JPH0752131B2 - Fitting stress detection method for double pipe - Google Patents

Fitting stress detection method for double pipe

Info

Publication number
JPH0752131B2
JPH0752131B2 JP1211480A JP21148089A JPH0752131B2 JP H0752131 B2 JPH0752131 B2 JP H0752131B2 JP 1211480 A JP1211480 A JP 1211480A JP 21148089 A JP21148089 A JP 21148089A JP H0752131 B2 JPH0752131 B2 JP H0752131B2
Authority
JP
Japan
Prior art keywords
pipe
double pipe
transducer
waveform
fitting stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1211480A
Other languages
Japanese (ja)
Other versions
JPH0375536A (en
Inventor
真一 福田
満博 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1211480A priority Critical patent/JPH0752131B2/en
Publication of JPH0375536A publication Critical patent/JPH0375536A/en
Publication of JPH0752131B2 publication Critical patent/JPH0752131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、腐食性物質を含有する石油、天然ガスを輸送
するラインパイプあるいは化学工業における配管等に使
用される耐食性二重管等の嵌合二重管(以下単に二重管
という)の外管と内管のはめあい応力が所要値あるか否
かの良否材を、疑似アコーステイックエミッション(AE
という)法により選別するための検知方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to fitting of a corrosion resistant double pipe or the like used for a line pipe for transporting petroleum or natural gas containing a corrosive substance, or a pipe in the chemical industry. Pseudo-acoustic emission (AE) is used to determine whether the fitting stress between the outer pipe and the inner pipe of a compound double pipe (hereinafter simply referred to as double pipe) has a required value.
Said) method for selection.

[従来の技術] 二重管は耐食性および低コスト化を目的に開発された管
材であり、一般的には内管は耐食性の優れた材料、外管
には炭素鋼が使用される。二重管は特公昭56−46451に
示されているように、別々の製管ラインで造られた成分
および材質の異なる内管および外管を用い、加熱膨張さ
せた外管内に内管を挿入し、内管内に圧力を加えて内管
を拡管させた後、外管の熱収縮によって内管と外管を機
械的に嵌合して造られるが、内外管嵌合時のはめあい応
力が二重管の品質に大きく影響する。二重管のはめあい
応力が10kgf/mm2以上の場合は内管が抜けたりずれたり
することなく、二重管としての品質が保たれる。
[Prior Art] A double pipe is a pipe material developed for the purpose of corrosion resistance and cost reduction. Generally, a material having excellent corrosion resistance is used for the inner pipe and carbon steel is used for the outer pipe. As shown in Japanese Examined Patent Publication No. 56-46451, the double pipe uses inner and outer pipes with different components and materials made by separate pipe production lines, and inserts the inner pipe into the heat-expanded outer pipe. After the inner tube is expanded by applying pressure to the inner tube, the inner tube and the outer tube are mechanically fitted by the heat shrinkage of the outer tube. It greatly affects the quality of heavy tubes. When the fitting stress of the double pipe is 10 kgf / mm 2 or more, the quality of the double pipe is maintained without the inner pipe coming off or shifting.

[発明が解決しようとする課題] 従来、このような製造方法で造られた二重管の内外管の
はめあい応力を、非破壊的に測定する方法としては、特
開昭62−828号公報が知られている。この方法は、二重
管を打撃した際に発生する音響信号を周波数で弁別する
ことにより、外管と内管のはめあい応力を測定するもの
である。このような従来法では、二重管の保持方法によ
って音響信号の周波数が異なることや、測定場所の騒音
などによって周波数弁別精度が低くなる等の問題が生じ
ていた。
[Problems to be Solved by the Invention] Conventionally, as a method of nondestructively measuring the fitting stress of the inner and outer pipes of the double pipe manufactured by such a manufacturing method, Japanese Patent Laid-Open No. 62-828 discloses. Are known. This method measures the fitting stress between the outer pipe and the inner pipe by discriminating the acoustic signal generated when the double pipe is hit by the frequency. In such a conventional method, there are problems that the frequency of the acoustic signal is different depending on the method of holding the double pipe, and the frequency discrimination accuracy is lowered due to noise at the measurement location.

本発明は、二重管のはめあい応力が所要値あるか否かの
良否材を確実に安定して選別することを目的とする。
An object of the present invention is to reliably and stably select a quality material having a fitting stress of a double pipe having a required value.

[課題を解決するための手段] 本発明は、互いに異なる成分の金属材料からなる外管と
内管とが嵌合された二重管の外周面に送信変換子および
受信変換子を当て、周波数が20〜500kHzの範囲の疑似AE
信号を前記送信変換子から送信し、前記二重管を伝播し
た波形を前記受信変換子で受信し、検出した波形の持続
時間または面積により前記外管と内管のはめあい応力の
良否を選別することを特徴とする二重管のはめあい応力
検知方法である。
[Means for Solving the Problem] The present invention applies a transmission converter and a reception converter to the outer peripheral surface of a double pipe in which an outer pipe and an inner pipe made of metal materials having different components are fitted to each other, and Is a pseudo AE in the range of 20 to 500 kHz
A signal is transmitted from the transmitting transducer, a waveform propagating through the double tube is received by the receiving transducer, and whether the fitting stress between the outer tube and the inner tube is good or bad is selected according to the duration or area of the detected waveform. This is a method for detecting fitting stress in a double pipe, which is characterized in that

以下、本発明の詳細を図面により説明する。第1図に示
すように、パルス発生器1により発生させたパルス信号
は送信変換子4により弾性波つまり疑似AE信号に変換さ
れ、接触媒質2を介して被測定用二重管3に送信され
る。被測定用二重管3を矢印5の方向に伝播した波形の
信号は、接触媒質2を介して受信変換子6に受信され、
電気信号に変換される。この電気信号は例えば第2図
(a)のようの波形をしており、これをAE計測器7によ
り包絡線検波して第2図(b)のような波形にすること
もできる。これらのAE波形を信号処理装置8によりディ
ジタル計測し、そのレベルにより合否選別器9で内管管
のはめあいの良否を判断する。ディジタル計測は、第2
図に示すように、所定のしきい値Thを越えている波形持
続時間T、波形面積Sの何れに対して行なってもよい。
Hereinafter, the details of the present invention will be described with reference to the drawings. As shown in FIG. 1, the pulse signal generated by the pulse generator 1 is converted into an elastic wave, that is, a pseudo AE signal by the transmission transducer 4, and is transmitted to the measured double tube 3 via the couplant 2. It The waveform signal propagating through the double tube 3 to be measured in the direction of the arrow 5 is received by the reception transducer 6 via the couplant 2,
It is converted into an electric signal. This electric signal has, for example, a waveform as shown in FIG. 2 (a), and it can be envelope-detected by the AE measuring device 7 to obtain a waveform as shown in FIG. 2 (b). These AE waveforms are digitally measured by the signal processing device 8, and the pass / fail selector 9 determines whether the fit of the inner pipe is good or bad based on the level. Digital measurement is the second
As shown in the figure, it may be performed for any of the waveform duration T and the waveform area S that exceed the predetermined threshold T h .

疑似AE信号の周波数とSN比の関係の一例を第3図に示
す。疑似AE信号をSN比良く(SN比が10dB以上)検出する
ためには周波数20〜500kHzの範囲にする必要がある。
An example of the relationship between the frequency of the pseudo AE signal and the SN ratio is shown in FIG. In order to detect the pseudo AE signal with a good SN ratio (SN ratio is 10 dB or more), it is necessary to set the frequency within the range of 20 to 500 kHz.

また、送信変換子4および受信変換子6の配置は管軸方
向または管周方向のいずれでもよい。両変換子4,6間の
距離と波形持続時間Tの関係の一例を第4図に示す。第
4図中のAは、二重管のはめあい応力が2.2kgf/mm2で不
足している場合、Bは14.2kgf/mm2で所要値以上ある場
合である。変換子間距離Lが大きくなると、両者ともに
波形持続時間Tは小さくなる。変換子間距離Lが0.5m未
満だとAとBの波形持続時間Tの差が小さいために良否
の判断が難しくなる。また、変換子距離Lが10m以上の
場合はSN比(受信信号とノズルの比)が低くなり安定し
た測定ができ難くなる。従って、変換子間距離Lは0.5m
以上、10m未満の範囲にすることが望ましい。
The transmission converter 4 and the reception converter 6 may be arranged either in the tube axis direction or the tube circumferential direction. An example of the relationship between the distance between the transducers 4 and 6 and the waveform duration T is shown in FIG. A in FIG. 4 shows the case where the fitting stress of the double pipe is insufficient at 2.2 kgf / mm 2 , and B shows it at 14.2 kgf / mm 2 which is more than the required value. As the inter-transducer distance L increases, the waveform duration T decreases in both cases. If the inter-transducer distance L is less than 0.5 m, the difference between the waveform durations T of A and B is small, and it is difficult to judge pass / fail. Further, when the transducer distance L is 10 m or more, the SN ratio (the ratio of the reception signal and the nozzle) becomes low, which makes it difficult to perform stable measurement. Therefore, the distance L between transducers is 0.5m
As described above, it is desirable that the range is less than 10 m.

第5図に破壊試験により求めたはめあい応力と波形持続
時間Tの関係の一例を示す。両者は、このように比例関
係にあるので、例えば所要のはめあい応力を10kgf/mm2
とする場合は、波形持続時間Tが4msce以上の場合を合
格とするように合否選別器9をセットすればよい。ま
た、二重管のはめあい応力と波形面積Sの間にも比例関
係にあるので、これらによっても合否を選別することが
できる。さらに、受信した疑似AE信号の波形持続時間
T、波形面積Sを信号処理装置8により計測し、予め求
めておいたはめあい応力とこれら各値との関係からはめ
あい応力を測定することもできる。
FIG. 5 shows an example of the relationship between the fitting stress obtained by the fracture test and the waveform duration T. Since the two have such a proportional relationship, for example, the required fitting stress is 10 kgf / mm 2
In this case, the pass / fail selector 9 may be set so that the case where the waveform duration T is 4 msce or more is passed. Further, since there is a proportional relationship between the fitting stress of the double pipe and the corrugated area S, the pass / fail can be selected also by these. Furthermore, the waveform duration T and the waveform area S of the received pseudo AE signal can be measured by the signal processing device 8, and the fit stress can be measured from the relationship between the fit stress previously obtained and these values.

[実施例] 二重管外径88.9mmφ、外管肉厚5.0mm、外管鋼種炭素
鋼、内管肉厚1.5mm、内管鋼種インコネル625の二重管2
本について、疑似AE信号を発生させて検出AE信号の波形
持続時間Tを検出し、はめあいの良否を判断した。測定
条件は送信変換子200kHz、受信変換子200kHz、変換子間
距離1m,パルス発信周波数20Hzである。
[Embodiment] Double pipe 2 having outer diameter of 88.9 mm, outer wall thickness of 5.0 mm, outer tube steel type carbon steel, inner tube wall thickness of 1.5 mm, inner tube steel type Inconel 625
For the book, a pseudo AE signal was generated and the waveform duration T of the detected AE signal was detected to determine whether the fit was good or bad. The measurement conditions are a transmission transducer 200 kHz, a reception transducer 200 kHz, a distance between the transducers 1 m, and a pulse transmission frequency 20 Hz.

はめあい応力の合否を判定した結果、No.1の二重管の波
形持続時間Tは7.5msecで合格と判断された。No.1の二
重管のはめあい応力を破壊試験によって測定した結果、
18kgf/mm2であった。No.2の二重管の波形持続時間Tは2
msecで不合格と判断された。No.2の二重管のはめあい応
力を破壊試験によって測定した結果、4kgf/mm2であっ
た。
As a result of judging whether the fitting stress was acceptable or not, the waveform duration T of the No. 1 double tube was 7.5 msec and it was judged to be acceptable. As a result of measuring the fitting stress of the No. 1 double pipe by a destructive test,
It was 18 kgf / mm 2 . The waveform duration T of the No. 2 double tube is 2
It was judged to have failed in msec. The fitting stress of the No. 2 double pipe was measured by a destructive test and found to be 4 kgf / mm 2 .

[発明の効果] 本発明によれば、音響信号を周波数弁別する従来法に比
べ、二重管の保持方法や測定場所の騒音に関係なく、確
実に二重管のはめあい応力が所要値あるか否かを非破壊
的に判定して良否材を選別でき、二重管の品質保証精度
を大幅に向上させることができる。
EFFECTS OF THE INVENTION According to the present invention, does the fitting stress of the double pipe surely have a required value regardless of the holding method of the double pipe and the noise at the measuring place as compared with the conventional method of discriminating the frequency of the acoustic signal? It is possible to non-destructively determine whether or not the material is good or bad, and it is possible to significantly improve the quality assurance accuracy of the double pipe.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の具体例を示すブロック図、第2図は受
信変換子により検出された波形を示す図、第3図は周波
数とSN比の関係の一例を示す図、第4図は変換子間距離
Lと波形持続時間Tの関係の一例を示す図、第5図は破
壊試験により求めたはめあい応力と波形持続時間Tの関
係の一例を示す図である。 1……パルス発生器、2……接触媒質、3……被測定用
二重管、4……送信変換子、5……矢印、6……受信変
換子、7……AE計測器、8……信号処理装置、9……合
否選別器、Th……しきい値、T……波形持続時間、S…
…波形面積。
FIG. 1 is a block diagram showing a specific example of the present invention, FIG. 2 is a diagram showing a waveform detected by a reception converter, FIG. 3 is a diagram showing an example of the relationship between frequency and SN ratio, and FIG. FIG. 5 is a diagram showing an example of the relationship between the inter-transducer distance L and the waveform duration T, and FIG. 5 is a diagram showing an example of the relationship between the fitting stress and the waveform duration T obtained by a fracture test. 1 ... Pulse generator, 2 ... Contact medium, 3 ... Double tube for measurement, 4 ... Transmitting transducer, 5 ... Arrow, 6 ... Receiving transducer, 7 ... AE measuring instrument, 8 ...... Signal processing device, 9 ・ ・ ・ Pass / fail selector, T h・ ・ ・ Threshold value, T ・ ・ ・ Waveform duration, S ・ ・ ・
… Wave area.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】互いに異なる成分の金属材料からなる外管
と内管とが嵌合された二重管の外周面に送信変換子およ
び受信変換子を当て、周波数が20〜500kHzの範囲の疑似
AE信号を前記送信変換子から送信し、前記二重管を伝播
した波形を前記受信変換子で受信し、検出した波形の持
続時間又は面積により前記外管と内管のはめあい応力の
良否を選別することを特徴とする二重管のはめあい応力
検知方法。
1. A pseudo transducer having a frequency in the range of 20 to 500 kHz, which is obtained by applying a transmission converter and a reception transducer to an outer peripheral surface of a double pipe in which an outer pipe and an inner pipe made of metal materials having different components are fitted to each other.
AE signal is transmitted from the transmitting transducer, the waveform propagating through the double pipe is received by the receiving transducer, and the quality of fit stress between the outer pipe and the inner pipe is selected according to the duration or area of the detected waveform. A method for detecting fitting stress in a double pipe, characterized by:
JP1211480A 1989-08-18 1989-08-18 Fitting stress detection method for double pipe Expired - Lifetime JPH0752131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1211480A JPH0752131B2 (en) 1989-08-18 1989-08-18 Fitting stress detection method for double pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1211480A JPH0752131B2 (en) 1989-08-18 1989-08-18 Fitting stress detection method for double pipe

Publications (2)

Publication Number Publication Date
JPH0375536A JPH0375536A (en) 1991-03-29
JPH0752131B2 true JPH0752131B2 (en) 1995-06-05

Family

ID=16606652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211480A Expired - Lifetime JPH0752131B2 (en) 1989-08-18 1989-08-18 Fitting stress detection method for double pipe

Country Status (1)

Country Link
JP (1) JPH0752131B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411711B (en) * 2013-07-11 2016-01-20 南京航空航天大学 A kind of measurement mechanism of tubular member inwall machining stress and measuring method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629241A (en) * 1985-07-08 1987-01-17 Hitachi Constr Mach Co Ltd Ultrasonic measuring method for contact stress of hose joint

Also Published As

Publication number Publication date
JPH0375536A (en) 1991-03-29

Similar Documents

Publication Publication Date Title
EP1344044B1 (en) Method for ultrasonically detecting multiple types of corrosion
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
US5970434A (en) Method for determining average wall thickness for pipes and tubes using guided waves
Alleyne et al. The long range detection of corrosion in pipes using Lamb waves
Alleyne et al. The choice of torsional or longitudinal excitation in guided wave pipe inspection
EP2598866B1 (en) Ultrasonic pipe inspection with signal processing arrangement
EP0232613A2 (en) Detection of hydrogen damage in boiler tubes
US4577487A (en) Pressure vessel testing
US7565252B2 (en) Method for automatic differentiation of weld signals from defect signals in long-range guided-wave inspection using phase comparison
US4890496A (en) Method and means for detection of hydrogen attack by ultrasonic wave velocity measurements
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
JPH01202655A (en) Detection of corrosion of container wall
JPH07318336A (en) Method and equipment to check pipeline with ultrasonic wave
JPH01202654A (en) Detection of corrosion of container wall
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
JPS60104255A (en) Device and method for inspecting solid under nondestructive state
EP1271097A2 (en) Method for inspecting clad pipe
JPH04230846A (en) Method and apparatus for inspecting metal tube using eddy current
JPH0752131B2 (en) Fitting stress detection method for double pipe
JPH0752132B2 (en) Double pipe fitting stress detector
JP2000321041A (en) Method for detecting carburizing layer and method for its thickness
RU2141648C1 (en) Process evaluating safety margin of loaded material
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
RU2117941C1 (en) Process of ultrasonic inspection od pipes and pipe-lines
JP2002243705A (en) Method and device for inspecting welded part in thin- walled pipe