JPH075300A - Holder of vacuum optical element - Google Patents

Holder of vacuum optical element

Info

Publication number
JPH075300A
JPH075300A JP5144756A JP14475693A JPH075300A JP H075300 A JPH075300 A JP H075300A JP 5144756 A JP5144756 A JP 5144756A JP 14475693 A JP14475693 A JP 14475693A JP H075300 A JPH075300 A JP H075300A
Authority
JP
Japan
Prior art keywords
optical element
cylinder
axis
linear guides
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5144756A
Other languages
Japanese (ja)
Inventor
Hisao Fujisaki
久雄 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5144756A priority Critical patent/JPH075300A/en
Publication of JPH075300A publication Critical patent/JPH075300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To accurately adjust the position and posture by supporting a cylinder fixed with an optical element using three linear guides for each plane which are provided on the periphery along with the two planes vertical to the axis of a short pipe for vacuum, and operating the linear guides outside of the vacuum. CONSTITUTION:Three linear guides 2 are fixed at each of two locations of circumference 3 of a short pipe 1 rotation-symmetrically in the plane vertical to the axis of a holder short pipe 1 and a cylinder 6 containing a Walter mirror 5 is supported with 6 in-total linear guides 2. Then two upper linear guides 2 are loosen to remove from the cylinder 6, the tip position of 4 lower linear guides 2 are adjusted and the cylinder 6 and the Walter mirror 5 are moved to an arbitrary direction vertical to the short pipe 1 axis. And the posture of the cylinder 6 and the Walter mirror are changed to direct to an arbitrary direction. By this method, the position and posture of the optical element is easily adjusted with high accuracy, the adjustment does not deviate during the use and is hardly affected by vibration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線顕微鏡等のX線光
学機器において、ゾーンプレート、ウォルタ鏡等の光学
素子を真空容器内で所定の位置に、所定の方向に向けて
保持するのに用いられる真空光学素子の保持器に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to an X-ray optical instrument such as an X-ray microscope for holding an optical element such as a zone plate or a Walter mirror in a vacuum container at a predetermined position in a predetermined direction. The present invention relates to a holder for a vacuum optical element used in.

【0002】[0002]

【従来の技術】従来、真空容器内に光学素子を保持する
とき、例えばX線顕微鏡においては、図4に示すよう
に、保持器短管41の側面に真空用XYZステージ42
を設け、そのステージから突出する棒材に光学素子45
(図4ではゾーンプレート)を取り付けることにより、
光学素子45を3次元方向に移動可能にしていた。この
場合、光学素子45が向く方向の調整は、保持器短管4
1の両側に蛇腹管43を取り付け、保持器短管41の傾
きを調整することにより行っていた。あるいは、図5に
示すように、保持器短管51の軸に垂直な2面に沿って
該短管の外周に各面3本ずつの直線導入機52を設け、
光学素子55(図5ではウォルタ鏡)を取り付けた円筒
56を直線導入機52で支えて、保持器短管51の軸に
垂直な方向への移動と光学素子56が向く方向の調整を
行っていた。この場合、軸方向への移動は保持器短管5
1の両側に蛇腹管53を取り付け、保持器短管51を移
動することにより、行っていた。
2. Description of the Related Art Conventionally, when holding an optical element in a vacuum container, for example, in an X-ray microscope, as shown in FIG. 4, a vacuum XYZ stage 42 is provided on a side surface of a holder short tube 41.
The optical element 45 on the rod protruding from the stage.
By installing (zone plate in Fig. 4),
The optical element 45 is movable in the three-dimensional direction. In this case, adjustment of the direction in which the optical element 45 faces is performed by the holder short tube 4
The bellows pipes 43 are attached to both sides of No. 1 and the inclination of the holder short pipe 41 is adjusted. Alternatively, as shown in FIG. 5, three linear introduction machines 52 are provided on each of the outer surfaces of the cage short tube 51 along the two surfaces perpendicular to the axis,
A cylinder 56, to which an optical element 55 (Wolter mirror in FIG. 5) is attached, is supported by a straight line introduction device 52 to move the holder short tube 51 in a direction perpendicular to the axis and to adjust the direction in which the optical element 56 faces. It was In this case, the movement in the axial direction is caused by the cage short tube 5.
It was performed by attaching the bellows tubes 53 to both sides of 1 and moving the holder short tube 51.

【0003】[0003]

【発明が解決しようとする課題】前記保持法は、いずれ
も蛇腹管が変形可能であることを利用して、真空内操作
だけでは不十分な自由度を補っている。光学素子の位置
や該素子が向く方向の調整には、マイクロメータオーダ
の精密調整が必要である。しかし、蛇腹管を用いる方法
では、蛇腹管に弾性力があり、また蛇腹管内部が真空な
ので大気圧の負荷が蛇腹管にかかるため、精密調整は非
常に困難で、試行錯誤を繰り返してようやく必要な精度
が得られるという状況であった。
In all of the above-mentioned holding methods, since the bellows tube is deformable, the degree of freedom that is insufficient only by the operation in vacuum is compensated. The adjustment of the position of the optical element and the direction in which the optical element faces requires precise adjustment on the order of micrometers. However, in the method using the bellows tube, the bellows tube has elastic force, and since the inside of the bellows tube is a vacuum, the load of atmospheric pressure is applied to the bellows tube, so it is very difficult to make precise adjustments, and it is necessary to repeat trial and error only after repeated trial and error. It was a situation in which high accuracy was obtained.

【0004】また、短管には常に負荷がかかっているの
で、徐々に調整が変化し、再度調整が必要となるという
問題点もあった。さらに、XYZステージを用いる方法
では、光学素子が棒材の先端に取り付けられるため、不
安定で振動の影響を受け易いという問題点があった。本
発明の目的は、かかる問題点を解決することにある。即
ち、本発明は光学素子の位置及び姿勢(向く方向)の調
整が簡単に高精度で行え、使用中に調整が変化せず、し
かも光学素子の位置及び姿勢が振動の影響を受けにくい
真空光学素子保持器の提供を目的とする。
Further, since the short pipe is always loaded, there is a problem that the adjustment is gradually changed and the readjustment is required. Further, in the method using the XYZ stage, there is a problem that the optical element is attached to the tip of the rod member, so that it is unstable and easily affected by vibration. An object of the present invention is to solve such a problem. That is, according to the present invention, the position and orientation (direction in which the optical element) of the optical element can be easily adjusted with high precision, the adjustment does not change during use, and the position and orientation of the optical element are not easily affected by vibration. An object is to provide an element holder.

【0005】[0005]

【課題を解決するための手段】そのため、本発明は、
「少なくとも、真空用短管と、該短管の軸に垂直な2面
に沿って該短管の外周に設けた各面3本ずつの直線導入
機と、該短管の両端面に軸をずらした状態で設けた別の
短管との接続口と、該短管の一方又は両方の端面に設け
た直線導入機、とからなる真空光学素子の保持器(請求
項1)」を提供する。
Therefore, the present invention provides
“At least a short tube for vacuum, three straight line introduction machines provided on the outer circumference of the short tube along two surfaces perpendicular to the axis of the short tube, and shafts on both end surfaces of the short tube. A vacuum optical element holder (claim 1) comprising a connection port with another short pipe provided in a shifted state, and a linear introduction device provided on one or both end surfaces of the short pipe (claim 1) ". .

【0006】[0006]

【作用】本発明によれば、真空用短管の軸に垂直な2面
に沿って該短管の外周に設けた各面3本ずつの直線導入
機により、光学素子を取り付けた円筒を支え、該直線導
入機を真空外から操作することによって、該短管の軸に
垂直な方向への光学素子の移動と該素子の姿勢調整を精
密に行うことができる。該短管の軸に平行に取り付けた
直線導入機の真空外からの操作によって、軸方向の移動
も精密に行うことができる。
According to the present invention, the cylinder having the optical element mounted thereon is supported by the straight line introducing machines each having three surfaces provided on the outer periphery of the short tube along the two surfaces perpendicular to the axis of the vacuum short tube. By operating the straight line introducing machine from outside the vacuum, the movement of the optical element in the direction perpendicular to the axis of the short tube and the posture adjustment of the element can be precisely performed. By operating the straight line introducing machine attached in parallel to the axis of the short pipe from outside the vacuum, the movement in the axial direction can be performed accurately.

【0007】本発明の真空光学素子保持器は、蛇腹管を
使用していないので、短管を動かす力が作用せず、使用
中に調整が変化するということがない。また、光学素子
を取り付けた円筒を周囲から押さえて固定するので、光
学素子は安定に位置と向く方向が維持され、振動の影響
を受けにくい。光軸を保持器短管の中心軸からずらすこ
とで、保持器短管を余り太くしないで済む。例えば、接
続短管をICF70サイズにし、直線導入機をICF3
4フランジで取り付けたとき、保持器短管はICF15
2サイズだった。即ち、保持器短管の占める体積が半分
ほどで済み、真空排気ポンプの負担が軽減された。軸を
ずらさないと、保持器短管はICF203サイズとな
る。
Since the vacuum optical element holder of the present invention does not use the bellows tube, the force for moving the short tube does not act and the adjustment does not change during use. Further, since the cylinder to which the optical element is attached is fixed by pressing it from the surroundings, the optical element is stably maintained in the position and the direction in which the optical element is oriented, and is hardly affected by vibration. By shifting the optical axis from the central axis of the holder short tube, the holder short tube is not made too thick. For example, the connecting short pipe is ICF70 size, and the straight line introducing machine is ICF3.
When installed with 4 flanges, the cage short tube is ICF15
It was 2 sizes. That is, the volume occupied by the holder short tube was about half, and the load on the vacuum exhaust pump was reduced. When the axis is not displaced, the cage short tube has an ICF203 size.

【0008】[0008]

【実施例】第1の実施例を図1、図2に示す。図2は図
1の断面図である。保持器短管1の軸に垂直な面内で回
転対称に3本ずつの直線導入機2が保持器短管1の外周
の2箇所にそれぞれ取り付けられている。保持器短管1
の軸とは異なる軸上で、ウォルタ鏡5を納めた円筒6が
計6本の直線導入機2によって支えられている。上部の
2本の直線導入機を緩めて直線導入機の先端を円筒6か
ら離し、下部の4本の直線導入機の先端位置を調整する
ことにより、円筒6及びウオルタ鏡5を保持器短管1の
軸に垂直な任意の方向に動かすことができる。また、円
筒6及びウォルタ鏡5の姿勢を変え、任意の方向に向け
ることができる。
EXAMPLE A first example is shown in FIGS. FIG. 2 is a sectional view of FIG. Three linear introduction machines 2 are attached rotationally symmetrically in a plane perpendicular to the axis of the cage short tube 1 at two locations on the outer circumference of the cage short tube 1, respectively. Cage short tube 1
A cylinder 6 accommodating the Walter mirror 5 is supported by a total of six straight line introducing machines 2 on an axis different from the axis. Loosen the upper two linear guides to separate the tips of the linear guides from the cylinder 6 and adjust the positions of the lower four linear guides to move the cylinder 6 and the water mirror 5 to the holder short tube. It can be moved in any direction perpendicular to the 1 axis. Further, the postures of the cylinder 6 and the Walter mirror 5 can be changed to point in arbitrary directions.

【0009】このようにして、偏心二穴フランジ9、偏
心フランジ9’及びフランジ4を介して、保持器短管1
の両端に接続された短管3の軸に、ウォルタ鏡5の軸を
一致させた。この共通軸が光軸になる。円筒6及びウォ
ルタ鏡5の軸上の位置調整は、フランジ4’によって接
続された直線導入機2’を用いて、先端の凹形部材8を
介して円筒6の突起7を動かすことによって行った。ウ
ォルタ鏡5の位置及び方向の調節終了後、上部の2本の
直線導入機で円筒6を押さえることにより、ウォルタ鏡
5を固定した。
In this way, the cage short pipe 1 is inserted through the eccentric two-hole flange 9, the eccentric flange 9'and the flange 4.
The axis of the wolter mirror 5 was aligned with the axis of the short tube 3 connected to both ends of the. This common axis becomes the optical axis. The axial position adjustment of the cylinder 6 and the Walter mirror 5 was performed by moving the projection 7 of the cylinder 6 via the concave member 8 at the tip, using the straight line introducing machine 2'connected by the flange 4 '. . After the adjustment of the position and direction of the Walter mirror 5 was completed, the Walter mirror 5 was fixed by pressing the cylinder 6 with the upper two linear introduction machines.

【0010】図3は第2の実施例である。円筒36の端
面にゾーンプレート35を取り付け、第1の実施例のウ
ォルタ鏡と同様に、位置と姿勢の調整を行った。
FIG. 3 shows a second embodiment. The zone plate 35 was attached to the end surface of the cylinder 36, and the position and orientation were adjusted in the same manner as in the Walter mirror of the first embodiment.

【0011】[0011]

【発明の効果】本発明によれば、光学素子の位置及び姿
勢の調整を簡単に高精度で行うことができ、また使用中
にその調整が変化することがない。さらに、光学素子の
位置及び姿勢が振動の影響を受けにくい。
According to the present invention, the position and orientation of the optical element can be easily adjusted with high accuracy, and the adjustment does not change during use. Furthermore, the position and orientation of the optical element are less likely to be affected by vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明をウォルタ鏡保持に用いた実施例を
示す図である。
FIG. 1 is a diagram showing an embodiment in which the present invention is used for holding a Walter mirror.

【図2】は、図1の実施例を中央で切断して右側から見
た図である。
FIG. 2 is a view of the embodiment of FIG. 1 cut at the center and viewed from the right side.

【図3】は、本発明をゾーンプレート保持に用いた実施
例を示す図である。
FIG. 3 is a diagram showing an embodiment in which the present invention is used for holding a zone plate.

【図4】は、XYZステージを用いる従来の光学素子保
持方法でゾーンプレートを保持する例を示す図である。
FIG. 4 is a diagram showing an example of holding a zone plate by a conventional optical element holding method using an XYZ stage.

【図5】は、直線導入機を用いる従来の光学素子保持方
法でウォルタ鏡を保持する例を示す図である。
FIG. 5 is a diagram showing an example of holding a Walter mirror by a conventional optical element holding method using a straight line introduction machine.

【符号の説明】[Explanation of symbols]

1、31、41、51 保持器短管(真空用短管) 2、2’、32、32’、52 直線導入機 3、33 接続短管 4、34、44 真空フランジ(例えば、ICF70) 4’、34’、54 真空フランジ(例えば、ICF3
4) 5、55 ウォルタ鏡(光学素子の一例) 6、36、66 円筒 7、37 突起 8、38 凹形部材 9、39 接続口の一例である偏心2穴フランジ(IC
F152サイズ) 9’、39’接続口の一例である偏心フランジ(ICF
152サイズ) 35、45 ゾーンプレート(光学素子の一例) 42 XYZステージ 43、53 蛇腹管 以 上
1, 31, 41, 51 Retainer short tube (vacuum short tube) 2, 2 ', 32, 32', 52 Straight line introduction machine 3, 33 Connection short tube 4, 34, 44 Vacuum flange (for example, ICF70) 4 ', 34', 54 Vacuum flange (eg ICF3
4) 5,55 Walter mirror (an example of optical element) 6, 36, 66 Cylinder 7, 37 Protrusion 8, 38 Concave member 9, 39 Eccentric 2-hole flange (IC) which is an example of a connection port
F152 size) Eccentric flange (ICF, which is an example of 9 ', 39' connection port
152 size) 35, 45 zone plate (an example of optical element) 42 XYZ stage 43, 53 bellows tube and above

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、真空用短管と、該短管の軸
に垂直な2面に沿って該短管の外周に設けた各面3本ず
つの直線導入機と、該短管の両端面に設けた別の短管と
の接続部と、該接続部に設けた該短管とは軸がずれた接
続口と、該短管の一方又は両方の端面に設けた直線導入
機、 とからなる真空光学素子の保持器。
1. A short tube for vacuum, at least three straight line introduction machines provided on the outer circumference of the short tube along two surfaces perpendicular to the axis of the short tube, and both ends of the short tube. A connection portion with another short pipe provided on the surface, a connection port whose axis is offset from the short pipe provided at the connection portion, and a straight line introduction machine provided on one or both end faces of the short pipe, Vacuum optical element holder consisting of.
JP5144756A 1993-06-16 1993-06-16 Holder of vacuum optical element Pending JPH075300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5144756A JPH075300A (en) 1993-06-16 1993-06-16 Holder of vacuum optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5144756A JPH075300A (en) 1993-06-16 1993-06-16 Holder of vacuum optical element

Publications (1)

Publication Number Publication Date
JPH075300A true JPH075300A (en) 1995-01-10

Family

ID=15369665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5144756A Pending JPH075300A (en) 1993-06-16 1993-06-16 Holder of vacuum optical element

Country Status (1)

Country Link
JP (1) JPH075300A (en)

Similar Documents

Publication Publication Date Title
US7420752B2 (en) Holding apparatus
US8514371B2 (en) Imaging device in a projection exposure facility
US7242537B2 (en) Holding and positioning apparatus for an optical element
JPH0832390B2 (en) Jig for work
JP2008504141A (en) Apparatus, system and method for changing substrate dimensions during nanoscale processing
JP2013501250A (en) Retaining device for optical elements
JP6360177B2 (en) Optical imaging apparatus module and method for supporting its components
CN109202300A (en) A kind of SMT template construct method
JP2020102621A (en) Gantry type positioning device
KR20110026471A (en) Optical apparatus with adjustable action of force on an optical module
JPS61125128A (en) Positioning apparatus for work
JP3345526B2 (en) Object drive control device and object drive control method
KR102026493B1 (en) Multiple-blade holding devices
KR100541849B1 (en) High speed, Ultraprecision and long displacement stage
JPH075300A (en) Holder of vacuum optical element
US4746800A (en) Positioning device comprising a z-manipulator and a θ-manipulator
JP3403748B2 (en) Positioning device and table device using the same
US20080100930A1 (en) Optical measuring system, and a projection objective
CN111142210A (en) Lens apparatus
JPH0652302B2 (en) Linear motion stage
JPH0128686Y2 (en)
CN111618506B (en) Semicircular ring workpiece fixture device
JPH04179041A (en) Sample stage
JPH075374A (en) X-ray optical element holder
JP4287781B2 (en) Positioning device having a reference frame for a measurement system