JPH0752695B2 - Semiconductor porcelain material - Google Patents

Semiconductor porcelain material

Info

Publication number
JPH0752695B2
JPH0752695B2 JP62248913A JP24891387A JPH0752695B2 JP H0752695 B2 JPH0752695 B2 JP H0752695B2 JP 62248913 A JP62248913 A JP 62248913A JP 24891387 A JP24891387 A JP 24891387A JP H0752695 B2 JPH0752695 B2 JP H0752695B2
Authority
JP
Japan
Prior art keywords
mol
oxide
semiconductor porcelain
cuo
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62248913A
Other languages
Japanese (ja)
Other versions
JPS6490515A (en
Inventor
勉 坂下
哲 高尾
茂樹 柴垣
修 神田
行治 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62248913A priority Critical patent/JPH0752695B2/en
Publication of JPS6490515A publication Critical patent/JPS6490515A/en
Publication of JPH0752695B2 publication Critical patent/JPH0752695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体磁器の粒界に誘電体層を設けてなる半
導体磁器物質に関する。
TECHNICAL FIELD The present invention relates to a semiconductor ceramic material having a dielectric layer provided at a grain boundary of the semiconductor ceramic.

〔従来技術〕 近年、チタン酸ストロンチウム(SrTiO3)を主体とする
半導体磁器の粒界に、誘電体として高絶縁層を設けてな
る粒界誘電体型の半導体磁器コンデンサが、広く用いら
れている。そしてこの半導体磁器物質は、まずチタン酸
ストロンチウム(SrTiO3)を主材料としてこれに、原子
価制御剤として酸化ニオブ(Nb2O5),酸化イットリウ
ム(Y2O3)等を添加し、また焼結助剤として酸化ケイ素
(SiO2),酸化アルミニウム(Al2O3)等を添加し、中
性又は還元雰囲気中にて焼結して半導体磁器を得、次に
この半導体磁器の粒界に誘電体層を設けるべく、酸化マ
ンガン(MnO2),酸化銅(CuO),酸化ビスマス(Bi
2O3)等の金属酸化物を前記拡散物質として熱拡散させ
て得られていた(特公昭58−27649号公報、特開昭52−9
8997号公報)。
[Prior Art] In recent years, a grain boundary dielectric type semiconductor ceramic capacitor in which a high insulating layer is provided as a dielectric at a grain boundary of a semiconductor ceramic mainly composed of strontium titanate (SrTiO 3 ) has been widely used. In this semiconductor porcelain material, strontium titanate (SrTiO 3 ) is used as a main material, and niobium oxide (Nb 2 O 5 ) and yttrium oxide (Y 2 O 3 ) are added as valence control agents to the material. Silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ) etc. are added as a sintering aid and sintered in a neutral or reducing atmosphere to obtain a semiconductor porcelain. Manganese oxide (MnO 2 ), copper oxide (CuO), bismuth oxide (Bi
It was obtained by thermally diffusing a metal oxide such as 2 O 3 ) as the diffusing substance (Japanese Patent Publication No. 58-27649 and Japanese Patent Laid-Open No. 52-9).
8997 publication).

〔発明が解決しようとする問題点〕 拡散物質としてどのような物質を用いるかにより、得ら
れる半導体磁器物質の電気的な特性〔比誘電率
(ε),誘電正接(tanδ),体積抵抗率(ρ)等〕
に相違がある。例えば、拡散物質として酸化マンガン
(MnO2)又は酸化銅(CuO)を用いて得られる半導体磁
器物質にあっては、体積抵抗率は高いが、誘電正接が高
く、また比誘電率が低くなる。一方、拡散物質として酸
化ビスマス(Bi2O3)を用いる場合には誘電正接は低
く、また比誘電率は高いが、体積抵抗率が低くなる。ま
た、拡散物質として酸化ビスマス(Bi2O3)及び酸化銅
(CuO)の混合物を用いる場合には、酸化ビスマス(Bi2
O3)又は酸化銅(CuO)を単一で使用する場合と比較し
て平均的に各電気的特性が向上するが、充分な特性値を
達成しているとはいえなかった。このように、すべての
電気的特性について良好な結果(比誘電率及び体積抵抗
率は高く、誘電正接は低い)を有する半導体磁器物質は
未だ得られていない。
[Problems to be Solved by the Invention] Depending on what kind of material is used as the diffusing material, the electrical characteristics of the obtained semiconductor ceramic material [relative permittivity (ε A ), dielectric loss tangent (tan δ), volume resistivity (Ρ) etc.]
There is a difference. For example, a semiconductor ceramic material obtained by using manganese oxide (MnO 2 ) or copper oxide (CuO) as a diffusing material has a high volume resistivity but a high dielectric loss tangent and a low relative dielectric constant. On the other hand, when bismuth oxide (Bi 2 O 3 ) is used as the diffusing substance, the dielectric loss tangent is low and the relative dielectric constant is high, but the volume resistivity is low. Further, when a mixture of bismuth oxide (Bi 2 O 3) and copper oxide (CuO) as the diffusion material, bismuth oxide (Bi 2
Although each electrical characteristic is improved on average as compared with the case where O 3 ) or copper oxide (CuO) is used alone, it cannot be said that sufficient characteristic values are achieved. Thus, a semiconductor ceramic material having good results (high relative permittivity and volume resistivity and low dielectric loss tangent) for all electrical characteristics has not yet been obtained.

本発明者は、拡散物質として種々の材料を用いてなる半
導体磁器物質について、その電気的特性を調査した結
果、拡散物質として酸化ビスマス(Bi2O3)と、酸化銅
(CuO)と、炭酸ナトリウム(Na2CO3)又は酸化ナトリ
ウム(Na2O)との混合物を用いた場合には、すべての電
気的特性が良好である半導体磁器物質が得られることを
知見した。
The present inventor has investigated the electrical characteristics of semiconductor porcelain substances using various materials as diffusion substances, and as a result, bismuth oxide (Bi 2 O 3 ), copper oxide (CuO) It has been found that when a mixture with sodium (Na 2 CO 3 ) or sodium oxide (Na 2 O) is used, a semiconductor porcelain material having good electrical characteristics can be obtained.

本発明はかかる知見に基づいてなされたものであり、前
述のすべての電気的特性について良好な結果が得られる
半導体磁器物質を提供することを目的とする。
The present invention has been made based on such findings, and an object of the present invention is to provide a semiconductor porcelain material that can obtain good results with respect to all the above-mentioned electrical characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る半導体磁器物質は、チタン酸ストロンチウ
ムに酸化ニオブ及び酸化ケイ素を夫々0.1〜2モル%含
有した半導体磁器の結晶粒界に、酸化ビスマス(Bi
2O3)が20〜98モル%と、酸化銅(CuO)が1〜30モル%
と、炭酸ナトリウム(Na2CO3)又は酸化ナトリウム(Na
2O)が1〜70モル%とからなる組成物が拡散し、前記結
晶粒界に誘電体層が形成され、比誘電率が12万以上で、
且つ体積抵抗率が1.5×1010Ω−cm以上であることを特
徴とする。
The semiconductor porcelain material according to the present invention contains bismuth oxide (Bi) at a crystal grain boundary of a semiconductor porcelain containing strontium titanate containing 0.1 to 2 mol% of niobium oxide and silicon oxide, respectively.
20-98 mol% of 2 O 3 ) and 1-30 mol% of copper oxide (CuO)
And sodium carbonate (Na 2 CO 3 ) or sodium oxide (Na
2 O) of 1 to 70 mol% is diffused, a dielectric layer is formed at the crystal grain boundaries, and the relative dielectric constant is 120,000 or more,
The volume resistivity is 1.5 × 10 10 Ω-cm or more.

〔作用〕[Action]

半導体磁器は0.1〜2モル%の酸化ケイ素を含むから製
品の品質,特性が安定し、また拡散物質として1〜70モ
ル%の炭酸ナトリウムを含むから、12万以上の比誘電
率,1.5×1010Ω−cm以上の体積抵抗率夫々の設定が可能
となり、得られる半導体磁器物質はその比誘電率及び体
積抵抗率が大幅に向上する。しかも誘電正接は十分に低
い。
Since semiconductor porcelain contains 0.1 to 2 mol% of silicon oxide, the quality and characteristics of the product are stable, and 1 to 70 mol% of sodium carbonate is contained as a diffusing substance, so that the relative dielectric constant is 120,000 or more, 1.5 × 10 5. Each volume resistivity of 10 Ω-cm or more can be set, and the obtained semiconductor porcelain material has a significantly improved relative dielectric constant and volume resistivity. Moreover, the dielectric loss tangent is sufficiently low.

〔実施例〕〔Example〕

以下本発明を、例えばコンデンサの製造に適用した場合
の実施例について具体的に説明する。
Hereinafter, examples in which the present invention is applied to, for example, manufacturing of capacitors will be specifically described.

まず、本発明の半導体磁器物質の製造方法について説明
する。例えばチタン酸ストロンチウム(SrTiO3)に酸化
ニオブ(Nb2O5)及び酸化ケイ素(SiO2)を夫々0.1〜2
モル%の範囲で添加し、十分に混合した後、直径10mm,
厚さ0.8mmの円板状に加圧成形する。この後、水素1〜1
5%,窒素99〜85%からなる雰囲気中で1420〜1520℃の
範囲で2〜4時間焼成して半導体磁器を製造する。次
に、半導体磁器の片面に拡散物質(酸化ビスマス(Bi2O
3)と酸化銅(CuO)と炭酸ナトリウム(Na2CO3)との混
合物)を塗布し、1000〜1300℃で1〜2時間加熱して拡
散物質を熱拡散させる。最後に、このようにして得られ
た半導体磁器物質の両面に銀ペーストを印刷し、800℃
程度で焼付けて銀電極とし、コンデンサを得る。
First, a method for manufacturing a semiconductor ceramic material of the present invention will be described. For example, strontium titanate (SrTiO 3 ) is mixed with niobium oxide (Nb 2 O 5 ) and silicon oxide (SiO 2 ) in an amount of 0.1 to 2 respectively.
After adding in the range of mol% and mixing well, diameter 10mm,
It is pressed into a disk with a thickness of 0.8 mm. After this, hydrogen 1 to 1
A semiconductor porcelain is manufactured by firing at 1420 to 1520 ° C. for 2 to 4 hours in an atmosphere consisting of 5% and 99 to 85% nitrogen. Next, diffusion material (bismuth oxide (Bi 2 O
3 ), copper oxide (CuO), and sodium carbonate (Na 2 CO 3 ) mixture), and heated at 1000 to 1300 ° C. for 1 to 2 hours to thermally diffuse the diffusion material. Finally, print the silver paste on both sides of the semiconductor porcelain material thus obtained,
The silver electrode is baked by about a degree to obtain a capacitor.

酸化ビスマス(Bi2O3)と酸化銅(CuO)と炭酸ナトリウ
ム(Na2CO3)との混合物を種々の組成比にて半導体磁器
に塗布して得た半導体磁器物質の電気的特性を下記第1
表に示す。なお、表中の最左欄に※印を付したものは、
前記混合物の組成比が本発明の条件から逸脱したものを
示している。また、表中の比誘電率(ε)及び誘電正
接(tanδ)は、周波数1kHz,電圧1Vにて測定した値であ
り、体積抵抗率(ρ)はDC50V1分値によって求めた値で
ある。
The electrical characteristics of the semiconductor porcelain material obtained by applying the mixture of bismuth oxide (Bi 2 O 3 ), copper oxide (CuO) and sodium carbonate (Na 2 CO 3 ) to the semiconductor porcelain at various composition ratios are shown below. First
Shown in the table. Those marked with * in the leftmost column in the table are
It shows that the composition ratio of the mixture deviates from the conditions of the present invention. Further, the relative permittivity (ε A ) and the dielectric loss tangent (tan δ) in the table are values measured at a frequency of 1 kHz and a voltage of 1 V, and the volume resistivity (ρ) is a value obtained by a DC50V one-minute value.

第1表から、前記混合物の組成比が本発明の条件を満足
しているもの、即ち酸化ビスマス(Bi2O3)20〜98モル
%、酸化銅(CuO)1〜3モル%、炭酸ナトリウム(Na2
CO3)1〜70モル%の条件を満足しているものは、良好
な電気的特性が得られていることが分かる。また酸化ビ
スマス(Bi2O3)が20モル%未満である場合又はそれが9
8モル%を越えた場合は比誘電率及び抵抗率が低下して
いることも分かる。また酸化銅(CuO)が1モル%未満
である場合は抵抗率が不十分であり、それが30モル%を
越えた場合は比誘電率が低下すると共に誘電正接が悪く
なることも分かる。また炭酸ナトリウム(Na2CO3)が1
モル%未満である場合は比誘電率が低下し、それが70モ
ル%を越えた場合は誘電正接が悪くなると共に体積抵抗
が低下することも分かる。
From Table 1, the composition ratio of the mixture satisfies the conditions of the present invention, that is, 20 to 98 mol% of bismuth oxide (Bi 2 O 3 ), 1 to 3 mol% of copper oxide (CuO), and sodium carbonate. (Na 2
It can be seen that those satisfying the condition of CO 3 ) 1 to 70 mol% have good electrical characteristics. When the bismuth oxide (Bi 2 O 3 ) content is less than 20 mol%, or when it is 9%,
It can also be seen that when it exceeds 8 mol%, the relative permittivity and the resistivity decrease. It can also be seen that when the copper oxide (CuO) content is less than 1 mol%, the resistivity is insufficient, and when it exceeds 30 mol%, the relative dielectric constant decreases and the dielectric loss tangent deteriorates. Sodium carbonate (Na 2 CO 3 ) is 1
It can also be seen that when it is less than mol%, the relative dielectric constant decreases, and when it exceeds 70 mol%, the dielectric loss tangent deteriorates and the volume resistance decreases.

更に第1表からは、酸化ビスマス(Bi2O3)45モル%、
酸化銅(CuO)10モル%、炭酸ナトリウム(Na2CO3)45
モル%の混合物を拡散物質として用いた本発明例が、酸
化ビスマス(Bi2O3)単体を拡散物質として用いた従来
例に比して、比誘電率で1.4倍、体積抵抗率で8.1倍と電
気的特性が著しく向上していることも分かる。
Further, from Table 1, 45 mol% of bismuth oxide (Bi 2 O 3 ),
Copper oxide (CuO) 10 mol%, sodium carbonate (Na 2 CO 3 ) 45
The example of the present invention using a mixture of mol% as a diffusing substance has a relative dielectric constant of 1.4 times and a volume resistivity of 8.1 times as compared with a conventional example using a simple substance of bismuth oxide (Bi 2 O 3 ). It can also be seen that the electrical characteristics are remarkably improved.

また上述した如き本発明の半導体磁器物質は、拡散物質
の塗布及び大気中焼成という簡単な製造プロセスで得る
ことができるという利点もある。
Further, the semiconductor porcelain material of the present invention as described above has an advantage that it can be obtained by a simple manufacturing process of coating a diffusion material and firing in the air.

なお、上述な実施例においては、半導体磁器の片面に拡
散物質として酸化ビスマス(Bi2O3)と酸化銅(CuO)と
炭酸ナトリウム(Na2CO3)との混合物を塗布することと
したが、該混合物に替えて酸化ビスマス(Bi2O3)20〜9
8モル%と酸化銅(CuO)1〜30モル%と酸化ナトリウム
(Na2O)1〜70モル%との混合物を塗布しても上述の実
施例と同様、電気的特性が従来例に比して向上する。
In addition, in the above-mentioned examples, it was decided to apply a mixture of bismuth oxide (Bi 2 O 3 ), copper oxide (CuO), and sodium carbonate (Na 2 CO 3 ) as a diffusion material on one surface of the semiconductor porcelain. , Bismuth oxide (Bi 2 O 3 ) 20-9 instead of the mixture
Even if a mixture of 8 mol%, copper oxide (CuO) 1 to 30 mol% and sodium oxide (Na 2 O) 1 to 70 mol% is applied, the electrical characteristics are similar to those of the conventional example, as in the above-described embodiment. And improve.

また上述の実施例では、前記半導体磁器物質の両面に銀
ペーストを印刷してこれを焼付け、銀電極としたが、そ
の他の公知の電極材料を用いてもよいことはいうまでも
ない。また半導体磁器製造時の焼成雰囲気は、上述の実
施例の如く水素1〜15%,窒素99〜85%からなる雰囲気
に限定されるものではなく、試料が十分に半導体化され
得る雰囲気であれば他の雰囲気であっても差し支えない
のはいうまでもない。
Further, in the above-mentioned embodiment, the silver paste is printed on both sides of the semiconductor porcelain and baked to form a silver electrode, but it goes without saying that other known electrode materials may be used. Further, the firing atmosphere at the time of manufacturing the semiconductor porcelain is not limited to the atmosphere composed of 1 to 15% hydrogen and 99 to 85% nitrogen as in the above-mentioned embodiment, as long as the sample can be sufficiently semiconducting. It goes without saying that other atmospheres are acceptable.

〔効果〕〔effect〕

以上の如く、本発明に係る半導体磁器物質にあっては、
半導体磁器は0.1〜2モル%の酸化ケイ素を含有し、更
に拡散物質として1〜70モル%の炭酸ナトリウムを含有
するから、コンデンサ等として用いる場合における製品
の品質,特性が安定し、しかも12万以上の比誘電率,1.5
×1010Ω−cm以上の体積抵抗率の設定を容易に行い得る
こととなり、加えて比誘電率,誘電正接,体積抵抗率等
の電気的特性について同時に良好な結果が得られ、コン
デンサ,パリスター,サーミスタ等,広い範囲に応用可
能である等本発明は優れた効果を奏する。
As described above, in the semiconductor porcelain material according to the present invention,
Since semiconductor porcelain contains 0.1 to 2 mol% of silicon oxide and 1 to 70 mol% of sodium carbonate as a diffusing substance, the quality and characteristics of the product are stable when used as a capacitor, etc. Relative permittivity above 1.5
The volume resistivity of × 10 10 Ω-cm or more can be easily set. In addition, good results can be obtained at the same time with respect to electrical characteristics such as relative permittivity, dielectric loss tangent, and volume resistivity. The present invention exhibits excellent effects such as being applicable to a wide range of stars, thermistors and the like.

フロントページの続き (72)発明者 神田 修 兵庫県尼崎市西長洲本通1丁目3番地 住 友金属工業株式会社総合技術研究所内 (72)発明者 柴田 行治 兵庫県尼崎市西長洲本通1丁目3番地 住 友金属工業株式会社総合技術研究所内 (56)参考文献 特開 昭57−123863(JP,A) 特開 昭59−127826(JP,A)Front page continued (72) Inventor Osamu Kanda 1-3-3 Nishi-Nagasumotodori, Amagasaki City, Hyogo Prefecture Sumitomo Metal Industries, Ltd. Research Institute (72) Inventor Kyuji Shibata Nishinagasumoto-dori, Amagasaki City, Hyogo Prefecture 3-chome, Sumitomo Metal Industries, Ltd. (56) References JP-A-57-123863 (JP, A) JP-A-59-127826 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チタン酸ストロンチウムに酸化ニオブ及び
酸化ケイ素を夫々0.1〜2モル%含有した半導体磁器の
結晶粒界に、酸化ビスマス(Bi2O3)が20〜98モル%
と、酸化銅(CuO)が1〜30モル%と、炭酸ナトリウム
(Na2CO3)又は酸化ナトリウム(Na2O)が1〜70モル%
とからなる組成物が拡散し、前記結晶粒界に誘電体層が
形成され、比誘電率が12万以上で、且つ体積抵抗率が1.
5×1010Ω−cm以上であることを特徴とする半導体磁器
物質。
1. Bismuth oxide (Bi 2 O 3 ) is contained in an amount of 20 to 98 mol% at a crystal grain boundary of a semiconductor ceramic containing strontium titanate containing 0.1 to 2 mol% of niobium oxide and silicon oxide, respectively.
And 1 to 30 mol% of copper oxide (CuO) and 1 to 70 mol% of sodium carbonate (Na 2 CO 3 ) or sodium oxide (Na 2 O)
The composition consisting of and diffuses, a dielectric layer is formed at the crystal grain boundary, the relative dielectric constant is 120,000 or more, and the volume resistivity is 1.
A semiconductor porcelain material characterized by having a value of 5 × 10 10 Ω-cm or more.
JP62248913A 1987-09-30 1987-09-30 Semiconductor porcelain material Expired - Lifetime JPH0752695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62248913A JPH0752695B2 (en) 1987-09-30 1987-09-30 Semiconductor porcelain material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62248913A JPH0752695B2 (en) 1987-09-30 1987-09-30 Semiconductor porcelain material

Publications (2)

Publication Number Publication Date
JPS6490515A JPS6490515A (en) 1989-04-07
JPH0752695B2 true JPH0752695B2 (en) 1995-06-05

Family

ID=17185286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248913A Expired - Lifetime JPH0752695B2 (en) 1987-09-30 1987-09-30 Semiconductor porcelain material

Country Status (1)

Country Link
JP (1) JPH0752695B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2080789B (en) * 1980-07-28 1983-09-28 Univ Illinois Heterophasic semiconducting ceramic compositions
JPS59127826A (en) * 1983-01-13 1984-07-23 株式会社村田製作所 Grain boundary insulating semiconductor porcelain capacitor

Also Published As

Publication number Publication date
JPS6490515A (en) 1989-04-07

Similar Documents

Publication Publication Date Title
KR920003225B1 (en) Semiconductive ceramic composition
JPS6257245B2 (en)
EP0437613B1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
US5268006A (en) Ceramic capacitor with a grain boundary-insulated structure
US4419310A (en) SrTiO3 barrier layer capacitor
JPH0524646B2 (en)
EP0412167B1 (en) Laminated type grain boundary insulated semiconductor ceramic capacitor and method of producing the same
KR940001654B1 (en) Semiconductive ceramic composition
US5266079A (en) Method for manufacturing a ceramic capacitor having varistor characteristics
EP0104257B1 (en) High dielectric constant porcelain composition
US4397886A (en) Method for making a ceramic intergranular barrier-layer capacitor
JPH0552602B2 (en)
US3987347A (en) Temperature stable monolithic ceramic capacitor with base metal electrodes
JPH0752695B2 (en) Semiconductor porcelain material
US6376079B1 (en) Semiconducting ceramic and semiconducting ceramic electronic element
US5378667A (en) Intercrystalline semiconductive ceramic capacitor
JPH038759A (en) Semiconductive porcelain material
JP2605314B2 (en) Semiconductor porcelain material
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPH01149412A (en) Semiconductor porcelain substance
JPH01187914A (en) Semiconductor porcelain substance
JP2679065B2 (en) Semiconductor porcelain material
JPH01274411A (en) Semiconductor porcelain substance
JPH0524645B2 (en)
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor