照明光線についてより
コントラストの改善できることがわかった。コントラス
トの視角依存特性を測定した結果を(図11)に示す。
(図11)は(図10)と同一の方法で等コントラスト
曲線を描いている。(図10)に示した第1の実験の結
果と比較して、より良好にコントラストの視角依存特性
が改善されていた。
For comparison, the first experiment was repeated for the auxiliary illumination light beam and the contrast was measured.
It was 50. Therefore, it was found that the configuration used in the second experiment can improve the contrast of the auxiliary illumination light beam more than the configuration used in the first experiment. The result of measuring the viewing angle dependence of the contrast is shown in FIG.
(FIG. 11) draws isocontrast curves in the same way as (FIG. 10). Compared with the result of the first experiment shown in (FIG. 10), the viewing angle dependence of contrast was better improved.

【0148】より良好に位相補償のなされた上記液晶表
示装置とF値が4の投写レンズを用いて(図8)に示す
投写型表示装置を構成した所、スクリーン104の中央
107で測定されたコントラストは、約400に改善さ
れていた。
When the projection type display device shown in FIG. 8 was constructed by using the liquid crystal display device having better phase compensation and the projection lens having the F value of 4, the measurement was made at the center 107 of the screen 104. The contrast was improved to about 400.

【0149】以下、本発明の液晶表示装置のその他の望
ましい構成例を述べる。本発明の液晶表示装置が備える
第1位相差板と第2位相差板は、(図12)に示す透明
体151に保持される構成であってもよい。透明体15
1は、ガラスあるいはアクリルなどの透明プラスチック
からなり、対向する面152と面153に第1位相差板
154と第2位相差板155を備える。延伸透明樹脂フ
ィルムからなる位相差板である場合、粘着層を介して各
々の位相フィルムを貼付すればよい。
Other desirable structural examples of the liquid crystal display device of the present invention will be described below. The first retardation plate and the second retardation plate included in the liquid crystal display device of the present invention may be held by the transparent body 151 shown in (FIG. 12). Transparent body 15
Reference numeral 1 is made of glass or transparent plastic such as acrylic, and is provided with a first retardation plate 154 and a second retardation plate 155 on opposing surfaces 152 and 153. In the case of a retardation plate made of a stretched transparent resin film, each phase film may be attached via an adhesive layer.

【0150】ただし、面152はこれに入射する主照明
光線160に対して直交させ、面153は対向する面1
52に対し傾斜させる。傾斜させる方向と傾斜角は、上
記各々の実施例において第2位相差板を傾斜させる方向
と傾斜角に合わせる。側面156、157、158、1
59のうちいずれかを傾斜させない面152と直交させ
れば、透明体151を保持する上で都合がよい。これ
は、第1位相差板と第2位相差板を保持しやすい構成で
あること、2枚の位相差板を備える場合に界面を4面か
ら2面にできるので透過率を高くできること、の利点が
ある。
However, the surface 152 is orthogonal to the main illuminating light ray 160 which is incident on the surface 152, and the surface 153 is the facing surface 1.
Tilt with respect to 52. The tilting direction and the tilting angle are matched with the tilting direction and the tilting angle of the second retardation plate in each of the above embodiments. Side surfaces 156, 157, 158, 1
It is convenient for holding the transparent body 151 if any one of the 59 is orthogonal to the non-tilted surface 152. This is because the first phase difference plate and the second phase difference plate can be easily held, and when two phase difference plates are provided, the interface can be changed from four faces to two faces, so that the transmittance can be increased. There are advantages.

【0151】本発明の液晶表示装置が備える第1位相差
板と第2位相差板は、(図13)に示す透明体171と
172に保持される構成であってもよい。透明体171
と172は、直方体を傾いた面173と174で分割し
た構成である。第1位相差板175は透明体171の面
177に貼付され、第2位相差板176は透明体171
の面173と透明体172の面174の間に貼付され
る。
The first retardation plate and the second retardation plate included in the liquid crystal display device of the present invention may be held by the transparent bodies 171 and 172 shown in FIG. Transparent body 171
And 172 have a configuration in which a rectangular parallelepiped is divided by inclined surfaces 173 and 174. The first retardation plate 175 is affixed to the surface 177 of the transparent body 171, and the second retardation plate 176 is the transparent body 171.
173 and the surface 174 of the transparent body 172.

【0152】ただし、面177はこれに入射する主照明
光線179に対して直交させ、傾いた面173と174
の傾斜方向と傾き角は、上記各々の実施例において第2
位相差板を傾斜させる方向と傾斜角に合わせる。結合さ
れた透明体171と172の面177と178は、液晶
層と平行とし、第1位相差板175の反対面180に入
射側偏光板を、面178に液晶セルの入射側ガラス基板
を、それぞれ粘着層を介して接着すれば、(図4)に示
した実施例における光学結合と同様の効果を得る。
However, the surface 177 is orthogonal to the main illuminating light ray 179 incident on the surface 177, and the inclined surfaces 173 and 174.
The inclination direction and the inclination angle of the
Match the direction and the tilt angle of the retardation plate. The surfaces 177 and 178 of the combined transparent bodies 171 and 172 are parallel to the liquid crystal layer, the incident side polarization plate is on the opposite surface 180 of the first retardation plate 175, and the incidence side glass substrate of the liquid crystal cell is on the surface 178. If they are adhered via the adhesive layers, the same effect as the optical coupling in the embodiment shown in FIG. 4 can be obtained.

【0153】液晶層の法線と角度をなして進行する光線
を主照明光線とする場合、(図13)に示す構成を(図
14)に示す構成に変形すると有効である。これは、透
明体172の代わりに、液晶セル側に相当する面181
を面177に対して傾斜させた透明体184を用いる。
ただし、面177は所定方向に進行する主照明光線18
2に対して直交させ、面181は液晶層の法線183に
対して直交させる。
In the case where the main illuminating light beam is a light beam that makes an angle with the normal line of the liquid crystal layer, it is effective to transform the structure shown in FIG. 13 into the structure shown in FIG. Instead of the transparent body 172, this is a surface 181 corresponding to the liquid crystal cell side.
Is used with respect to the surface 177.
However, the surface 177 is the main illumination light ray 18 that travels in a predetermined direction.
2 and the surface 181 is orthogonal to the normal line 183 of the liquid crystal layer.

【0154】第1位相差板175は入射側の面177に
貼付されるので、主照明光線182に対して直交させて
保持できる。第2位相差板176を貼付する面173と
174は面177に対して所定方向に所定量だけ傾斜さ
せているので、第2位相差板176を正しく容易に保持
することができる。出射側の面181をこのように傾斜
させると、液晶セルの入射側ガラス基板に粘着層を介し
て接着できるので、容易に光学結合できる利点がある。
Since the first retardation plate 175 is attached to the surface 177 on the incident side, it can be held orthogonal to the main illuminating light beam 182. Since the surfaces 173 and 174 to which the second retardation plate 176 is attached are inclined with respect to the surface 177 by a predetermined amount in a predetermined direction, the second retardation plate 176 can be correctly and easily held. When the exit side surface 181 is inclined in this way, it can be bonded to the entrance side glass substrate of the liquid crystal cell via the adhesive layer, and thus there is an advantage that optical coupling can be easily performed.

【0155】特に、入射側の面177を主照明光線18
2に直交させると、空気中で主照明光線182と同一の
角度を成して進行する光線の対称性が、第1位相差板1
75、第2位相差板176、液晶セルのそれぞれを構成
する媒質中においても保存される。これは、黒表示状態
の液晶層の与える位相差の視覚依存特性と2枚の位相差
板の与える位相差の視覚依存特性を良好に相関させる上
で都合が良い。
In particular, the surface 177 on the incident side is provided with the main illumination light beam 18
When made orthogonal to 2, the symmetry of the light rays traveling at the same angle as the main illumination light ray 182 in the air is determined by the first retardation plate 1
75, the second retardation film 176, and the liquid crystal cell are also stored in the medium. This is convenient for correlating the visual dependence characteristic of the phase difference provided by the liquid crystal layer in the black display state with the visual dependence characteristic of the phase difference provided by the two retardation plates.

【0156】第1位相差板と第2位相差板の各々のリタ
ーディションは、視感度の高い波長540nmの光につい
て100nm以上1000nm以下であることが好ましいこ
とが見い出された。リタデーションが100nm未満の位
相差板を用いると位相差板を傾斜させる角度が大きくな
りすぎて問題がある。傾斜させた位相差板が占有する光
路が大きくなり、奥行き方向にコンパクトな液晶表示装
置を実現できない。リタデーションが1000nmを越え
る位相差板を用いると、位相差板の傾斜角を調整する時
に感度が高くなりすぎて問題があった。また、わずかな
特性ばらつきや素子の配置誤差の影響で大きな位相補償
ずれを生じ、良好にコントラストを改善することができ
なかった。
It has been found that the retardation of each of the first retardation plate and the second retardation plate is preferably 100 nm or more and 1000 nm or less with respect to light having a wavelength of 540 nm with high visibility. If a retardation plate having a retardation of less than 100 nm is used, the angle at which the retardation plate is tilted becomes too large and there is a problem. The optical path occupied by the tilted phase difference plate becomes large, and a compact liquid crystal display device in the depth direction cannot be realized. If a retardation plate having a retardation of more than 1000 nm is used, there is a problem that the sensitivity becomes too high when adjusting the tilt angle of the retardation plate. Moreover, a large phase compensation shift occurs due to a slight characteristic variation and an element placement error, and the contrast cannot be improved satisfactorily.

【0157】例えば(図4)に示す構成において楕円率
角β=約1度の楕円偏光を位相補償する場合を述べる。
リタデーションが100nm未満の位相差板を用いた場
合、第2位相差板は約15度以上傾斜させる必要があっ
た。リタデーションが1000nmを越える位相差板を用
いた場合、第2位相差板は約4度以下の傾斜角の中で最
適な位置を検討したが、感度が高すぎて良好にコントラ
ストを改善できなかった。いずれも、第2位相差板の傾
斜角が実用的でない値と言える。
For example, in the configuration shown in FIG. 4, a case will be described in which the elliptically polarized light having the ellipticity angle β = 1 ° is phase-compensated.
When a retardation plate having a retardation of less than 100 nm was used, the second retardation plate had to be tilted by about 15 degrees or more. When a retardation plate having a retardation of more than 1000 nm was used, the optimum position of the second retardation plate was examined within the tilt angle of about 4 degrees or less, but the sensitivity was too high to improve the contrast satisfactorily. . In either case, it can be said that the inclination angle of the second retardation plate is a value that is not practical.

【0158】第2位相差板の傾斜角γまたはγ’は、厳
密に(数16)または(数21)を満たさなくてもよ
い。例えば、第2位相差板の傾きを所定方向に所定範囲
だけ変化させる機構を備え、黒表示状態の光出力が最小
となるように傾斜角を調整すればよい。これは、各素子
の特性のばらつきや配置誤差があっても、より最適な条
件で位相補償できる利点がある。このため、第1位相差
板と第2位相差板のうちで特に傾斜させるものは、入射
側偏光板と液晶セルと出射側偏光板から分離されて配置
状態が可変であることが好ましい。
The inclination angle γ or γ ′ of the second retardation plate may not strictly satisfy (Equation 16) or (Equation 21). For example, a mechanism for changing the inclination of the second retardation plate in a predetermined direction within a predetermined range may be provided, and the inclination angle may be adjusted so that the light output in the black display state is minimized. This has the advantage that the phase compensation can be performed under more optimal conditions even if there are variations in the characteristics of each element or placement errors. For this reason, it is preferable that the first retardation plate and the second retardation plate that are particularly inclined be separated from the incident side polarization plate, the liquid crystal cell, and the emission side polarization plate, and the arrangement state be variable.

【0159】第1位相差板と第2位相差板の周囲の空間
を光学結合する場合、光学結合材料として、透明液体あ
るいはゲル状シリコーンゴムを用いると次の利点があ
る。特に透明液体であれば、透明液体を充填した状態で
位相差板の配置状態を自由に調整できるので好ましい。
ゲル状シリコーンゴムは、変形を与えてもその変形量が
僅かであれば剥離や亀裂を発生せず、また、内部に複屈
折をほとんど生じさせない。従って、位相差板の周囲に
シリコーンゲルを充填した状態であっても、位相差板の
配置状態を微調整できるので好ましい。
When optically coupling the space around the first retardation plate and the second retardation plate, the use of a transparent liquid or gel silicone rubber as the optical coupling material has the following advantages. In particular, a transparent liquid is preferable because the arrangement state of the retardation plate can be freely adjusted with the transparent liquid being filled.
Even if a gel-like silicone rubber is deformed, if the deformation amount is small, peeling or cracking does not occur, and almost no birefringence occurs inside. Therefore, even if the silicone gel is filled around the retardation plate, the arrangement state of the retardation plate can be finely adjusted, which is preferable.

【0160】上述の全ての実施例では、液晶層に近い側
にある第2位相差板を傾ける場合について特に説明した
が、本発明の効果はこれに限定されない。入射する主照
明光線に対する第1位相差板と第2位相差板の順序を入
れ換えてもよい。また、第1位相差板と第2位相差板の
両方を傾斜させる構成であっても構わない。
In all of the above-mentioned embodiments, the case where the second retardation plate located on the side closer to the liquid crystal layer is tilted has been described, but the effect of the present invention is not limited to this. The order of the first retardation plate and the second retardation plate with respect to the incident main illumination light beam may be exchanged. Further, it may be configured such that both the first retardation plate and the second retardation plate are tilted.

【0161】いずれも液晶セルより入射側に第1位相差
板と第2位相差板を備える構成について述べたが、液晶
セルより出射側に備える構成であっても構わない。液晶
セルより出射側に位相差板を備える構成は、位相差板や
これを支持する基材が液晶層上の光学像を歪ませる可能
性があると共に、界面の不要反射により発生する迷光が
コントラストを低下させる影響が大きい。従って、第1
位相差板と第2位相差板を液晶セルより入射側に備える
構成であることがより望ましい。
Although all of the configurations described above are provided with the first retardation plate and the second retardation plate on the incident side of the liquid crystal cell, the configuration may be provided on the emission side of the liquid crystal cell. In the configuration with a retardation plate on the exit side of the liquid crystal cell, the retardation plate and the substrate that supports it may distort the optical image on the liquid crystal layer, and stray light generated by unnecessary reflection at the interface contrasts. Has a large effect on reducing. Therefore, the first
More preferably, the retardation plate and the second retardation plate are provided on the incident side of the liquid crystal cell.

【0162】本発明の液晶表示装置に用いる位相差板と
して、例えば以下に述べる透明樹脂を延伸させたものを
用いることができる。例えば、正の単軸結晶を近似する
ものとして、ポリカーボネート、ポリビニルアルコール
(PVA)、ポリエーテルサルホン(PES)、ポリフ
ッ化ビニリデン、ポリエチレンテレフタレート(PE
T)である。例えば、負の単軸結晶を近似するものとし
て、ポリスチレン、ポリメチルメタクリレートである。
As the retardation plate used in the liquid crystal display device of the present invention, for example, a stretched transparent resin described below can be used. For example, as an approximation of a positive uniaxial crystal, polycarbonate, polyvinyl alcohol (PVA), polyether sulfone (PES), polyvinylidene fluoride, polyethylene terephthalate (PE
T). For example, polystyrene and polymethylmethacrylate are used to approximate a negative uniaxial crystal.

【0163】第1位相差板と第2位相差板は、特に同一
の位相差板である必要はない。材料の異なる位相差板で
あっても、リターデイションをおよそ等しくすれば良
い。この場合、液晶セルと位相差板の特性の波長依存性
を考慮し、必要なより広い波長帯域の光について良好に
位相補償を実現できる適当な組み合わせとすればよい。
The first retardation plate and the second retardation plate do not have to be the same retardation plate. Even if the retardation plates are made of different materials, the retardations may be approximately equal. In this case, considering the wavelength dependence of the characteristics of the liquid crystal cell and the retardation plate, an appropriate combination may be used that can achieve good phase compensation for light in a wider wavelength band that is necessary.

【0164】一方、光学軸を互いに直交させた第1位相
差板と第2位相差板は、いずれもが主照明光線に直交す
る状態で主照明光線に全く位相差を与えないことが特に
好ましい。従って、良好に特性が一致した第1位相差板
と第2位相差板を用いることが望まれる。各々の位相差
板を同一材料からなる同一設計の位相差板とすると、特
性を揃えることが容易となる。同一ロットの製造工程を
経た2枚の位相差板を用いると、より良好に同一の特性
を有する2枚の位相差板を得ることができる。
On the other hand, it is particularly preferable that both the first retardation plate and the second retardation plate whose optical axes are orthogonal to each other do not give any phase difference to the main illumination light beam in a state where they are orthogonal to the main illumination light beam. . Therefore, it is desirable to use the first retardation plate and the second retardation plate whose characteristics are well matched. If the respective retardation plates are made of the same material and have the same design, the characteristics can be easily made uniform. If two retardation plates that have undergone the manufacturing process of the same lot are used, two retardation plates having the same characteristics can be obtained better.

【0165】[0165]

【発明の効果】以上述べたように本発明の液晶表示装置
は、有効に位相補償を行う2枚の位相差板を備えること
で黒表示状態の光出力強度を減少させることができ、任
意方向に進行する照明光線についてコントラストの良好
な光学像を得ることができる。更に、本発明の液晶表示
装置を用いて投写型表示装置を構成すれば、コントラス
トの良好な投写画像を呈示できる投写型表示装置を実現
できる。
As described above, the liquid crystal display device of the present invention can reduce the light output intensity in the black display state by providing the two retardation plates for effectively performing the phase compensation, and can reduce the arbitrary direction. It is possible to obtain an optical image having a good contrast with respect to the illumination light beam that travels to. Furthermore, if a projection display device is configured using the liquid crystal display device of the present invention, it is possible to realize a projection display device that can present a projected image with good contrast.

【図面の簡単な説明】[Brief description of drawings]

【図1】楕円偏光の状態を表わすパラメータを説明する
概略線図
FIG. 1 is a schematic diagram illustrating parameters representing the state of elliptically polarized light.

【図2】本発明の液晶表示装置の第1の実施例の構成を
示す斜視図
FIG. 2 is a perspective view showing the configuration of the first embodiment of the liquid crystal display device of the present invention.

【図3】位相差板の機能を表わす屈折率楕円体を説明す
る斜視図
FIG. 3 is a perspective view illustrating an index ellipsoid representing the function of a retardation plate.

【図4】本発明の液晶表示装置の第2の実施例の構成を
示す斜視図
FIG. 4 is a perspective view showing the configuration of a second embodiment of the liquid crystal display device of the present invention.

【図5】本発明の液晶表示装置の第3の実施例の構成を
示す斜視図
FIG. 5 is a perspective view showing the configuration of a third embodiment of the liquid crystal display device of the present invention.

【図6】Y−Z断面方向について液晶セルと位相差板の
関係を説明する概略線図
FIG. 6 is a schematic diagram illustrating a relationship between a liquid crystal cell and a retardation plate in a YZ cross section direction.

【図7】X−Z断面方向について液晶セルと位相差板の
関係を説明する概略線図
FIG. 7 is a schematic diagram illustrating the relationship between a liquid crystal cell and a retardation plate in the XZ sectional direction.

【図8】本発明の投写型表示装置の第1の実施例の構成
を示す概略構成図
FIG. 8 is a schematic configuration diagram showing a configuration of a first embodiment of a projection display device of the present invention.

【図9】本発明の投写型表示装置の第2の実施例の構成
を示す概略構成図
FIG. 9 is a schematic configuration diagram showing the configuration of a second embodiment of the projection display device of the present invention.

【図10】本発明の液晶表示装置の一実施例におけるコ
ントラストと視角の関係を示す特性図
FIG. 10 is a characteristic diagram showing the relationship between contrast and viewing angle in an embodiment of the liquid crystal display device of the present invention.

【図11】本発明の液晶表示装置の他の実施例における
コントラストと視角の関係を示す特性図
FIG. 11 is a characteristic diagram showing the relationship between contrast and viewing angle in another embodiment of the liquid crystal display device of the present invention.

【図12】本発明の液晶表示装置の一実施例が備える透
明体の構成を示す斜視図
FIG. 12 is a perspective view showing a configuration of a transparent body included in an embodiment of the liquid crystal display device of the present invention.

【図13】本発明の液晶表示装置の他の実施例が備える
透明体の構成を示す斜視図
FIG. 13 is a perspective view showing a configuration of a transparent body included in another embodiment of the liquid crystal display device of the present invention.

【図14】本発明の液晶表示装置のさらに他の実施例が
備える透明体の構成を示す斜視図
FIG. 14 is a perspective view showing a configuration of a transparent body included in still another embodiment of the liquid crystal display device of the present invention.

【図15】従来のアクティブマトリックス方式TN液晶
セルの構成を示す断面図
FIG. 15 is a sectional view showing a structure of a conventional active matrix TN liquid crystal cell.

【図16】電界を加えない状態におけるTN液晶分子の
配向状態を説明する斜視図
FIG. 16 is a perspective view illustrating an alignment state of TN liquid crystal molecules in a state where no electric field is applied.

【図17】最大印加電圧に対応する電界を加えた状態に
おけるTN液晶分子の配向状態を説明する斜視図
FIG. 17 is a perspective view illustrating an alignment state of TN liquid crystal molecules in a state where an electric field corresponding to the maximum applied voltage is applied.

【図18】従来の液晶表示装置のコントラストと視角の
関係の一例を示す特性図
FIG. 18 is a characteristic diagram showing an example of the relationship between the contrast and the viewing angle of a conventional liquid crystal display device.

【図19】従来の投写型表示装置の構成を示す概略構成
FIG. 19 is a schematic configuration diagram showing a configuration of a conventional projection display device.

【図20】従来の投写型表示装置の構成を示す概略構成
FIG. 20 is a schematic configuration diagram showing a configuration of a conventional projection display device.

【符号の説明】[Explanation of symbols]

11 入射側偏光板 12、41、154、175 第1位相差板 13、42、155、176 第2位相差板 14 液晶セル 15 出射側偏光板 16 入射側ガラス基板 17 出射側ガラス基板 18 TN液晶層 19、20 ラビング方向 24、108、141、142、143 主照明光線 25、26 偏光軸方位 27、28、43、44 光学軸方位 35 閉容器 101、121、122、123 液晶表示装置 102、124 光源 103、134 投写レンズ 104 スクリーン 125、126、131、132 ダイクロイックミラ
ー 127、133 平面ミラー 128、129、130 フィールドレンズ 151、171、172、184 透明体
11 incident-side polarizing plate 12, 41, 154, 175 first retardation plate 13, 42, 155, 176 second retardation plate 14 liquid crystal cell 15 emission-side polarizing plate 16 incident-side glass substrate 17 emission-side glass substrate 18 TN liquid crystal Layers 19, 20 Rubbing directions 24, 108, 141, 142, 143 Main illumination rays 25, 26 Polarization axis azimuths 27, 28, 43, 44 Optical axis azimuths 35 Closed containers 101, 121, 122, 123 Liquid crystal display devices 102, 124 Light source 103, 134 Projection lens 104 Screen 125, 126, 131, 132 Dichroic mirror 127, 133 Flat mirror 128, 129, 130 Field lens 151, 171, 172, 184 Transparent body

【手続補正書】[Procedure amendment]

【提出日】平成6年8月11日[Submission date] August 11, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【数1】 [Equation 1]

【数2】 [Equation 2]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】[0025]

【課題を解決するための手段】上記課題を解決するため
に本発明の液晶表示装置は、空間的に光を変調して光学
像を形成するものであって、主として特定方位の直線偏
光の光が出射する入射側偏光手段と、画素電極を有する
入射側透明基板と出射側透明基板との間にねじれ角が約
90度であるツイストネマチック液晶を挟持してなる液
晶セルと、主として特定方位の直線偏光の光を選択的に
通過させる出射側偏光手段と、正の単軸結晶を近似した
機能を有する第1位相差手段と第2位相差手段とを備
え、第1位相差手段および第2位相差手段は入射側偏光
手段と液晶セルの間の光路あるいは液晶セルと出射側偏
光手段の間の光路のいずれかに配置され、入射側偏光手
段の偏光方位は入射側透明基板に接する液晶分子の長軸
方位とおよそ一致するかあるいはおよそ直交し、光学像
を形成する光を代表する主たる波長の主たる光線を主照
明光線と表し、入射側偏光手段の偏光方位の射影T1と
出射側偏光手段の偏光方位の射影T2と第1位相差手段
の光学軸の射影S1と第2位相差手段の光学軸の射影S
2を主照明光線に直交する平面上に定義した時に、T1
とT2は約90度の角度をなし、S1とS2は約90度
の角度をなし、T1とS1は約45度の角度をなすよう
にし、第1位相差手段の光学軸と第1位相差手段中を進
行する主照明光線に直交する平面のなす角をψ1、第2
位相差手段の光学軸と第2位相差手段中を進行する主照
明光線に直交する平面のなす角をψ2とし、第1位相差
手段と第2位相差手段はψ1とψ2が0度の時に主照明
光線に対して大きさが同じで符号の異なる位相差を与え
るようにし、最も暗い光学像を形成するように駆動され
た液晶セルと出射側偏光手段を通過後の主照明光線の光
強度が最小となるように、ψ1とψ2の少なくともいず
れか一方を0度と異なる所定の大きさとするものであ
る。
In order to solve the above-mentioned problems, the liquid crystal display device of the present invention is designed to spatially modulate light to produce an optical signal.
It forms an image and is mainly used for linear deviation in a specific direction.
It has an incident-side polarization means for emitting light and a pixel electrode.
The twist angle between the transparent substrate on the incident side and the transparent substrate on the outgoing side is approximately
Liquid with 90 degree twisted nematic liquid crystal sandwiched
Crystal cell and mainly for linearly polarized light in a specific direction
Approximate the output side polarization means to pass and the positive uniaxial crystal
A first phase difference means and a second phase difference means having a function are provided.
The first phase difference means and the second phase difference means are incident side polarized light.
Means between the liquid crystal cell and the liquid crystal cell
It is arranged in one of the optical paths between the light means and has an incident side polarization hand.
The polarization direction of the step is the long axis of the liquid crystal molecules in contact with the incident side transparent substrate.
Optical image that is approximately the same as or approximately orthogonal to the azimuth
The main rays of the main wavelength that represent the light that forms the
It is referred to as a bright ray, and is a projection T1 of the polarization direction of the incident side polarization means.
Projection T2 of the polarization direction of the emitting side polarization means and the first phase difference means
Projection S1 of the optical axis of and the projection S of the optical axis of the second phase difference means
When 2 is defined on the plane orthogonal to the main illumination ray, T1
And T2 make an angle of about 90 degrees, and S1 and S2 make about 90 degrees.
And T1 and S1 form an angle of about 45 degrees.
To advance through the optical axis of the first phase difference means and the first phase difference means.
The angle formed by the plane orthogonal to the main illuminating ray is ψ1, the second
The optical axis of the phase difference means and the main light traveling through the second phase difference means
The angle formed by the plane orthogonal to the bright ray is ψ2, and the first phase difference is
Means and the second phase difference means are the main illumination when ψ1 and ψ2 are 0 degrees.
Give phase differences of the same magnitude but different signs to the rays
And driven to form the darkest optical image
Light of the main illuminating light after passing through the liquid crystal cell and the output side polarization means
At least one of ψ1 and ψ2 so that the intensity is minimized.
One of them has a predetermined size different from 0 degree.
It

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】本発明の投写型表示装置は、照明光を出力
する光源と、照明光を空間的に変調して光学像を形成す
る液晶表示装置と、光学像をスクリーン上に投影する投
写レンズとを備え、液晶表示装置として上記の液晶表示
装置を用い、液晶表示装置の有効表示領域の重心近傍を
通過して投写レンズの入射瞳の重心近傍に到る光線を主
照明光線とするものである。
The projection display device of the present invention outputs illumination light.
And the illumination light are spatially modulated to form an optical image.
LCD display device and a projector for projecting an optical image on the screen.
And a liquid crystal display device as a liquid crystal display device.
Use the device to adjust the vicinity of the center of gravity of the effective display area of the liquid crystal display device.
The rays that pass through and reach the vicinity of the center of gravity of the entrance pupil of the projection lens are mainly
It is used as an illumination light beam.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】本発明の他の投写型表示装置は、三原色の
色成分を含む照明光を出力する光源と、光源から出射す
る照明光を三原色の照明光に分離する色分解手段と、色
分解手段から出射する三原色の照明光を空間的に変調し
て三原色に対応した3つの光学像を形成する3つの液晶
表示装置と、3つの液晶表示装置から出射する三原色の
照明光を1つに合成する色合成手段と、色合成手段から
出射する照明光が入射し3つの光学像を重畳させてスク
リーン上に投影する投写レンズとを備え、液晶表示装置
として上記の液晶表示装置を用い、液晶表示装置の各々
について、有効表示領域の重心近傍を通過して投写レン
ズの入射瞳の重心近傍に到る光線を主照明光線とするも
のである。
Another projection type display device of the present invention is provided with three primary colors.
A light source that outputs illumination light containing color components and a light source that emits the light
Color separation means to separate the illumination light into three primary colors
The three primary colors of illumination light emitted from the resolving means are spatially modulated.
Liquid crystals that form three optical images corresponding to the three primary colors
The display device and the three primary colors emitted from the three liquid crystal display devices
From the color synthesizing means for synthesizing the illumination light into one and the color synthesizing means
The emitted illumination light is incident and the three optical images are superimposed and
A liquid crystal display device having a projection lens for projecting on a lean
The above liquid crystal display device is used as
, The projection lens passes through the vicinity of the center of gravity of the effective display area.
The main illumination ray is the ray that reaches the center of gravity of the entrance pupil.
Of.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】本発明の更に他の投写型表示装置は、照明
光を出力する光源と、照明光を空間的に変調して光学像
を形成する液晶表示装置と、光学像をスクリーン上に投
影する投写レンズと、投写レンズを光軸と直交する方向
におよそ平行移動させる手段とを備え、液晶表示装置と
して上記の液晶表示装置を用い、液晶表示装置の有効表
示領域の重心近傍を通過して投写レンズの入射瞳の重心
近傍に到る光線を主照明光線とし、液晶表示装置の備え
る第1位相差手段あるいは第2位相差手段の少なくとも
いずれか一方は、投写レンズの平行移動に伴って変化す
る主照明光線に合わせて配置状態を変化させるものであ
る。
Still another projection display device of the present invention is a lighting system.
A light source that outputs light and an optical image that spatially modulates the illumination light
LCD device that forms the image and the optical image on the screen.
The projection lens that casts shadows and the direction in which the projection lens is orthogonal to the optical axis
And a liquid crystal display device.
Then, using the above liquid crystal display device,
Center of the entrance pupil of the projection lens
The liquid crystal display device is equipped with the light beam that reaches the vicinity as the main illumination light beam.
At least the first phase difference means or the second phase difference means
Either one changes as the projection lens moves in parallel.
The arrangement state is changed according to the main illumination light beam.
It

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0097[Correction target item name] 0097

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0097】[0097]

【数17】 [Equation 17]

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図20[Name of item to be corrected] Fig. 20

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図20】 FIG. 20

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】照明光束を略直線偏光の光に変換する入射
側偏光手段と、前記入射側偏光手段から出射した光に空
間的に異なる位相変化を与える液晶セルと、前記液晶セ
ルから出射する光の中で特定偏光方位の光のみを主とし
て選択的に出射せしめる出射側偏光手段と、前記入射側
偏光手段と前記液晶セルの間の光路あるいは前記液晶セ
ルと前記出射側偏光手段の間の光路のいずれかに揃って
配置される第1位相差手段および第2位相差手段とを備
え、前記液晶セルは画素電極を有する入射側透明基板と
出射側透明基板の間にツイストネマチック液晶をねじれ
角が略90度となるように挟持してなり、前記入射側偏
光手段から出射する光の主たる偏光方位は前記入射側透
明基板に接する液晶分子の分子長軸と略平行あるいは略
直交し、前記第1位相差手段と前記第2位相差手段は機
能的に正の単軸結晶を近似してなり、前記第1位相差手
段が光学軸に直交して進行する光線に与える位相差と前
記第2位相差手段が光学軸に直交して進行する光線に与
える位相差は略同一とし、前記照明光束を代表する主た
る波長の主たる光線を主照明光線と表して、前記主照明
光線に略直交する1つの平面上において前記入射側偏光
手段が出射せしめる光の主たる偏光方位の射影T1と前
記出射側偏光手段が出射せしめる光の主たる偏光方位の
射影T2と前記第1位相差手段の光学軸の射影S1と前
記第2位相差手段の光学軸の射影S2の各々を定義した
場合に、前記T1と前記T2を略直交せしめ、前記S1
と前記S2を略直交せしめ、前記T1と前記S1のなす
角を略45度にせしめ、前記第1位相差手段中を伝搬す
る前記主照明光線に直交する平面と前記第1位相差手段
の光学軸のなす角をψ1とし、前記第2位相差手段中を
伝搬する前記主照明光線に直交する平面と前記第2位相
差手段の光学軸のなす角をψ2とし、最黒表示となるよ
うに所定の電圧を印加した前記液晶セルと前記出射側偏
光手段とを通過した直後の前記主照明光線の光強度が最
小となるように、前記角ψ1と前記角ψ2を少なくとも
いずれか一方が0度でない互いに異なる所定の大きさと
したことを特徴とする液晶表示装置。
1. An incident side polarization means for converting an illumination light beam into substantially linearly polarized light, a liquid crystal cell for giving spatially different phase changes to the light emitted from the incident side polarization means, and the light emitted from the liquid crystal cell. Outgoing side polarization means for mainly selectively emitting only light of a specific polarization direction in light, an optical path between the incident side polarization means and the liquid crystal cell, or an optical path between the liquid crystal cell and the emission side polarization means. A first retardation means and a second retardation means arranged in line with each other, wherein the liquid crystal cell has twisted nematic liquid crystal between the incident side transparent substrate and the emission side transparent substrate having pixel electrodes. Are sandwiched so as to be approximately 90 degrees, and the main polarization direction of the light emitted from the incident side polarization means is substantially parallel or substantially orthogonal to the molecular long axis of liquid crystal molecules in contact with the incident side transparent substrate. 1 The phase difference means and the second phase difference means are functionally similar to a positive uniaxial crystal, and the first phase difference means gives the phase difference given to the light ray traveling orthogonal to the optical axis and the second phase difference. The means give substantially the same phase difference to the light rays traveling orthogonal to the optical axis, and the main light ray having a main wavelength representative of the illumination light flux is referred to as a main illumination light ray, and one plane substantially orthogonal to the main illumination light ray. Above, the projection T1 of the main polarization direction of the light emitted by the incident side polarization means, the projection T2 of the main polarization direction of the light emitted by the exit side polarization means, the projection S1 of the optical axis of the first phase difference means, and the above When the projections S2 of the optical axes of the second phase difference means are defined, the T1 and the T2 are made substantially orthogonal to each other, and the S1 is
And S2 are made substantially orthogonal to each other, the angle formed by T1 and S1 is made to be substantially 45 degrees, and a plane orthogonal to the main illumination light beam propagating in the first phase difference means and the optical of the first phase difference means. The angle formed by the axis is ψ1, and the angle formed by the optical axis of the second phase difference means and the plane orthogonal to the main illumination light beam propagating in the second phase difference means is ψ2, so that the blackest display is obtained. At least one of the angle ψ1 and the angle ψ2 is 0 degree so that the light intensity of the main illumination light beam immediately after passing through the liquid crystal cell to which a predetermined voltage is applied and the emission side polarization means is minimized. A liquid crystal display device having a predetermined size different from each other.
【請求項2】主照明光線の波長をλとし、最黒表示とな
るように所定の電圧を印加した液晶セルがこれを通過す
る前記主照明光線に与える位相差δ0をS2方向の偏光
成分のS1方向の偏光成分に対する位相の進み量(ラジ
アンを単位とする)で表わした場合に、位相差δ0が負
となるように前記第1位相差手段と前記第2位相差手段
の光学軸方位を選択し、第1位相差手段と第2位相差手
段は同一の位相差板からなり、波長λの光について前記
位相差板の光学軸方向の屈折率をNs、光学軸と直交す
る方向の屈折率をNf、光学軸に直交して進行する光線
に対する厚みをD、定数K=Nf/Ns、とおき、前記
第1位相差手段は角ψ1が略0度となるように配置せし
め、前記第2位相差手段は角ψ2が(数1)を満たすよ
うに配置せしめることを特徴とする請求項1記載の液晶
表示装置。 【数1】
2. A phase difference .delta.0 given to the main illumination light beam passing through it by a liquid crystal cell to which a predetermined voltage is applied so that the blackest display is obtained, where the wavelength of the main illumination light beam is .lamda. The optical axis azimuths of the first phase difference means and the second phase difference means are set so that the phase difference δ0 becomes negative when represented by the amount of advance of the phase with respect to the polarization component in the S1 direction (unit is radian). The first phase difference means and the second phase difference means are made of the same phase difference plate, and the refractive index in the optical axis direction of the phase difference plate is Ns for the light of the wavelength λ, and the refractive index in the direction orthogonal to the optical axis is The ratio is Nf, the thickness for a ray traveling orthogonal to the optical axis is D, and the constant is K = Nf / Ns, and the first retardation means is arranged so that the angle ψ1 is approximately 0 degrees, and 2 The phase difference means should be arranged so that the angle ψ2 satisfies (Equation 1). The liquid crystal display device according to claim 1, wherein. [Equation 1]
【請求項3】第1位相差手段と第2位相差手段の光学軸
の各々と最黒表示となるように所定の電圧を印加した液
晶セル内の液晶層の中央近傍に位置する液晶分子の分子
長軸との成す角の各々が、それぞれ90度により近くな
るように前記第1位相差手段と前記第2位相差手段の各
々の配置状態を選択することを特徴とする請求項1記載
の液晶表示装置。
3. A liquid crystal molecule located in the vicinity of the center of a liquid crystal layer in a liquid crystal cell to which a predetermined voltage is applied so as to achieve the blackest display with each of the optical axes of the first phase difference means and the second phase difference means. 2. The arrangement state of each of the first retardation means and the second retardation means is selected so that each angle formed by the molecular long axis becomes closer to 90 degrees. Liquid crystal display device.
【請求項4】液晶セルの表示領域を代表する一点におい
て主照明光線と所定の角度をなして交差する前記主照明
光線と同一波長の有効光線群を考え、前記有効光線群の
中で最黒表示となるように所定の電圧を印加した前記液
晶セルが最も大きな位相差を与える光線を補助照明光線
と表わし、前記最黒表示となるように所定の電圧を印加
した液晶セルと前記出射側偏光手段とを通過した直後の
前記補助照明光線の光強度が最小となるように、第1位
相差手段と第2位相差手段の各々のリターデイション
(屈折率差×厚み)を定めることを特徴とする請求項1
記載の液晶表示装置。
4. Considering an effective light ray group having the same wavelength as the main illumination light ray intersecting the main illumination light ray at a predetermined angle at a point representative of the display area of the liquid crystal cell, and the blackest of the effective light ray groups is considered. A light beam that gives the largest phase difference to the liquid crystal cell to which a predetermined voltage is applied to display is referred to as an auxiliary illumination light beam, and a liquid crystal cell to which a predetermined voltage is applied to provide the blackest display and the output side polarization Retardation (refractive index difference × thickness) of each of the first phase difference means and the second phase difference means is determined so that the light intensity of the auxiliary illumination light beam immediately after passing through the means is minimized. Claim 1
The described liquid crystal display device.
【請求項5】照明光束を略直線偏光の光に変換する入射
側偏光手段と、前記入射側偏光手段から出射した光に空
間的に異なる位相変化を与える液晶セルと、前記液晶セ
ルから出射する光の中で特定偏光方位の光のみを主とし
て選択的に出射せしめる出射側偏光手段と、前記入射側
偏光手段と前記液晶セルの間の光路あるいは前記液晶セ
ルと前記出射側偏光手段の間の光路のいずれかに揃って
配置される第1位相差手段および第2位相差手段とを備
え、前記液晶セルは画素電極を有する入射側透明基板と
出射側透明基板の間にツイストネマチック液晶をねじれ
角が略90度となるように挟持してなり、前記入射側偏
光手段から出射する光の主たる偏光方位は前記入射側透
明基板に接する液晶分子の分子長軸と略平行あるいは略
直交し、前記第1位相差手段と前記第2位相差手段は機
能的に負の単軸結晶を近似してなり、前記第1位相差手
段が光学軸に直交して進行する光線に与える位相差と前
記第2位相差手段が光学軸に直交して進行する光線に与
える位相差は略同一とし、前記照明光束を代表する主た
る波長の主たる光線を主照明光線と表して、前記主照明
光線に略直交する1つの平面上において前記入射側偏光
手段が出射せしめる光の主たる偏光方位の射影T1と前
記出射側偏光手段が出射せしめる光の主たる偏光方位の
射影T2と前記第1位相差手段の光学軸の射影S1と前
記第2位相差手段の光学軸の射影S2の各々を定義した
場合に、前記T1と前記T2を略直交せしめ、前記S1
と前記S2を略直交せしめ、前記T1と前記S1のなす
角を略45度にせしめ、前記第1位相差手段中を伝搬す
る前記主照明光線に直交する平面と前記第1位相差手段
の光学軸のなす角をψ1とし、前記第2位相差手段中を
伝搬する前記主照明光線に直交する平面と前記第2位相
差手段の光学軸のなす角をψ2とし、最黒表示となるよ
うに所定の電圧を印加した前記液晶セルと前記出射側偏
光手段とを通過した直後の前記主照明光線の光強度が最
小となるように、前記角ψ1と前記角ψ2を少なくとも
いずれか一方が0度でない互いに異なる所定の大きさと
したことを特徴とする液晶表示装置。
5. An incident side polarization means for converting an illumination light beam into substantially linearly polarized light, a liquid crystal cell for giving spatially different phase changes to the light emitted from the incident side polarization means, and the light emitted from the liquid crystal cell. Outgoing side polarization means for mainly selectively emitting only light of a specific polarization direction in light, an optical path between the incident side polarization means and the liquid crystal cell, or an optical path between the liquid crystal cell and the emission side polarization means. A first retardation means and a second retardation means arranged in line with each other, wherein the liquid crystal cell has twisted nematic liquid crystal between the incident side transparent substrate and the emission side transparent substrate having pixel electrodes. Are sandwiched so as to be approximately 90 degrees, and the main polarization direction of the light emitted from the incident side polarization means is substantially parallel or substantially orthogonal to the molecular long axis of liquid crystal molecules in contact with the incident side transparent substrate. 1 The phase difference means and the second phase difference means are functionally similar to a negative uniaxial crystal, and the first phase difference means gives the phase difference given to the light beam traveling orthogonal to the optical axis and the second phase difference. The means give substantially the same phase difference to the light rays traveling orthogonal to the optical axis, and the main light ray having a main wavelength representative of the illumination light flux is referred to as a main illumination light ray, and one plane substantially orthogonal to the main illumination light ray. Above, the projection T1 of the main polarization direction of the light emitted by the incident side polarization means, the projection T2 of the main polarization direction of the light emitted by the exit side polarization means, the projection S1 of the optical axis of the first phase difference means, and the above When the projections S2 of the optical axes of the second phase difference means are defined, the T1 and the T2 are made substantially orthogonal to each other, and the S1 is
And S2 are made substantially orthogonal to each other, the angle formed by T1 and S1 is made to be substantially 45 degrees, and a plane orthogonal to the main illumination light beam propagating in the first phase difference means and the optical of the first phase difference means. The angle formed by the axis is ψ1, and the angle formed by the optical axis of the second phase difference means and the plane orthogonal to the main illumination light beam propagating in the second phase difference means is ψ2, so that the blackest display is obtained. At least one of the angle ψ1 and the angle ψ2 is 0 degree so that the light intensity of the main illumination light beam immediately after passing through the liquid crystal cell to which a predetermined voltage is applied and the emission side polarization means is minimized. A liquid crystal display device having a predetermined size different from each other.
【請求項6】主照明光線の波長をλとし、最黒表示とな
るように所定の電圧を印加した液晶セルがこれを通過す
る前記主照明光線に与える位相差δ0をS1方向の偏光
成分のS2方向の偏光成分に対する位相の進み量(ラジ
アンを単位とする)で表わした場合に、位相差δ0が負
となるように前記第1位相差手段と前記第2位相差手段
の光学軸方位を選択し、第1位相差手段と第2位相差手
段は同一の位相差板からなり、波長λの光について前記
位相差板の光学軸方向の屈折率をNf、光学軸と直交す
る方向の屈折率をNs、光学軸に直交して進行する光線
に対する厚みをD、定数K=Ns/Nf、とおき、前記
第1位相差手段は角ψ1が略0度となるように配置せし
め、前記第2位相差手段は角ψ2が(数2)を満たすよ
うに配置せしめることを特徴とする請求項5記載の液晶
表示装置。 【数2】
6. A phase difference .delta.0 given to a main illumination light beam passing through a liquid crystal cell, to which a predetermined voltage is applied so as to obtain the blackest display, as a wavelength of the main illumination light beam. The optical axis azimuths of the first phase difference means and the second phase difference means are set so that the phase difference δ0 becomes negative when represented by the amount of phase advance (in radian unit) with respect to the polarization component in the S2 direction. The first retardation means and the second retardation means are made of the same retardation plate, and the light of wavelength λ has a refractive index of Nf in the optical axis direction of the retardation plate and refraction in the direction orthogonal to the optical axis. The ratio is Ns, the thickness for a ray traveling orthogonal to the optical axis is D, and the constant is K = Ns / Nf, and the first retardation means is arranged so that the angle ψ1 is approximately 0 degrees, and 2 The phase difference means should be arranged so that the angle ψ2 satisfies (Equation 2) The liquid crystal display device according to claim 5, wherein. [Equation 2]
【請求項7】第1位相差手段と第2位相差手段が有する
略同一のリターデイションΓを、各々の光学軸と直交し
て進行する波長540nmの光に与える光路長差(屈折率
差×厚み)として定義し、100nm≦Γ≦1000nmと
することを特徴とする請求項1または請求項5記載の液
晶表示装置。
7. An optical path length difference (refractive index difference) that gives substantially the same retardation Γ that the first phase difference means and the second phase difference means have to a light having a wavelength of 540 nm that propagates orthogonally to each optical axis. 6. The liquid crystal display device according to claim 1, wherein the thickness is defined as (x thickness), and 100 nm ≦ Γ ≦ 1000 nm.
【請求項8】角ψ1あるいは角ψ2の少なくともいずれ
か一方を変化させ得るように、第1位相差手段と第2位
相差手段の少なくともいずれか一方は、液晶セル、入射
側偏光手段、出射側偏光手段から分離されて配置状態が
可変であることを特徴とする請求項1または請求項5記
載の液晶表示装置。
8. At least one of the first phase difference means and the second phase difference means is a liquid crystal cell, an incident side polarization means, and an emission side so that at least one of the angle ψ1 and the angle ψ2 can be changed. The liquid crystal display device according to claim 1 or 5, wherein the liquid crystal display device is separated from the polarizing means and has a variable arrangement state.
【請求項9】第1位相差手段と第2位相差手段は透明樹
脂フィルムを延伸して作成したものであることを特徴と
する請求項1または請求項5記載の液晶表示装置。
9. The liquid crystal display device according to claim 1, wherein the first retardation means and the second retardation means are formed by stretching a transparent resin film.
【請求項10】第1位相差手段と第2位相差手段は、入
射側偏光手段から液晶セルに到る光路中に配置されるこ
とを特徴とする請求項1または請求項5記載の液晶表示
装置。
10. The liquid crystal display according to claim 1 or 5, wherein the first phase difference means and the second phase difference means are arranged in an optical path from the incident side polarization means to the liquid crystal cell. apparatus.
【請求項11】第1位相差手段と第2位相差手段は、同
一設計仕様に基づき同一工程を経て同一ロットで製造さ
れた位相子からなることを特徴とする請求項1または請
求項5記載の液晶表示装置。
11. The first phase difference means and the second phase difference means are phase shifters manufactured in the same lot through the same process based on the same design specifications, as claimed in claim 1 or claim 5. Liquid crystal display device.
【請求項12】入射側偏光手段から液晶セルに到る光路
あるいは液晶セルから出射側偏光手段に到る光路のいず
れかのうち第1位相差手段と第2位相差手段を含む一方
は、透明体により充填され光学的に結合されていること
を特徴とする請求項1または請求項5記載の液晶表示装
置。
12. One of the optical path from the incident side polarization means to the liquid crystal cell or the optical path from the liquid crystal cell to the exit side polarization means, which includes the first phase difference means and the second phase difference means, is transparent. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is filled with a body and optically coupled.
【請求項13】透明体はゲル状シリコーン樹脂であるこ
とを特徴とする請求項12記載の液晶表示装置。
13. The liquid crystal display device according to claim 12, wherein the transparent body is a gel silicone resin.
【請求項14】両面に第1位相差手段と第2位相差手段
を保持すると共に前記第1位相差手段と前記第2位相差
手段の間の光路を光学結合せしめる堅牢な透明体を備
え、前記透明体は一方の位相差手段を保持する面を他方
の位相差手段を保持する面に対して所定方向に所定角度
だけ傾けてなることを特徴とする請求項1または請求項
5記載の液晶表示装置。
14. A robust transparent body for holding a first retardation means and a second retardation means on both sides and optically coupling an optical path between the first retardation means and the second retardation means, 6. The liquid crystal according to claim 1, wherein the transparent body is formed by inclining a surface holding one phase difference means with respect to a surface holding the other phase difference means in a predetermined direction by a predetermined angle. Display device.
【請求項15】堅牢な第1透明体と堅牢な第2透明体を
備え、前記第1透明体の一対の対向する面を面Aと面
B、前記第2透明体の一対の対向する面を面Cと面D、
と各々表わし、前記面Aと前記面Bと前記面Cと前記面
Dのうち少なくともいずれかは所定方向に所定角度だけ
傾斜せしめ、前記面Aは液晶セルの入射側透明基板に光
学結合せしめ、前記面Bは第1位相差手段あるいは第2
位相差手段の一方と光学結合せしめ、前記面Bと光学結
合せしめる前記位相差手段の他方の面を前記面Cと光学
結合せしめ、前記面Dは前記面Bと光学結合せしめない
他方の前記位相差手段の面と光学結合せしめる請求項1
または請求項5記載の液晶表示装置。
15. A robust first transparent body and a robust second transparent body, wherein a pair of opposing surfaces of the first transparent body are surfaces A and B, and a pair of opposing surfaces of the second transparent body. Face C and face D,
At least one of the surface A, the surface B, the surface C, and the surface D is inclined by a predetermined angle in a predetermined direction, and the surface A is optically coupled to the incident side transparent substrate of the liquid crystal cell, The surface B is the first phase difference means or the second phase difference means.
Optically coupled to one of the phase difference means and optically coupled to the surface B. The other surface of the phase difference means is optically coupled to the surface C, and the surface D is the other position not optically coupled to the surface B. 2. The optical coupling with the surface of the phase difference means.
Alternatively, the liquid crystal display device according to claim 5.
【請求項16】液晶セルから入射側に光学結合される媒
質を経て最も入射側に近い位置にある空気層との境界面
を主照明光線に略直交せしめる透明体を備えることを特
徴とする請求項12または請求項15記載の液晶表示装
置。
16. A transparent body which makes a boundary surface with an air layer located at a position closest to the incident side through a medium optically coupled to the incident side from the liquid crystal cell substantially orthogonal to the main illuminating light beam. 16. The liquid crystal display device according to claim 12 or 15.
【請求項17】照明光束を変調して光学像を形成する液
晶表示装置と、前記照明光束を出力する光源と、前記液
晶表示装置から出射する光が入射し前記光学像をスクリ
ーン上に投写する投写レンズとを備え、前記液晶表示装
置として請求項1から請求項16のいずれかに記載の液
晶表示装置を用い、前記液晶表示装置の有効表示領域の
重心部近傍を通過して前記投写レンズの入射瞳の中心部
近傍に到る照明光線を主照明光線と定めたことを特徴と
する投写型表示装置。
17. A liquid crystal display device that modulates an illumination light beam to form an optical image, a light source that outputs the illumination light beam, and light emitted from the liquid crystal display device is incident to project the optical image on a screen. A projection lens, the liquid crystal display device according to any one of claims 1 to 16 is used as the liquid crystal display device, and the liquid crystal display device passes through a vicinity of a center of gravity of an effective display area of the liquid crystal display device and A projection display device, characterized in that an illumination light ray reaching a central portion of an entrance pupil is defined as a main illumination light ray.
【請求項18】投写レンズは、液晶表示装置の有効表示
領域の各部から出射して前記投写レンズの入射瞳中心に
到達する光線の各々が、いずれも前記液晶表示装置を出
射した直後において主照明光線と略平行となるようにし
た請求項17記載の投写型表示装置。
18. The projection lens has a main illumination immediately after each of the light rays emitted from each part of the effective display area of the liquid crystal display device and reaching the center of the entrance pupil of the projection lens is emitted from the liquid crystal display device. The projection display device according to claim 17, wherein the projection display device is substantially parallel to the light beam.
【請求項19】三原色の照明光束をそれぞれ変調して三
原色に対応する3つの光学像を形成する3つの液晶表示
装置と、三原色の色成分を含む光を出力する光源と、前
記光源から出射する光を分解して三原色の前記照明光束
を形成する色分解手段と、3つの前記液晶表示装置から
出射する三原色の前記照明光束を1つに合成する光合成
手段と、前記光合成手段から出射する合成された前記照
明光束が入射し3つの前記光学像を重畳形態でスクリー
ン上に投写する投写レンズとを備え、3つの前記液晶表
示装置としていずれも請求項1から請求項16のいずれ
かに記載の液晶表示装置を用い、3つの前記液晶表示装
置の各々の有効表示領域の重心部近傍を通過して前記投
写レンズの入射瞳の中心部近傍に到る3つの照明光線を
対応する各々の前記液晶表示装置についての主照明光線
と定めたことを特徴とする投写型表示装置。
19. A liquid crystal display device for forming three optical images corresponding to three primary colors by respectively modulating illumination light fluxes of the three primary colors, a light source for outputting light containing color components of the three primary colors, and emitted from the light source. Color separation means for decomposing light to form the three primary color illumination light beams, light combining means for combining the three primary color illumination light beams emitted from the three liquid crystal display devices into one, and combined light emission from the light combining means. The liquid crystal according to any one of claims 1 to 16, further comprising: a projection lens that receives the illumination light flux and projects the three optical images on a screen in a superimposed form. Using the display device, the three illuminating light rays passing through the vicinity of the center of gravity of the effective display area of each of the three liquid crystal display devices and reaching the vicinity of the center of the entrance pupil of the projection lens Projection display apparatus characterized by defining the main illumination ray of the liquid crystal display device.
【請求項20】投写レンズは、各々の液晶表示装置の有
効表示領域の各部から出射して前記投写レンズの入射瞳
中心に到達する光線の各々が、いずれも各々の前記液晶
表示装置を出射した直後において対応する主照明光線の
各々と略平行となるようにしたことを特徴とする請求項
19記載の投写型表示装置。
20. The projection lens emits light from each part of the effective display area of each liquid crystal display device and reaches the center of the entrance pupil of the projection lens. 20. The projection display device according to claim 19, wherein the projection illumination device is arranged to be substantially parallel to each of the corresponding main illumination rays immediately after.
【請求項21】照明光束を変調して光学像を形成する液
晶表示装置と、前記照明光束を出力する光源と、前記液
晶表示装置から出射する光が入射し前記光学像をスクリ
ーン上に投写する投写レンズとを備え、前記投写レンズ
は前記投写レンズの光軸と略直交する方向に平行移動す
る手段を備え、前記液晶表示装置として請求項1から請
求項16のいずれかに記載の液晶表示装置を用い、前記
液晶表示装置の有効表示領域の重心部近傍を通過して前
記投写レンズの入射瞳の中心部近傍に到る照明光線を主
照明光線と定め、前記投写レンズの移動に伴って進行方
位の変化する前記主照明光線に合わせて前記液晶表示装
置の備える第1位相差手段または第2位相差手段の配置
状態を変化せしめる手段を備えて角ψ1あるいは角ψ2
の少なくともいずれか一方を変化させることを特徴とす
る投写型表示装置。
21. A liquid crystal display device that modulates an illumination light beam to form an optical image, a light source that outputs the illumination light beam, and light emitted from the liquid crystal display device is incident to project the optical image on a screen. A liquid crystal display device according to any one of claims 1 to 16, further comprising: a projection lens, the projection lens comprising means for moving in parallel in a direction substantially orthogonal to an optical axis of the projection lens. Is defined as the main illumination light beam that passes through the vicinity of the center of gravity of the effective display area of the liquid crystal display device and reaches the vicinity of the center of the entrance pupil of the projection lens, and proceeds with the movement of the projection lens. The angle φ1 or the angle φ2 is provided with a unit that changes the arrangement state of the first retardation unit or the second retardation unit included in the liquid crystal display device in accordance with the main illumination light beam whose azimuth changes.
A projection display device characterized by changing at least one of the above.
JP5095839A 1993-04-22 1993-04-22 Liquid crystal display device and projection display device using the same Expired - Fee Related JP2624116B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5095839A JP2624116B2 (en) 1993-04-22 1993-04-22 Liquid crystal display device and projection display device using the same
US08/230,036 US5490006A (en) 1993-04-22 1994-04-19 Liquid crystal light valve apparatus with a pair of non-parallel phase difference plates
DE69415713T DE69415713T2 (en) 1993-04-22 1994-04-21 Liquid crystal light valve and projection device using the same
EP94106231A EP0621499B1 (en) 1993-04-22 1994-04-21 Liquid crystal light valve apparatus and projection display apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5095839A JP2624116B2 (en) 1993-04-22 1993-04-22 Liquid crystal display device and projection display device using the same

Publications (2)

Publication Number Publication Date
JPH075421A true JPH075421A (en) 1995-01-10
JP2624116B2 JP2624116B2 (en) 1997-06-25

Family

ID=14148552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5095839A Expired - Fee Related JP2624116B2 (en) 1993-04-22 1993-04-22 Liquid crystal display device and projection display device using the same

Country Status (4)

Country Link
US (1) US5490006A (en)
EP (1) EP0621499B1 (en)
JP (1) JP2624116B2 (en)
DE (1) DE69415713T2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176892B1 (en) 1995-10-27 2001-01-23 Norsk Hydro Asa Method for making nitrogen-potassium fertilizer containing calcium nitrate and products thereof
US6601957B2 (en) 2001-02-06 2003-08-05 Canon Kabushiki Kaisha Projection-type image displaying device
US7042535B2 (en) 2002-02-05 2006-05-09 Sharp Kabushiki Kaisha Optical display system and optical shifter
JP2007004144A (en) * 2005-05-25 2007-01-11 Jds Uniphase Corp Tilted c-plate retarder and display system incorporating the same
JP2007094399A (en) * 2005-09-09 2007-04-12 Jds Uniphase Corp Optimal clock type trim retarder
JP2007233407A (en) * 2007-04-23 2007-09-13 Canon Inc Liquid crystal display device
JP2008145816A (en) * 2006-12-12 2008-06-26 Seiko Epson Corp Liquid crystal device, electronic device provided with the same and projector
JP2008217028A (en) * 2008-04-09 2008-09-18 Sanyo Electric Co Ltd Projector and liquid crystal panel unit to be used for the same
JP2008282007A (en) * 2007-04-10 2008-11-20 Jds Uniphase Corp TWISTED NEMATIC xLCD CONTRAST COMPENSATION WITH TILTED-PLATE RETARDER
JP2011164130A (en) * 2010-02-04 2011-08-25 Stanley Electric Co Ltd Liquid crystal display element

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325973B2 (en) * 1993-10-22 2002-09-17 富士写真フイルム株式会社 Optical anisotropic element and liquid crystal display element using the same
US5986734A (en) * 1994-04-04 1999-11-16 Rockwell International Corporation Organic polymer O-plate compensator for improved gray scale performance in twisted nematic liquid crystal displays
US5638200A (en) * 1995-02-03 1997-06-10 Ois Optical Imaging Systems, Inc. Liquid crystal display with tilted retardation film
US5579139A (en) * 1995-06-07 1996-11-26 Ois Optical Imaging Systems, Inc. LCD with reduced canopy reflection having a retarder of 220-320 nm retardation outside a polarizer
TW412656B (en) * 1996-04-26 2000-11-21 Hitachi Ltd Liquid crystal display
JP2000517071A (en) * 1997-06-16 2000-12-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Projection device
JP3822361B2 (en) * 1998-07-10 2006-09-20 株式会社日立製作所 Light distribution control element and display device including the same
WO2000031579A1 (en) * 1998-11-20 2000-06-02 Koninklijke Philips Electronics N.V. Image projection system with improved contrast
JP2001100311A (en) * 1999-07-23 2001-04-13 Seiko Epson Corp Projector
JP4367585B2 (en) * 1999-07-27 2009-11-18 ソニー株式会社 LCD projector
DE60106327T2 (en) * 2000-05-31 2006-02-23 Sony Corp. Liquid crystal projector with improved contrast
US6972809B2 (en) * 2001-12-20 2005-12-06 Sharp Kabushiki Kaisha Path shifting optical device having polarization correcting section and optical display system including same
US7626661B2 (en) 2003-12-11 2009-12-01 Jds Uniphase Corporation Polarization controlling elements
JP2006011298A (en) * 2004-06-29 2006-01-12 Sony Corp Liquid crystal projector system
JP4225954B2 (en) * 2004-07-26 2009-02-18 三洋電機株式会社 Projection device and liquid crystal panel unit used in projection device
JP2006113434A (en) * 2004-10-18 2006-04-27 Konica Minolta Holdings Inc Video display apparatus
US7671946B2 (en) * 2005-10-18 2010-03-02 Jds Uniphase Corporation Electronically compensated LCD assembly
JPWO2007105371A1 (en) * 2006-03-13 2009-07-30 セイコーエプソン株式会社 Liquid crystal device and projector provided with the same
JP4466693B2 (en) * 2006-10-27 2010-05-26 セイコーエプソン株式会社 Projector, optical compensation method thereof, and liquid crystal device
CN101794029B (en) * 2010-02-09 2011-12-07 深圳大学 Method and device for eliminating black-matrix effect of phase type spatial light modulator
CN101799590B (en) * 2010-03-31 2011-12-07 深圳大学 Digital Fresnel method and device for eliminating black-matrix effect of phase spatial light modulator (PSLM)
CN111596498B (en) * 2020-07-01 2022-03-01 中国工程物理研究院激光聚变研究中心 Annular light beam generation method based on liquid crystal phased array

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2028527B (en) * 1978-06-08 1982-11-24 American Liquid Xtal Chem Liquid crystal displays
JPH0715537B2 (en) * 1985-12-05 1995-02-22 セイコーエプソン株式会社 Projection display device
JPS6373782A (en) * 1986-09-16 1988-04-04 Sony Corp Projector
US4767190A (en) * 1986-12-04 1988-08-30 Xerox Corporation Transient state liquid crystal image bar with contrast enhancement
DE68923929T2 (en) * 1988-11-04 1996-03-07 Fuji Photo Film Co Ltd Liquid crystal display.
EP0425685B1 (en) * 1989-03-28 1995-07-12 Asahi Glass Company Ltd. Liquid crystal display device
US5157523A (en) * 1989-03-29 1992-10-20 Matsushita Electric Industrial Co., Ltd. Projection type liquid crystal display unit including orthogonal phase plates
JP2755708B2 (en) * 1989-08-11 1998-05-25 三洋電機株式会社 LCD projector
JPH03116013A (en) * 1989-09-29 1991-05-17 Toshiba Corp Liquid crystal projector
JP2867529B2 (en) * 1990-01-22 1999-03-08 三菱電機株式会社 Projection display device
JPH03257424A (en) * 1990-03-08 1991-11-15 Fujitsu Ltd Liquid crystal display device
DE4010503A1 (en) * 1990-04-03 1991-10-10 Merck Patent Gmbh Opto-electrical system using twisted nematic liq. crystal layer - sandwiched between two substrates coated with electrode layers on inner sides and having orientation layers on top
JP3070181B2 (en) * 1990-09-10 2000-07-24 カシオ計算機株式会社 Liquid crystal display
US5150235A (en) * 1991-02-04 1992-09-22 Honeywell Inc. Apparatus for improving the angle of view in a liquid crystal display
JP2796210B2 (en) * 1992-01-30 1998-09-10 シャープ株式会社 Liquid crystal display
FR2693020B1 (en) * 1992-06-26 1999-01-22 Thomson Consumer Electronics NEMATIC LIQUID CRYSTAL DISPLAY DEVICE.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176892B1 (en) 1995-10-27 2001-01-23 Norsk Hydro Asa Method for making nitrogen-potassium fertilizer containing calcium nitrate and products thereof
US6601957B2 (en) 2001-02-06 2003-08-05 Canon Kabushiki Kaisha Projection-type image displaying device
US7042535B2 (en) 2002-02-05 2006-05-09 Sharp Kabushiki Kaisha Optical display system and optical shifter
CN100351672C (en) * 2002-02-05 2007-11-28 夏普公司 Optical display system and optical shifter
JP2007004144A (en) * 2005-05-25 2007-01-11 Jds Uniphase Corp Tilted c-plate retarder and display system incorporating the same
JP2007094399A (en) * 2005-09-09 2007-04-12 Jds Uniphase Corp Optimal clock type trim retarder
JP2008145816A (en) * 2006-12-12 2008-06-26 Seiko Epson Corp Liquid crystal device, electronic device provided with the same and projector
JP2008282007A (en) * 2007-04-10 2008-11-20 Jds Uniphase Corp TWISTED NEMATIC xLCD CONTRAST COMPENSATION WITH TILTED-PLATE RETARDER
JP2007233407A (en) * 2007-04-23 2007-09-13 Canon Inc Liquid crystal display device
JP2008217028A (en) * 2008-04-09 2008-09-18 Sanyo Electric Co Ltd Projector and liquid crystal panel unit to be used for the same
JP2011164130A (en) * 2010-02-04 2011-08-25 Stanley Electric Co Ltd Liquid crystal display element

Also Published As

Publication number Publication date
JP2624116B2 (en) 1997-06-25
EP0621499A1 (en) 1994-10-26
US5490006A (en) 1996-02-06
DE69415713T2 (en) 1999-05-20
DE69415713D1 (en) 1999-02-18
EP0621499B1 (en) 1999-01-07

Similar Documents

Publication Publication Date Title
JP2624116B2 (en) Liquid crystal display device and projection display device using the same
US6784961B2 (en) Apparatus and method for displaying image
JP4805130B2 (en) Reflective liquid crystal display element and reflective liquid crystal projector
US20060050215A1 (en) Liquid crystal device and projection display device
US7894029B2 (en) Apparatus for optically arranging surface of alignment film and method for manufacturing liquid crystal display device using the same
JPH06148628A (en) Liquid crystal display and projection type display using the same
JPH06274130A (en) Liquid crystal display device and liquid crystal projection type television using the same
JP4133460B2 (en) Projection-type image display device
US20080117385A1 (en) Liquid crystal device and projector having the same
JP2008134596A (en) Projector, its optical compensation method and liquid crystal device
JP5552727B2 (en) Liquid crystal device, projector, optical compensation method for liquid crystal device, and retardation plate
JP5505541B2 (en) Liquid crystal device, projector, and optical compensation method for liquid crystal device
JP2008545149A (en) Liquid crystal display device and liquid crystal projector
JP2016133633A (en) Optical unit, projection type display device, and electronic apparatus
JP5552728B2 (en) Liquid crystal device, projector, optical compensation method for liquid crystal device, and retardation plate
JP4055465B2 (en) projector
JP2000137202A (en) Projection type display device
JP2001526801A (en) Improvement of contrast in liquid crystal light valve projector
JP2009037025A (en) Projector and liquid crystal device
US20180120649A1 (en) Liquid crystal device and electronic apparatus
JP2008026538A (en) Optical device and projector equipped with the same
JP4420091B2 (en) Optical apparatus and projector
JP2009128855A (en) Liquid crystal device, projector, and optical compensation method for liquid crystal device
JPH05323311A (en) Liquid crystal display device and liquid crystal projection type television using the same
KR100386335B1 (en) Optical Device for Liquid Crystal Display

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees