JPH0753299A - Method for synthesizing diamond - Google Patents

Method for synthesizing diamond

Info

Publication number
JPH0753299A
JPH0753299A JP5219198A JP21919893A JPH0753299A JP H0753299 A JPH0753299 A JP H0753299A JP 5219198 A JP5219198 A JP 5219198A JP 21919893 A JP21919893 A JP 21919893A JP H0753299 A JPH0753299 A JP H0753299A
Authority
JP
Japan
Prior art keywords
diamond
graphite
reaction vessel
pressure
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5219198A
Other languages
Japanese (ja)
Inventor
Kazutaka Kanda
一隆 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP5219198A priority Critical patent/JPH0753299A/en
Publication of JPH0753299A publication Critical patent/JPH0753299A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To synthesize diamond with a less expensive producing equipment than the conventional equipment at a rational rate. CONSTITUTION:A reactor 1 with a pressure regulating mechanism is filled with graphite 2, water and inevitably contained air, at least the graphite 2 set part of the reactor 1 is heated to >=1,000 deg.C and diamond is synthesized at the part kept at 600-1,200 deg.C in the reactor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は従来のように高温高圧あ
るいはプラズマを用いることなく、高品位なダイヤモン
ド結晶を高速度で安価に合成するダイヤモンドの合成方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diamond synthesizing method for synthesizing high-quality diamond crystals at high speed and at low cost without using high temperature and high pressure or plasma as in the prior art.

【0002】[0002]

【従来の技術】従来、工業用ダイヤモンドのほとんどは
約5万気圧、1500℃の高温高圧下で人工的に製造さ
れている。この方法は1945年に米国で発明された方
法に基づいており、高温高圧下で、Fe、Co、Niな
どの金属触媒を用いて黒鉛をダイヤモンドに転換してい
る。現在ではこの方法はダイヤモンド合成の主流になっ
ているが、高温高圧を発生する装置が高価なため、これ
を用いて作られるダイヤモンド粒も非常に高価となって
いる。また、これとは別に、火薬を用いて百万分の1秒
程度の短時間ではあるが非常に高い衝撃力を発生し黒鉛
を直接ダイヤモンドに変換する衝撃圧縮法によっても生
産されている。この方法もまた1956年に米国で発明
された方法である。
2. Description of the Related Art Conventionally, most industrial diamonds are artificially manufactured under high temperature and high pressure of about 50,000 atm and 1500 ° C. This method is based on the method invented in the United States in 1945, in which graphite is converted into diamond by using a metal catalyst such as Fe, Co and Ni under high temperature and high pressure. At present, this method is the mainstream for diamond synthesis, but since the apparatus for generating high temperature and high pressure is expensive, the diamond grains produced using this are also very expensive. Separately from this, it is also produced by an impact compression method in which graphite is directly converted into diamond by using gunpowder to generate a very high impact force for a short time of about one millionth of a second. This method is also a method invented in the United States in 1956.

【0003】前記2つの方法はいずれも黒鉛を高温高圧
下でダイヤモンドに変換するものであるが、その後ガス
雰囲気中でダイヤモンドを合成する方法が見いだされ、
この方法は前記2つの方法に対比し気相合成法と呼ばれ
ており、ダイヤモンド膜の蒸着あるいはダイヤモンド板
の製造に用いられている。気相合成法による最初の合成
は1968年の旧ソ連の研究に遡るが、ここでは黒鉛と
水素を密閉された反応容器に封入し、この容器を加熱す
ることによって黒鉛とは容器の反対側におかれたダイヤ
モンド種結晶の上に化学輸送法によりダイヤモンドを合
成したといわれている。また、同様な研究が米国でも行
われ、例えばUSP.3,030,187 及び 3,030,188に示すよう
な特許がある。しかしながらこの方法は、合成速度が遅
くまた再現性も乏しかったことから現在ではその開発も
途絶えてしまっている。近年ではこれをさらに進め、ダ
イヤモンドの原料としては炭化水素ガス、アルコール
類、アセトンなどのガスが使われるのが一般的である。
しかしながら、現状の気相合成法はダイヤモンドを基体
上に膜状に被覆するには好都合であるが、合成速度が遅
いためダイヤモンド粒の製造に関しては高圧合成法に比
べて不利であった。
Both of the above-mentioned two methods convert graphite into diamond under high temperature and high pressure, and then a method of synthesizing diamond in a gas atmosphere was found,
This method is called a vapor phase synthesis method in contrast to the above two methods and is used for vapor deposition of a diamond film or production of a diamond plate. The first synthesis by the gas phase synthesis method goes back to the study of the former Soviet Union in 1968, but here, graphite and hydrogen are enclosed in a sealed reaction vessel, and this vessel is heated to the side opposite to the graphite. It is said that diamond was synthesized on the placed diamond seed crystal by the chemical transport method. Similar research has also been conducted in the United States, and there are patents such as those shown in USP. 3,030,187 and 3,030,188. However, the development of this method has been discontinued at present due to its slow synthesis rate and poor reproducibility. In recent years, this has been further advanced, and hydrocarbon gases, alcohols, acetone, and other gases are generally used as raw materials for diamond.
However, although the present vapor phase synthesis method is convenient for coating diamond on a substrate in a film form, it has a disadvantage in the production of diamond grains as compared with the high pressure synthesis method because of its slow synthesis rate.

【0004】[0004]

【発明が解決しようとする課題】上記のように、ダイヤ
モンドは人工的に大量に生産されるようになったが、高
温超高圧発生装置が非常に高価であり、またダイヤモン
ドを合成するために必要な消耗品の費用も高価であるた
め、工業用ダイヤモンドの価格は依然として高価であっ
た。本発明の課題は、かかる課題を解決した従来に較べ
て安価な製造設備で、しかも合理的な速度でダイヤモン
ドを合成することができるダイヤモンドの合成方法を提
供することにある。
As described above, diamond has been artificially mass-produced, but a high temperature and high pressure generator is very expensive and is necessary for synthesizing diamond. The cost of industrial diamonds was still high because the cost of various consumables was also high. An object of the present invention is to provide a method for synthesizing diamond, which solves the above-mentioned problems, and which can synthesize diamond at a reasonable rate with less expensive manufacturing equipment.

【0005】[0005]

【課題を解決するための手段】このため本発明は、特許
請求の範囲記載のダイヤモンドの合成方法を提供するこ
とによって上述した従来技術の課題を解決した。発明者
は、従来の化学輸送法的に合成する方法を改良すること
によって、従来の方法に較べより高速にダイヤモンドを
合成できることを見いだした。1968年以降に行われ
た黒鉛と水素ガスの系でダイヤモンドを化学輸送法的に
合成する方法の代わりに、黒鉛と水の系に着目しダイヤ
モンドの合成を試みた。その結果、本発明の黒鉛と水の
系を用いることにより従来に較べ、より高速でしかも再
現性良くダイヤモンドが合成できることがわかった。即
ち、反応容器の中に黒鉛と水を入れ、残る反応容器内の
空間を真空あるいは水素ガスないしは空気とし、少なく
とも反応容器の黒鉛の設置された部分を1000℃以上
に加熱することにより黒鉛からダイヤモンドが生成する
ことがわかった。
Therefore, the present invention has solved the above-mentioned problems of the prior art by providing a method for synthesizing diamond as set forth in the claims. The inventor has found that the diamond can be synthesized at a higher speed than the conventional method by improving the conventional chemical transport method. Instead of the method of synthesizing diamond by the chemical transport method in the system of graphite and hydrogen gas performed after 1968, the synthesis of diamond was tried by focusing on the system of graphite and water. As a result, it was found that by using the graphite and water system of the present invention, diamond can be synthesized at a higher speed and with better reproducibility than in the past. That is, graphite and water are placed in a reaction vessel, the remaining space in the reaction vessel is evacuated or hydrogen gas or air is used, and at least the portion of the reaction vessel where the graphite is installed is heated to 1000 ° C. or higher to transform the graphite into diamond. Was found to be generated.

【0006】ダイヤモンドの合成速度は容器内の黒鉛部
の温度が高いほど、また圧力が高いほど速くなる。しか
し、反応容器を加熱すると反応容器内に存在した水が気
化しさらに熱膨張するため、密閉構造の場合には容器内
の圧力が上昇する。したがって、反応容器はその圧力上
昇を勘案した構造にしなくてはならない。黒鉛の加熱温
度は高いほど合成速度は速くなるのであるが、上限は容
器の耐熱性で決まる。容器内の圧力を下げるとダイヤモ
ンドの合成速度は遅くなるが、反応容器に真空装置また
は圧力調整弁を取付け、容器内の圧力を調節すると、反
応容器の設計が簡単になる。反応容器内の圧力に関する
設計が容易で、合成速度が適度な圧力範囲は1気圧以
上、1000気圧以下である。又ダイヤモンド粒の上に
ダイヤモンドが成長しやすいことは従来より良く知られ
ているが、本発明の方法においても同様にダイヤモンド
粒種結晶を圧力容器内に入れておくことによりダイヤモ
ンドの成長が促進され、これを種として径の大きいダイ
ヤモンド粒に成長させることができる。
The synthesis rate of diamond increases as the temperature of the graphite portion in the container increases and as the pressure increases. However, when the reaction container is heated, water existing in the reaction container is vaporized and further thermally expanded, so that the pressure in the container is increased in the case of the closed structure. Therefore, the reaction container must have a structure that takes into account the increase in pressure. The higher the heating temperature of graphite, the higher the synthesis rate, but the upper limit is determined by the heat resistance of the container. Although lowering the pressure in the vessel slows down the rate of diamond synthesis, attaching a vacuum device or pressure control valve to the reaction vessel to adjust the pressure in the vessel simplifies the design of the reaction vessel. The pressure range in which the synthesis rate is appropriate and the pressure in the reaction vessel is easy is 1 atm or more and 1000 atm or less. Further, it is well known that diamond grows easily on the diamond grains, but in the method of the present invention as well, the diamond grain seed crystal is similarly put in a pressure vessel to promote the growth of diamond. By using this as a seed, it is possible to grow diamond grains having a large diameter.

【0007】(作用)従来の化学輸送法すなわち、黒鉛
と水素を用いる系では黒鉛と水素の反応によりメタンが
生成し、これが分解するときにダイヤモンドを析出する
と考えられている。しかし、この系の場合には黒鉛と水
素からメタンを生成する速度が遅い上、ダイヤモンドと
ともに黒鉛が大量に生成されるため、この黒鉛の除去の
ため、ダイヤモンド合成の間に黒鉛除去工程を置かなけ
ればならなかった。このため、ダイヤモンドの合成速度
は著しく遅く、この方法が実用的に用いられることはな
かった。
(Function) It is considered that in a conventional chemical transport method, that is, in a system using graphite and hydrogen, methane is produced by the reaction of graphite and hydrogen, and diamond is deposited when this is decomposed. However, in this system, the rate of producing methane from graphite and hydrogen is slow, and a large amount of graphite is produced together with diamond.Therefore, in order to remove this graphite, a graphite removal step must be placed during diamond synthesis. I had to do it. Therefore, the synthesis rate of diamond is extremely slow, and this method has never been used practically.

【0008】本発明では黒鉛と水の反応を利用するが、
この反応は水性ガス反応と呼ばれ、1000℃以上で行
うのが一般的であり、水素と一酸化炭素が主に生成され
るが、二酸化炭素、メタンも少量生成される。本発明の
方法では、これらの炭素含有ガスが高温で分解する際に
ダイヤモンドを生成すると考えられる。このとき、ダイ
ヤモンドとともに黒鉛も生成されるのであるが、この系
の中に存在する水と水素が黒鉛の方を選択的にエッチン
グするため、黒鉛除去工程を置かなくても結果的にはダ
イヤモンドのみが生成するのである。
Although the present invention utilizes the reaction of graphite and water,
This reaction is called a water gas reaction and is generally performed at 1000 ° C. or higher. Hydrogen and carbon monoxide are mainly produced, but carbon dioxide and methane are also produced in a small amount. It is believed that the method of the present invention produces diamond when these carbon-containing gases decompose at high temperatures. At this time, graphite is generated together with diamond, but since water and hydrogen present in this system selectively etch graphite, the result is that only diamond can be obtained without a graphite removal step. Is generated.

【0009】[0009]

【実施例】以下添付した図1乃至図4に基づきこの発明
を詳細に説明する。図1乃至図4は本発明の各実施例ダ
イヤモンドの合成方法を実施する装置の構成を示すブロ
ック図をそれぞれ示す。 〔実施例1〕図1に示すように、片側の閉じた内径22
mm、長さ400mmのアルミナ製の円筒状反応容器1
の底部に黒鉛2を12gと水2ccとを入れ、この容器
1の解放端に内圧が1.1気圧で解放する圧力逃し弁3
を取り付けた。この容器1を管状電気炉4の中に入れ、
黒鉛2の置かれた部分が中心付近となるように配置し、
次いで、熱伝対で測温しながら管状電気炉の中心が12
00℃にになるように加熱した。加熱の初期は加熱とと
もに内部の気体の圧力が上昇し、圧力逃がし弁3から解
放されるが、容器1内の圧力は次第に安定化する。この
状態で10時間の合成を行った後、調査したところ、反
応容器内壁にダイヤモンド粒5が生成していた。ダイヤ
モンドの生成場所は黒鉛2の置かれた部分から他端に向
かって約120mmの範囲であり、この部分の温度は合
成処理中600℃〜1200℃であった。ダイヤモンド
の粒径は黒鉛2の設置された付近で約100μmであ
り、温度の低い方に向かって次第に小さくなることがわ
かった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the attached FIGS. 1 to 4 are block diagrams showing the construction of an apparatus for carrying out the diamond synthesizing method of each embodiment of the present invention. [Embodiment 1] As shown in FIG.
mm cylindrical reaction vessel 1 made of alumina with a length of 400 mm
12 g of graphite 2 and 2 cc of water are placed at the bottom of the pressure relief valve 3 which releases the inner end of the container 1 at an internal pressure of 1.1 atm.
Attached. Put this container 1 in the tubular electric furnace 4,
Arrange so that the part where graphite 2 is placed is near the center,
Next, while measuring the temperature with a thermocouple, the center of the tubular electric furnace is 12
It heated so that it might be set to 00 degreeC. In the initial stage of heating, the pressure of the gas inside rises with heating and is released from the pressure relief valve 3, but the pressure in the container 1 gradually stabilizes. After synthesizing for 10 hours in this state, an investigation was conducted to find that diamond grains 5 were formed on the inner wall of the reaction vessel. The place where the diamond was formed was in the range of about 120 mm from the part where the graphite 2 was placed to the other end, and the temperature of this part was 600 ° C. to 1200 ° C. during the synthesis process. It was found that the particle size of diamond was about 100 μm in the vicinity where graphite 2 was installed, and gradually decreased toward the lower temperature.

【0010】〔実施例2〕図2に示すように、片側の閉
じた内径22mm、長さ400mmのアルミナ製の円筒
状反応容器1の底部に粒状黒鉛2を12gと水2ccと
を入れ、さらに底部から50mmの位置にはニッケル製
の仕切板7を置き、その外側には平均粒径が50μmの
ダイヤモンド粉種結晶6を0.1gを置いた。この反応
容器1に内圧が1.1気圧で解放する圧力逃し弁3を取
付け、実施例1と同様に管状電気炉4で加熱し10時間
の合成を行った。合成終了後に容器内を観察したとこ
ろ、ダイヤモンドは実施例1と同様に反応容器内にも合
成されたが、最初に封入したダイヤモンド粒の成長が目
立った。そのダイヤモンドの粒径を観察したところ元の
粒が100〜200μmに成長していた。生成された総
量は不明であるが、粒径から判断してダイヤモンドの増
加量は8倍〜64倍となることがわかった。
Example 2 As shown in FIG. 2, 12 g of granular graphite 2 and 2 cc of water were put in the bottom of a cylindrical reaction vessel 1 made of alumina and having a closed inner diameter of 22 mm and a length of 400 mm on one side. A partition plate 7 made of nickel was placed at a position 50 mm from the bottom, and 0.1 g of diamond powder seed crystal 6 having an average particle size of 50 μm was placed outside the partition plate 7. A pressure relief valve 3 for releasing the internal pressure to 1.1 atm was attached to the reaction vessel 1, and heated in the tubular electric furnace 4 in the same manner as in Example 1 to perform synthesis for 10 hours. When the inside of the container was observed after completion of the synthesis, diamond was also synthesized in the reaction container as in Example 1, but the growth of the initially encapsulated diamond grains was noticeable. Observation of the grain size of the diamond revealed that the original grains had grown to 100 to 200 μm. Although the total amount produced is unknown, it was found from the grain size that the amount of diamond increase was 8 to 64 times.

【0011】〔実施例3〕図3に示すように、内径15
mm、肉厚6mm、長さ250mmのSUS310S製
反応容器11の内部に黒鉛10gと水1cc及び平均粒径
50μmのダイヤモンド粒種結晶0.1gの混合体16を
充填したのち、内部を水素で置換し反応容器11を密閉し
た。次いで、本密閉反応容器11を横形管状電気炉4で1
100℃に加熱し、8時間の処理を行った。本密閉反応
容器11を冷却後、内部のダイヤモンド粒を取り出し、そ
の平均粒径を測定したところ、ダイヤモンド粒は150
μm〜250μmに成長していた。これから、ダイヤモ
ンドの量は初期充填量の27倍〜125倍に増加したこ
とになる。密閉反応容器11内の圧力は不明であるが、約
200気圧程度と推定される。
[Embodiment 3] As shown in FIG.
mm, thickness 6 mm, length 250 mm, and a reaction vessel 11 made of SUS310S, filled with a mixture 16 of 10 g of graphite, 1 cc of water and 0.1 g of diamond seed crystals having an average particle size of 50 μm, and then replaced with hydrogen. Then, the reaction container 11 was closed. Then, the closed reaction vessel 11 is placed in the horizontal tubular electric furnace 4
It heated at 100 degreeC and performed the process for 8 hours. After cooling the closed reaction vessel 11, the diamond grains inside were taken out and the average grain size was measured.
It had grown to a size of μm to 250 μm. This means that the amount of diamond increased to 27 times to 125 times the initial filling amount. Although the pressure in the closed reaction vessel 11 is unknown, it is estimated to be about 200 atm.

【0012】〔実施例4〕図4に示すように、内径15
mm、肉厚6mm、長さ250mmのSUS310S製
反応容器11の内部に平均粒径50μmのダイヤモンド粒
種結晶6を0.2gと水1ccの入った外形14mm、
内径8mm、長さ180mmの黒鉛容器8を置き、反応
容器11を密閉したのち、これを環状電気炉4の中に入れ
1100℃で8時間保持した。密閉反応容器11冷却後内
部のダイヤモンド粒を取り出し粒径を測定したところ1
00〜200μmに成長していた。また、ダイヤモンド
の形は元の角ばった状態から丸みを帯びた形に変化して
いた。反応前後のダイヤモンド粒の粒径の変化からその
増加率は8〜64倍以上と計算された。
[Embodiment 4] As shown in FIG.
mm, wall thickness 6 mm, length 250 mm made of SUS310S reaction vessel 11 having an outer diameter of 14 mm containing 0.2 g of diamond grain seed crystals 6 having an average particle size of 50 μm and 1 cc of water,
After placing a graphite container 8 having an inner diameter of 8 mm and a length of 180 mm and sealing the reaction container 11, this was placed in the annular electric furnace 4 and kept at 1100 ° C. for 8 hours. After cooling the closed reaction vessel 11 and extracting the diamond grains inside, measuring the grain size 1
It had grown to 100 to 200 μm. Also, the shape of the diamond had changed from its original angular shape to a rounded shape. The increase rate was calculated to be 8 to 64 times or more from the change in the particle size of the diamond particles before and after the reaction.

【0013】[0013]

【発明の効果】本発明の方法によれば、黒鉛と水を原料
とし、従来に較べて安価な製造設備で、しかも合理的な
速度でダイヤモンドを合成することができ、したがって
これをスケールアップすることによりダイヤモンド粉を
安価に製造することができるダイヤモンドの合成方法を
提供するものとなった。
EFFECTS OF THE INVENTION According to the method of the present invention, it is possible to synthesize diamond from graphite and water as raw materials at a reasonable production rate and at a reasonable rate as compared with the conventional method, and thus to scale up the method. As a result, a diamond synthesizing method capable of producing diamond powder at low cost is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例ダイヤモンドの合成方法
を実施する装置の構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of an apparatus for carrying out a diamond synthesizing method according to a first embodiment of the present invention.

【図2】本発明の第2の実施例ダイヤモンドの合成方法
を実施する装置の構成を示すブロック図。
FIG. 2 is a block diagram showing a configuration of an apparatus for carrying out a diamond synthesizing method according to a second embodiment of the present invention.

【図3】本発明の第3の実施例ダイヤモンドの合成方法
を実施する装置の構成を示すブロック図。
FIG. 3 is a block diagram showing a configuration of an apparatus for carrying out a diamond synthesizing method according to a third embodiment of the present invention.

【図4】本発明の第4の実施例ダイヤモンドの合成方法
を実施する装置の構成を示すブロック図。
FIG. 4 is a block diagram showing a configuration of an apparatus for carrying out a diamond synthesizing method according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1...反応容器 2...黒鉛 4...管状電気炉 5...ダイヤモンド粒 8...黒鉛容器 11...密閉反応容器 1. . . Reaction vessel 2. . . Graphite 4. . . Tubular electric furnace 5. . . Diamond grains 8. . . Graphite container 11. . . Closed reaction vessel

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧力調整機構を備えた反応容器内に黒鉛
と水を入れ、残部を不可避的に入る空気とし、該反応容
器の少なくとも該黒鉛の設置された部分を1000℃以
上に加熱し、該反応容器内の600℃以上1200℃以
下の部分にダイヤモンドを合成することを特徴とするダ
イヤモンドの合成方法。
1. A reaction vessel equipped with a pressure adjusting mechanism is charged with graphite and water, the remainder is made air inevitably introduced, and at least a portion of the reaction vessel in which the graphite is installed is heated to 1000 ° C. or higher, A method for synthesizing diamond, which comprises synthesizing diamond in a portion of the reaction vessel at a temperature of 600 ° C. or higher and 1200 ° C. or lower.
【請求項2】 該反応容器内の圧力が1気圧以上100
0気圧以下であることを特徴とする請求項1記載のダイ
ヤモンドの合成方法。
2. The pressure inside the reaction vessel is 1 atm or more and 100 atm.
The method for synthesizing diamond according to claim 1, wherein the pressure is 0 atm or less.
【請求項3】 密閉反応容器内に黒鉛と水を封入し、該
密閉反応容器の少なくとも該黒鉛の設置された部分を1
000℃以上に加熱し、該反応容器内の600℃以上1
200℃以下の部分にダイヤモンドを合成することを特
徴とするダイヤモンドの合成方法。
3. Graphite and water are enclosed in a closed reaction vessel, and at least a portion of the closed reaction vessel where the graphite is installed is 1
Heating to 000 ° C or higher, 600 ° C or higher in the reaction vessel 1
A method for synthesizing diamond, which comprises synthesizing diamond at a temperature of 200 ° C. or lower.
JP5219198A 1993-08-12 1993-08-12 Method for synthesizing diamond Withdrawn JPH0753299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5219198A JPH0753299A (en) 1993-08-12 1993-08-12 Method for synthesizing diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219198A JPH0753299A (en) 1993-08-12 1993-08-12 Method for synthesizing diamond

Publications (1)

Publication Number Publication Date
JPH0753299A true JPH0753299A (en) 1995-02-28

Family

ID=16731748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219198A Withdrawn JPH0753299A (en) 1993-08-12 1993-08-12 Method for synthesizing diamond

Country Status (1)

Country Link
JP (1) JPH0753299A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522807A (en) * 2004-12-09 2008-07-03 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Diamond synthesis
CN114130306A (en) * 2021-11-29 2022-03-04 福沃莱德(辽宁省)高新科技股份公司 Method for eliminating diamond burrs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522807A (en) * 2004-12-09 2008-07-03 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Diamond synthesis
CN114130306A (en) * 2021-11-29 2022-03-04 福沃莱德(辽宁省)高新科技股份公司 Method for eliminating diamond burrs
CN114130306B (en) * 2021-11-29 2023-08-25 福沃莱德(辽宁省)高新科技股份公司 Method for eliminating diamond burrs

Similar Documents

Publication Publication Date Title
US4756791A (en) Chemical vapor deposition process for producing metal carbide or nitride whiskers
JP4574852B2 (en) Method for growing SiC single crystal
JP5049590B2 (en) Method for producing silicon carbide (SiC) single crystal
JPS5927753B2 (en) Diamond synthesis method
US20040003495A1 (en) GaN boule grown from liquid melt using GaN seed wafers
JP2001081564A (en) Chemical vapor deposition system and method for synthesizing carbon nanotube using the same
Lysakovskyi et al. Growth of structurally perfect diamond single crystals at high pressures and temperatures. Review
JP2019112241A (en) Silicon carbide growth apparatus with specific shape
Choudhary et al. Manufacture of gem quality diamonds: a review
JP2006520733A (en) Large-scale synthesis of double-walled carbon nanotubes by vapor deposition
CN112779597A (en) Method for producing van der waals two-dimensional layered single crystal
JPH0753299A (en) Method for synthesizing diamond
Mallmann et al. Ammonothermal Synthesis of Alkali‐Alkaline Earth Metal and Alkali‐Rare Earth Metal Carbodiimides: K5–xMx (CN2) 2+ x (HCN2) 1–x (M= Sr, Eu) and Na4. 32Sr0. 68 (CN2) 2.68 (HCN2) 0.32
Tyutyunnik et al. Lithium hydride single crystal growth by bridgman-stockbarger method using ultrasound
Goto et al. Effect of oxygen gas addition on preparation of iridium and platinum films by metal-organic chemical vapor deposition
US3507616A (en) Preparation of large crystal refractory metal monocarbides
KR19990073589A (en) Massive synthesis of carbon nanotubes using low pressure chemical vapor deposition.
JPS6375000A (en) Production of aluminum nitride whisker
JPS61222911A (en) Synthesis of phosphorated compound
JP2774439B2 (en) Diamond synthesis method
JPS63123806A (en) Production of polycrystalline silicon
JPS593016A (en) Manufacture of diamond
JPS60112699A (en) Manufacture of diamond
JPH1081590A (en) Diamond comprising carbon isotope at suitable ratio of number of atoms and its production
JPH04317497A (en) Production of thin diamond film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031