JPH0754037A - Inspecting instrument of quenched part - Google Patents

Inspecting instrument of quenched part

Info

Publication number
JPH0754037A
JPH0754037A JP5199692A JP19969293A JPH0754037A JP H0754037 A JPH0754037 A JP H0754037A JP 5199692 A JP5199692 A JP 5199692A JP 19969293 A JP19969293 A JP 19969293A JP H0754037 A JPH0754037 A JP H0754037A
Authority
JP
Japan
Prior art keywords
quenching
sectional area
quenched
inspection
measurement data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5199692A
Other languages
Japanese (ja)
Inventor
Yoshiro Suzuki
芳郎 鈴木
Shigeo Kawai
重郎 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP5199692A priority Critical patent/JPH0754037A/en
Publication of JPH0754037A publication Critical patent/JPH0754037A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To efficiently evaluate the quenching depth of a work which is partly quenched by the laser beam quenching by using non-destructive inspection. CONSTITUTION:An inspecting instrument 30 to inspect the quenched part of a work which is partly quenched by the laser beam quenching is provided with a surface measuring machine 31 and an operation and control part 32. The surface measuring machine 31 obtains the shape measurement data by scanning the surface of a region 35 to be inspected including the quenched part in a specified direction to obtain the height or the like of a surface swollen part of this region 35 to be inspected. The operation and control part 32 calculates the sectional area of this surface swollen part based on the shape measurement data of the surface swollen part obtained by the surface swollen part, and compares the calculated sectional area with the reference value, and makes a judgement that the depth of this quenched part reaches the specific value when the calculated sectional area reaches the reference value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱処理されたワークの
焼入れ部の検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection device for a hardened portion of a heat-treated work.

【0002】[0002]

【従来の技術】例えば鋳鉄製のシリンダブロックを用い
たエンジンにおいて、シリンダブロックの筒穴(シリン
ダボア)の内面に耐摩耗性のライナ−を挿入することが
行われているが、部品点数の削減やコストの低減化を図
るために、ライナーを用いないシリンダブロックが要望
されている。ライナーレスのシリンダブロックは、その
筒穴内面に直接ピストンやピストンリングが接するた
め、例えば自動車用エンジンのように高回転域で使われ
るエンジンにおいては、筒穴内面の耐摩耗性をいかにし
て高めるかが重要な課題である。
2. Description of the Related Art For example, in an engine using a cast iron cylinder block, a wear resistant liner is inserted into an inner surface of a cylinder hole (cylinder bore) of the cylinder block, but it is necessary to reduce the number of parts. A cylinder block that does not use a liner has been desired to reduce costs. In a linerless cylinder block, the piston and piston ring are in direct contact with the inner surface of the cylinder hole, so how to improve the wear resistance of the inner surface of the cylinder hole in an engine used in a high rotation range such as an automobile engine. Is an important issue.

【0003】そこで筒穴の耐摩耗性を高める手段とし
て、筒穴内面を焼入れ等の熱処理によって調質すること
が考えられている。このため本発明者らは、シリンダブ
ロックの筒穴内面にレーザビームによるスポット状の焼
入れを行う技術を開発し、種々の試験と試作等を行って
きた。レーザビームによる焼入れは、筒穴の内面に高密
度エネルギーを集中させて短時間の局部急速加熱を行っ
たのち、シリンダブロック内部への熱拡散による自己冷
却作用によって急冷させ、マルテンサイト組織を得るよ
うにしている。
Therefore, as a means for increasing the wear resistance of the cylindrical hole, it has been considered to temper the inner surface of the cylindrical hole by heat treatment such as quenching. Therefore, the present inventors have developed a technique for performing spot-shaped quenching on the inner surface of the cylinder hole of the cylinder block with a laser beam, and have conducted various tests and trial production. In quenching with a laser beam, high-density energy is concentrated on the inner surface of the cylinder hole to perform local rapid heating for a short time, and then rapidly cooled by the self-cooling action by thermal diffusion inside the cylinder block to obtain a martensite structure. I have to.

【0004】[0004]

【発明が解決しようとする課題】上述のようなスポット
状の部分焼入れが行われたワークは、一定の品質を維持
するために、焼入れ深さなどを正確に管理することが肝
要である。焼入れ深さを評価するための従来の手段とし
て、焼入れ部を含む検査領域を切断し、焼入れ組織の観
察に必要な表面処理を行ったのち、顕微鏡による光学的
手段により、焼入れ深さや焼入れ部の面積などを検査す
ることが行われている。
It is important to accurately control the quenching depth and the like of the work which has been spot-quenched as described above in order to maintain a constant quality. As a conventional means for evaluating the quenching depth, after cutting the inspection area including the quenching part and performing the surface treatment necessary for observing the quenching structure, the quenching depth and the quenching part The area is being inspected.

【0005】このため従来は、焼入れ部の検査に当たっ
てワークを切断するといった手間のかかる作業が必要で
あるばかりでなく、検査に高度な技術と長時間を必要と
し、しかもサンプリングされたワークは製品として使用
できなくなるためサンプル数に限界があり、サンプル数
をあまり多くとると歩留まりに悪影響が出るなどの問題
があった。
For this reason, conventionally, not only a laborious work such as cutting the work for inspecting the quenching portion is required, but also high technology and a long time are required for the inspection, and the sampled work is a product. Since it cannot be used, there is a limit to the number of samples, and if the number of samples is too large, the yield will be adversely affected.

【0006】従って本発明の目的は、レーザによって部
分焼入れされたワークの焼入れ部の焼入れ深さなどを非
破壊で能率良く検査することができるような検査装置を
提供することにある。
Therefore, an object of the present invention is to provide an inspection apparatus capable of nondestructively and efficiently inspecting the hardening depth of a hardened portion of a work partially hardened by a laser.

【0007】[0007]

【課題を解決するための手段】本発明者らは、レーザビ
ームによってスポット状の部分焼入れを施した筒穴内面
の表面あらさを調べている時に、この焼入れ部のマルテ
ンサイト組織の表面が非焼入れ部の表面よりも盛り上が
っていることを見出だした。しかもこの表面膨張部分の
断面積の大きさと焼入れ深さに相関性があることも判っ
た。すなわち焼入れ深さが深いものは、焼入れが浅いも
のに比べて表面膨張部分の断面積が大きいことを突き止
めた。
The present inventors have investigated the surface roughness of the inner surface of a cylindrical hole that has been spot-quenched by a laser beam and found that the surface of the martensite structure in this quenched portion is non-quenched. I found that it was higher than the surface of the part. Moreover, it was also found that there is a correlation between the size of the cross-sectional area of this surface-expanded portion and the quenching depth. That is, it was found that the one having a deep quenching depth has a larger cross-sectional area of the surface expansion portion than the one having a shallow quenching.

【0008】従って前記目的を果たすために開発された
本発明は、レーザ焼入れによって部分的に焼入れがなさ
れたワークの焼入れ部を検査するための装置であって、
上記焼入れ部を含む検査領域の表面を一定の検査方向に
走査することによりこの検査領域の表面膨張部分の盛り
上がり高さを検出して形状測定データを得る表面測定機
と、上記表面測定機によって得られた形状測定データに
基いて上記表面膨張部分の断面積を求めるとともに、こ
の断面積を予め設定された基準値と比較しかつ上記断面
積が上記基準値に達している場合にこの焼入れ部の焼入
れ深さが所定の目標値に達していると判断する演算制御
部とを具備している。
Therefore, the present invention developed to achieve the above object is an apparatus for inspecting a hardened portion of a work which is partially hardened by laser hardening.
A surface measuring machine that obtains shape measurement data by detecting the rising height of the surface expansion portion of the inspection area by scanning the surface of the inspection area including the quenching portion in a certain inspection direction, and obtain by the surface measuring machine. While determining the cross-sectional area of the surface expansion portion based on the obtained shape measurement data, comparing the cross-sectional area with a preset reference value and when the cross-sectional area has reached the reference value of the quenched portion And a calculation control unit that determines that the quenching depth has reached a predetermined target value.

【0009】[0009]

【作用】レーザビームによる部分焼入れは加熱面積が小
さいため、レーザビームをワーク表面の特定方向に走行
させながらビーム照射による高密度エネルギーを集中さ
せ、短時間でワーク表面の局部急速加熱を行う。レーザ
照射後は、加熱された箇所の熱がワークの内部に拡散す
ることによって急冷されるため、この自己冷却作用によ
って焼入マルテンサイト組織が得られる。
Since partial heating by the laser beam has a small heating area, high-density energy due to beam irradiation is concentrated while the laser beam travels in a specific direction on the surface of the work, and local rapid heating of the work surface is performed in a short time. After the laser irradiation, the heat of the heated portion is diffused into the inside of the work to be rapidly cooled, so that the quenching martensite structure is obtained by this self-cooling action.

【0010】上述の焼入れ部の非破壊検査を本発明の検
査装置によって行い、焼入れ深さを評価する。すなわち
表面測定機によって検査領域の表面を走査し、表面膨張
部分の盛り上がり高さを検出することにより、形状測定
データを得る。そしてこの形状測定データに基き、演算
制御部において、積分等の適宜の計算方法により、表面
膨張部分の断面積を算出する。この演算制御部において
は、算出された表面膨張部分の断面積を基準値と比較
し、断面積が基準値に達している場合に所定の焼入れ深
さが得られていると判断する。
The above-mentioned non-destructive inspection of the hardened portion is carried out by the inspection apparatus of the present invention to evaluate the hardened depth. That is, the surface of the inspection area is scanned by the surface measuring machine, and the height of the rising of the surface expansion portion is detected to obtain the shape measurement data. Then, based on this shape measurement data, the arithmetic control unit calculates the cross-sectional area of the surface expansion portion by an appropriate calculation method such as integration. In this arithmetic control unit, the calculated cross-sectional area of the surface expansion portion is compared with a reference value, and when the cross-sectional area reaches the reference value, it is determined that a predetermined quenching depth has been obtained.

【0011】[0011]

【実施例】以下に本発明の一実施例について、図面を参
照して説明する。図6は、ワークの一例として鋳鉄製シ
リンダブロック10を示している。このシリンダブロッ
ク10は、ピストン11が挿入される筒穴12を有して
おり、この筒穴12の内面12aに、図7に示すような
多数のスポット状レーザ焼入れ部15が設けられてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 6 shows a cast iron cylinder block 10 as an example of the work. The cylinder block 10 has a cylindrical hole 12 into which the piston 11 is inserted, and the inner surface 12a of the cylindrical hole 12 is provided with a large number of spot-shaped laser hardening portions 15 as shown in FIG.

【0012】各焼入れ部15は互いに実質的に共通の形
状であり、それぞれ筒穴12の周方向に沿う横長な形状
をなしている。焼入れ部15の長さLの一例は15mm、
幅Wの一例は3.5mm前後である。焼入れ深さの一例は
0.2mm以上が望ましいが、熱処理の目的によっては1
0〜15μm程度の焼入れ深さでも効果が認められる場
合がある。これらの焼入れ部15は、筒穴12の周方向
に所定ピッチで複数箇所に設けられているとともに、筒
穴12の軸線方向に所定ピッチPで複数列(例えば6
列)設けられている。ピッチPの一例は5mmである。
The quenching portions 15 have substantially the same shape, and each has a laterally long shape along the circumferential direction of the cylindrical hole 12. An example of the length L of the quenching portion 15 is 15 mm,
An example of the width W is around 3.5 mm. An example of the quenching depth is 0.2mm or more, but depending on the purpose of heat treatment,
The effect may be recognized even at a quenching depth of about 0 to 15 μm. These quenching portions 15 are provided at a plurality of locations at a predetermined pitch in the circumferential direction of the cylindrical hole 12, and are arranged in a plurality of rows at a predetermined pitch P in the axial direction of the cylindrical hole 12 (for example, 6
Rows) are provided. An example of the pitch P is 5 mm.

【0013】上記焼入れ部15は、図8に例示したレー
ザ焼入れ装置20によって焼入れが行われる。この焼入
れ装置20は、筒穴12の内部に挿入される加工ヘッド
21と、レーザ発生手段の一例としてCO2 レーザ発振
器22と、このレーザ発振器22によって発生させたレ
ーザビームを加工ヘッド21に導く光学系23などを備
えている。このレーザ焼入れ装置20によって筒穴12
の内面12aに周方向に所定間隔でレーザビームを走行
させながら高密度エネルギーを集中させ、チル(溶融)
を出さない程度の温度まで短時間で急速加熱を行う。加
熱温度の一例は980℃〜1100℃であり、要するに
鋳鉄のA1 変態点以上の温度に設定される。加熱時間の
一例は0.2秒程度である。
The hardening portion 15 is hardened by the laser hardening device 20 illustrated in FIG. The quenching device 20 includes a machining head 21 inserted into the cylindrical hole 12, a CO 2 laser oscillator 22 as an example of a laser generating means, and an optical system for guiding a laser beam generated by the laser oscillator 22 to the machining head 21. The system 23 and the like are provided. With this laser hardening device 20, the cylindrical hole 12
Chill (melt) the inner surface 12a of the chill while concentrating high-density energy while traveling the laser beam at a predetermined interval in the circumferential direction.
Rapid heating is performed in a short time to a temperature that does not produce An example of the heating temperature is 980 ° C to 1100 ° C, which is set to a temperature equal to or higher than the A 1 transformation point of cast iron. An example of heating time is about 0.2 seconds.

【0014】レーザ発振器22は、個々の焼入れ部15
において蓄熱状況を考慮したパワーに個別設定され、N
Cパワー制御が実行される。レーザビームによって急速
加熱された箇所は、レーザの照射を停止した時に、熱が
急速にシリンダブロック10内を伝って拡散し、急冷状
態になることによって、焼入れ前のパーライトとフェラ
イトの混合組織が焼入れマルテンサイトに変化する。こ
うして、筒穴12の円周方向に順次焼入れが実施され
る。
The laser oscillator 22 includes individual quenching parts 15
In N, the power is individually set in consideration of the heat storage situation, and N
C power control is executed. At the portion rapidly heated by the laser beam, when the laser irradiation is stopped, the heat rapidly diffuses in the cylinder block 10 and is rapidly cooled, whereby the mixed structure of pearlite and ferrite before quenching is quenched. Change to martensite. In this way, quenching is sequentially performed in the circumferential direction of the cylindrical hole 12.

【0015】焼入れ部15においては、後述する形状測
定データのように、マルテンサイト組織の表面が非焼入
れ部の表面よりも盛り上がっており、しかもこの表面膨
張部分の断面積の大きさと焼入れ深さに相関性が認めら
れる。すなわち、焼入れ深さが深いものは、焼入れが浅
いものに比べて表面膨張部分の断面積が広くなってい
る。
In the hardened portion 15, the surface of the martensite structure is higher than the surface of the non-hardened portion, and the size of the cross-sectional area and the quenching depth of the surface-expanded portion are different, as shown in the shape measurement data described later. Correlation is recognized. That is, in the case of deep quenching, the cross-sectional area of the surface expansion portion is wider than in the case of shallow quenching.

【0016】上記焼入れ部15を検査するための検査装
置30の概略は図1に示されるようなものである。すな
わちこの検査装置30は、表面測定機31と演算制御部
32を備えている。表面測定機31の一例は、表面あら
さ測定機を適用することができる。この表面測定機31
は、焼入れ部15を含む検査領域35の表面に接触させ
られるプローブ36を備えており、このプローブ36の
先端を検査領域35の表面に接触させた状態で、図中の
矢印Y方向、すなわち焼入れ部15を横断する方向に沿
って走査しながら、プローブ36の変位量を電気的な信
号に変換することで、検査領域35の表面の凹凸を検出
し、表面膨張部分の高さと検出位置との関係等により、
例えば図2〜図4に示すような形状測定データを得るよ
うになっている。
An outline of an inspection device 30 for inspecting the quenching portion 15 is as shown in FIG. That is, the inspection device 30 includes a surface measuring machine 31 and a calculation control unit 32. As an example of the surface measuring machine 31, a surface roughness measuring machine can be applied. This surface measuring machine 31
Includes a probe 36 that is brought into contact with the surface of the inspection region 35 including the quenching portion 15. With the tip of the probe 36 brought into contact with the surface of the inspection region 35, the arrow Y direction in the drawing, that is, quenching By scanning the displacement amount of the probe 36 into an electric signal while scanning along the direction crossing the portion 15, the unevenness of the surface of the inspection region 35 is detected, and the height of the surface expansion portion and the detection position are detected. Depending on the relationship,
For example, shape measurement data as shown in FIGS. 2 to 4 is obtained.

【0017】演算制御部32は、表面測定機31によっ
て求められた上記形状測定データに基いて、表面膨張部
分の断面積をマイクロコンピュータなどの演算回路によ
り、積分等の適宜の計算方法を用いて算出する。そして
算出された断面積を予め設定された基準値と比較し、検
出された断面積が上記基準値に満たない場合には焼入れ
深さが所定の目標値に達していないと判断し、その判定
結果を出力装置40などに表示するようになっている。
なお、表面測定機31と演算制御部32が実質的に一体
化していてもかまわない。
Based on the shape measurement data obtained by the surface measuring machine 31, the arithmetic control unit 32 uses an appropriate calculation method such as integration to calculate the cross-sectional area of the surface expansion portion by an arithmetic circuit such as a microcomputer. calculate. Then, the calculated cross-sectional area is compared with a preset reference value, and if the detected cross-sectional area is less than the reference value, it is determined that the quenching depth has not reached a predetermined target value, and the determination is made. The result is displayed on the output device 40 or the like.
The surface measuring device 31 and the arithmetic control unit 32 may be substantially integrated.

【0018】次に、上記構成の検査装置30の作用につ
いて説明する。レーザ焼入れ装置20によって上述の焼
入れが行われた検査領域35に、表面測定機31のプロ
ーブ36を接触させる。そしてプローブ36を矢印Y方
向に移動させながら検査領域35の盛り上がり高さと幅
などの表面状態を検出し、形状測定データを得る。
Next, the operation of the inspection device 30 having the above configuration will be described. The probe 36 of the surface measuring machine 31 is brought into contact with the inspection region 35 that has been hardened by the laser hardening device 20. Then, while moving the probe 36 in the direction of the arrow Y, surface conditions such as the height and width of the inspection region 35 are detected to obtain shape measurement data.

【0019】焼入れ部15の焼入れ深さが深い場合、例
えば図2に示すような波形の形状測定データが得られ
る。このように焼入れ深さが深い場合、表面膨張部分の
形状はおおむね上に凸の半円形となり、その断面積も大
きな値が得られる。これに対し焼入れ深さが不足してい
る場合には、図3に示すように表面膨張部分の幅が比較
的狭く、しかも三角形に近い尖った断面形状となり、断
面積も小さい値となる。また、焼入れ部15にチル(溶
融)が生じた場合は、図4に示すように表面膨張部分の
頂部において凹んだ部分が見られ、その分だけ断面積も
減少している。
When the quenching depth of the quenching portion 15 is deep, for example, waveform shape measurement data as shown in FIG. 2 is obtained. When the quenching depth is deep in this way, the shape of the surface-expanded portion is a generally semi-circular shape with a convex shape, and a large cross-sectional area is obtained. On the other hand, when the quenching depth is insufficient, as shown in FIG. 3, the width of the surface-expanded portion is relatively narrow, and the cross-section has a sharp triangular shape and the cross-sectional area is small. Further, when chill (melting) occurs in the hardened portion 15, a recessed portion is seen at the top of the surface expansion portion as shown in FIG. 4, and the cross-sectional area is reduced accordingly.

【0020】これらの波形をもつ形状測定データに基い
て、演算制御部32において、表面膨張部分の断面積を
算出する。図5に示されるように、表面膨張部分の断面
積がある一定の基準値Aを越えると、焼入れ深さが目標
値を越えるレベルB以上に達していることが予め実測に
より確認されている。
Based on the shape measurement data having these waveforms, the arithmetic control unit 32 calculates the cross-sectional area of the surface expansion portion. As shown in FIG. 5, when the cross-sectional area of the surface-expanded portion exceeds a certain reference value A, it has been previously confirmed by measurement that the quenching depth has reached a level B or more, which exceeds the target value.

【0021】図5の例では表面膨張部分の断面積が 180
ポイント以上であれば、目標とする焼入れ深さ0.2mm
をクリアできるため、この例では基準値を例えば 180ポ
イントに設定する。そして上記断面積がこの基準値に達
しているか否かを演算制御部32で判断し、基準値に達
している場合は目標とする焼入れ深さが得られていると
判断し、その結果を出力装置40などに表示する。断面
積が基準値に達していない場合は、焼入れ深さが不足し
ていると判断する。
In the example of FIG. 5, the cross-sectional area of the surface expansion portion is 180
If it is above the point, the target quenching depth is 0.2 mm
In this example, the reference value is set to 180 points, for example. Then, the arithmetic control unit 32 determines whether or not the cross-sectional area has reached this reference value. If it has reached the reference value, it is determined that the target quenching depth has been obtained, and the result is output. It is displayed on the device 40 or the like. If the cross-sectional area does not reach the standard value, it is judged that the quenching depth is insufficient.

【0022】このように上記検査装置30は、焼入れ部
15に生じた表面膨張部分のデータに基いて焼入れ深さ
を判断するため、検査領域35を切断する必要がなくし
かも短時間のうちに検査結果が得られる。このため、レ
ーザによる部分焼入れの品質評価を迅速に行う上できわ
めて有効である。
As described above, since the inspection device 30 determines the quenching depth based on the data of the surface expansion portion generated in the quenching portion 15, it is not necessary to cut the inspection region 35 and the inspection is performed in a short time. The result is obtained. Therefore, it is extremely effective in promptly performing quality evaluation of partial hardening by laser.

【0023】なお、表面測定機31は、前記実施例で述
べた表面あらさ測定機を用いる代りに、例えば渦電流な
どを利用した非接触形のプローブを有する表面測定機な
どを用いて、前述の形状測定データを求めるようにして
もよい。また本発明は、シリンダブロック以外のワーク
の焼入れ部検査に適用できることは勿論である。
As the surface measuring machine 31, instead of using the surface roughness measuring machine described in the above embodiment, for example, a surface measuring machine having a non-contact type probe utilizing eddy current or the like is used. The shape measurement data may be obtained. Further, it goes without saying that the present invention can be applied to the inspection of the hardened portion of works other than the cylinder block.

【0024】[0024]

【発明の効果】本発明によれば、部分的に焼入れが行わ
れたワークの焼入れ深さを能率良く検査することがで
き、しかも非破壊検査であるからワークの全数を検査す
ることも可能であり、焼入れ部の品質を評価・管理する
上で大きな効果がある。
According to the present invention, it is possible to efficiently inspect the quenching depth of a partially quenched work, and since it is a non-destructive inspection, it is possible to inspect all the works. Yes, there is a great effect in evaluating and managing the quality of the hardened part.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す検査装置の概略図。FIG. 1 is a schematic diagram of an inspection apparatus showing an embodiment of the present invention.

【図2】焼入れ深さが深い場合の形状測定データを示す
波形図。
FIG. 2 is a waveform diagram showing shape measurement data when the quenching depth is deep.

【図3】焼入れ深さが浅い場合の形状測定データを示す
波形図。
FIG. 3 is a waveform diagram showing shape measurement data when the quenching depth is shallow.

【図4】チルが発生した焼入れ部の形状測定データを示
す波形図。
FIG. 4 is a waveform diagram showing shape measurement data of a quenched portion where chill has occurred.

【図5】焼入れ深さと表面膨張部分の断面積との関係を
示す図。
FIG. 5 is a diagram showing a relationship between a quenching depth and a cross-sectional area of a surface expansion portion.

【図6】ワークの一例を示す斜視図。FIG. 6 is a perspective view showing an example of a work.

【図7】ワークの焼入れ部を示す正面図。FIG. 7 is a front view showing a quenched portion of the work.

【図8】レーザ焼入れ装置の概略図。FIG. 8 is a schematic view of a laser hardening device.

【符号の説明】[Explanation of symbols]

10…シリンダブロック(ワーク)、15…焼入れ部、
30…検査装置、31…表面測定機、32…演算制御
部、35…検査領域。
10 ... Cylinder block (work), 15 ... Quenching part,
30 ... Inspection device, 31 ... Surface measuring machine, 32 ... Arithmetic control unit, 35 ... Inspection area.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】レーザ焼入れによって部分的に焼入れがな
されたワークの焼入れ部を検査するための装置であっ
て、 上記焼入れ部を含む検査領域の表面を一定の検査方向に
走査することによりこの検査領域の表面膨張部分の盛り
上がり高さを検出して形状測定データを得る表面測定機
と、上記表面測定機によって得られた形状測定データに
基いて上記表面膨張部分の断面積を求めるとともに、こ
の断面積を予め設定された基準値と比較しかつ上記断面
積が上記基準値に達している場合にこの焼入れ部の焼入
れ深さが所定の目標値に達していると判断する演算制御
部とを具備したことを特徴とする焼入れ部の検査装置。
1. An apparatus for inspecting a hardened portion of a work which has been partially hardened by laser hardening, wherein the inspection is performed by scanning a surface of an inspection region including the hardened portion in a predetermined inspection direction. A surface measuring machine that obtains the profile measurement data by detecting the rising height of the surface expansion part of the area, and the cross-sectional area of the surface expansion part is obtained based on the profile measurement data obtained by the surface measurement machine, and And an arithmetic control unit that compares the area with a preset reference value and determines that the quenching depth of the quenching portion has reached a predetermined target value when the cross-sectional area has reached the reference value. A quenching part inspection device characterized by the above.
JP5199692A 1993-08-11 1993-08-11 Inspecting instrument of quenched part Withdrawn JPH0754037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5199692A JPH0754037A (en) 1993-08-11 1993-08-11 Inspecting instrument of quenched part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5199692A JPH0754037A (en) 1993-08-11 1993-08-11 Inspecting instrument of quenched part

Publications (1)

Publication Number Publication Date
JPH0754037A true JPH0754037A (en) 1995-02-28

Family

ID=16412029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5199692A Withdrawn JPH0754037A (en) 1993-08-11 1993-08-11 Inspecting instrument of quenched part

Country Status (1)

Country Link
JP (1) JPH0754037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234947A (en) * 2012-05-10 2013-11-21 Nissan Motor Co Ltd Hardening area measuring apparatus and hardening area measuring method
CN114740489A (en) * 2022-04-13 2022-07-12 江苏联宸激光科技有限公司 Surface measuring equipment for measuring laser quenched surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234947A (en) * 2012-05-10 2013-11-21 Nissan Motor Co Ltd Hardening area measuring apparatus and hardening area measuring method
CN114740489A (en) * 2022-04-13 2022-07-12 江苏联宸激光科技有限公司 Surface measuring equipment for measuring laser quenched surface

Similar Documents

Publication Publication Date Title
US6628404B1 (en) Acoustic sensor for real-time control for the inductive heating process
US5250776A (en) Apparatus and method of measuring temperature
JP5263178B2 (en) Nondestructive inspection method for steel rails for tracks
JP3653984B2 (en) Ultrasonic flaw detection method for bearing rings
US7712955B2 (en) Non-contact method and apparatus for hardness case depth monitoring
KR900012095A (en) How to detect defects in billets
JPH0372296A (en) Method of non-destructive measurement of thermally affected region of nuclear fuel rod tube
JPH0754037A (en) Inspecting instrument of quenched part
CN113702132A (en) Detection method for paracrystallized steel decarburized layer containing abnormal structure
JP2009109358A (en) Method for measuring hardening pattern
GB2263978A (en) Quench-hardening testing method and apparatus.
Xu et al. Nondestructive evaluation and real-time monitoring of laser surface hardening
JP5163877B2 (en) Quenched part inspection method and inspection apparatus
Luo et al. Metallurgical behaviours of high-carbon steel wires in lead bath and CMC aqueous solutions by cooling curve analysis
Basheer et al. A thermographic approach for surface crack depth evaluation through 3D finite element modeling
Zachrisson In situ detection and characterisation of phase transformations in weld metals
SU744301A1 (en) Method of determining surface and subsurface defects of articles
Santa-aho et al. Manufacturing of calibration samples for barkhausen noise method: case studies on temperature controlled laser and hydrogen-oxygen flame
JPS60152944A (en) Inspection of high frequency hardening
RU2155952C2 (en) Method of determination of surface residual stresses
Prekel et al. Photothermal characterization of grind-hardened steel
Yasuda et al. Monitoring of Laser Quenching of the Carbon Steel by Acoustic Emission
Bär Crack Detection and Crack Size Measurement in Round Specimen using Multiple Potential Drop Measurements
Rajendran et al. Transient Temperature Near a Void in a Material Heated by a Moving Laser Beam
Kuss et al. Fast scanning laser-OES. II. Sample material ablation and depth profiling in metals

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031