JPH0751755Y2 - Flat plate heating device - Google Patents

Flat plate heating device

Info

Publication number
JPH0751755Y2
JPH0751755Y2 JP8720289U JP8720289U JPH0751755Y2 JP H0751755 Y2 JPH0751755 Y2 JP H0751755Y2 JP 8720289 U JP8720289 U JP 8720289U JP 8720289 U JP8720289 U JP 8720289U JP H0751755 Y2 JPH0751755 Y2 JP H0751755Y2
Authority
JP
Japan
Prior art keywords
current
matching
coil
flat plate
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8720289U
Other languages
Japanese (ja)
Other versions
JPH0326094U (en
Inventor
徹郎 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP8720289U priority Critical patent/JPH0751755Y2/en
Publication of JPH0326094U publication Critical patent/JPH0326094U/ja
Application granted granted Critical
Publication of JPH0751755Y2 publication Critical patent/JPH0751755Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【考案の詳細な説明】 A.産業上の利用分野 本考案は、平板状の被加熱材を移動させながら途中で誘
導加熱コイルにより加熱する平板加熱装置に関し、特
に、大容量化に好適な平板加熱装置に関する。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a flat plate heating apparatus for heating a flat plate-shaped material to be heated by an induction heating coil on the way, and particularly to a flat plate suitable for large capacity. Regarding a heating device.

B.考案の概要 本考案は、平板状の被加熱材を移動させながら途中で誘
導加熱コイルにより加熱する平板加熱装置において、 誘導加熱コイルとコンデンサを備えて成る複数の整合回
路を整合トランスの二次側に直列に接続することによ
り、 高電圧電源でもコイルインダクタンスに制限を受けず、
可動部分や回転通電部や冷却装置の大型化を防ぎつつ大
容量化を実現する技術を提供するものである。
B. Outline of the Invention The present invention is a flat plate heating apparatus that heats a flat plate-shaped material to be heated by an induction heating coil while moving the same, and a plurality of matching circuits each including an induction heating coil and a capacitor are provided as a matching transformer. By connecting in series to the secondary side, the coil inductance is not limited even with a high-voltage power supply,
It is intended to provide a technique for realizing a large capacity while preventing the movable part, the rotating energizing part, and the cooling device from increasing in size.

C.従来の技術 平板加熱装置は、平板状の被加熱材を移動させながら途
中で誘導加熱コイルにより加熱するものである。
C. Conventional Technology A flat plate heating device is a device for heating a flat plate-shaped material to be heated by an induction heating coil while moving it.

第4図は、平板加熱装置の一例を示す構成図である。同
図において、平板状の被加熱材41は、アンコイラ42から
巻き戻されて、入口側ガイドローラ43及び出口側ガイド
ローラ44に導かれながら図中矢印方向に移動し、途中に
配設された誘導加熱コイル45内を通過する間に所定の温
度に誘導加熱される。誘導加熱コイル45には電源46が接
続されていて、加熱のための交番電力が供給される。
FIG. 4 is a block diagram showing an example of a flat plate heating device. In the figure, a flat plate-shaped material to be heated 41 is rewound from the uncoiler 42, moved in the direction of the arrow in the drawing while being guided to the inlet side guide roller 43 and the outlet side guide roller 44, and is disposed midway. While passing through the induction heating coil 45, it is induction-heated to a predetermined temperature. A power source 46 is connected to the induction heating coil 45 and is supplied with alternating electric power for heating.

第5図は、その交番電力の整合回路の従来例の構成図で
ある。同図において、51は被加熱材、52は整合回路で、
53は整合トランス、54は電源である。整合回路52は、加
熱コイル55,回転通電部56及びコンデンサ57を備え、加
熱コイル55は上部加熱コイル55a及び下部加熱コイル55b
で成り、それらの間を被加熱材51が通過するとき誘導加
熱される。加熱コイル55はコイルの取り付け又は、コイ
ルの交換等のメンテナンス時に便ならしめるために、回
転自在に構成される場合がある。かかる場合整合トラン
ス53の二次側との接続は回転通電部56を介して行われ
る。回転通電部56は、整合トランス53に接続された内部
導体561と外部導体562と、前記の内部導体561と回転摺
動する内部集電子563および外部導体562と回転摺動する
外部集電子564を有し、この内部および外部集電子563お
よび564を介して加熱コイル55が接続されて交番電力が
供給される。整合トランス53と回転通電部56との間に
は、整合用コンデンサ57が並列に接続されている。
FIG. 5 is a block diagram of a conventional example of the matching circuit for the alternating power. In the figure, 51 is a material to be heated, 52 is a matching circuit,
53 is a matching transformer and 54 is a power supply. The matching circuit 52 includes a heating coil 55, a rotating energizing section 56 and a capacitor 57, and the heating coil 55 includes an upper heating coil 55a and a lower heating coil 55b.
And is heated by induction when the material 51 to be heated passes between them. The heating coil 55 may be configured to be rotatable in order to make it convenient for maintenance such as coil installation or coil replacement. In this case, the matching transformer 53 is connected to the secondary side via the rotary energizing section 56. The rotating current-carrying unit 56 includes an inner conductor 561 and an outer conductor 562 connected to the matching transformer 53, an inner current collector 563 that rotates and slides with the inner conductor 561, and an outer current collector 564 that rotates and slides with the outer conductor 562. The heating coil 55 is connected via the internal and external collectors 563 and 564 to supply alternating electric power. A matching capacitor 57 is connected in parallel between the matching transformer 53 and the rotation energizing section 56.

D.考案が解決しようとする課題 上記従来の平板加熱装置では、例えば被加熱材の加熱温
度を高めたり、加熱装置の容量を増大させる等の大容量
化を図る場合、加熱コイルのインダクタンスは、加熱装
置の容量によってある程度決まってしまい大巾に変える
ことはできない。また加熱コイルのインダクタンスの値
も比較的小さいので、印加電圧を主体に容量の増大を図
ることは困難である。そこで電圧を上げずに加熱コイル
55への通電電流値を増加することで大容量化が図れる。
D. Problems to be Solved by the Invention In the above-described conventional flat plate heating device, when increasing the capacity such as increasing the heating temperature of the material to be heated or increasing the capacity of the heating device, the inductance of the heating coil is It cannot be changed to a large extent because it is determined to some extent by the capacity of the heating device. Moreover, since the value of the inductance of the heating coil is relatively small, it is difficult to increase the capacitance mainly by the applied voltage. Therefore, without increasing the voltage, the heating coil
Larger capacity can be achieved by increasing the value of the current supplied to 55.

第5図に示す回路構成で、容量を増大させようとする場
合、コイルのインダクタンスにより電圧Eは制限を受け
るので、大容量化には電流を増加する必要があり、例え
ば容量を2倍に増大したい場合、電源電流及びコイル電
流を夫々i→2i、I→2Iとして対処するので、コンデン
サ電流やコイル電流が増大する。
In the circuit configuration shown in FIG. 5, when an attempt is made to increase the capacity, the voltage E is limited by the inductance of the coil, so it is necessary to increase the current to increase the capacity. For example, the capacity is doubled. If desired, the power supply current and the coil current are dealt with as i → 2i and I → 2I, respectively, so that the capacitor current and the coil current increase.

即ち、大型大容量の装置では、大電流を回路に流すた
め、コイル,ブスバー,接続部等が大きくなり、それに
つれて装置全体も大型化し、コストの無駄が増えてい
た。特に下記の3点は大電流化に伴う大きな課題となっ
ていた。
That is, in a large-sized and large-capacity device, a large current is passed through the circuit, so that the coil, bus bar, connection portion, etc. are increased, and accordingly, the entire device is increased in size, resulting in increased waste of cost. In particular, the following three points were major problems associated with the increase in current.

(1)コイルの加熱,接続用導体の一部を動かして板温
の均熱をはかる場合、可動部分が大きなものとなってし
まう。
(1) When the coil is heated and a part of the connecting conductor is moved to equalize the plate temperature, the movable part becomes large.

(2)第5図のように、コイルを回動させる回転通電部
を設けた場合、この回転通電部が大型化する。
(2) As shown in FIG. 5, when the rotation energizing portion for rotating the coil is provided, the rotation energizing portion becomes large.

(3)高周波電流は高密度で使用するため、大電流によ
る損失発生が大きく、水冷冷却が行われ、その冷却装置
も大型化する。
(3) Since the high frequency current is used with high density, loss due to a large current is large, water cooling is performed, and the cooling device becomes large.

本考案は、このような課題に鑑みて創案されたもので、
高電圧電源でもコイルインダクタンスに制限を受けず、
可動部分や回転通電部や冷却装置の大型化を防ぎつつ大
容量化を実現する平板誘導加熱装置を提供することを目
的としている。
The present invention was created in view of such problems,
Even high voltage power supply is not limited by coil inductance,
It is an object of the present invention to provide a flat plate induction heating device that realizes a large capacity while preventing the movable part, the rotating energization part, and the cooling device from increasing in size.

E.課題を解決するための手段 本考案における上記課題を解決するための手段は、誘導
加熱コイル及びコンデンサを備えて成る複数の整合回路
を整合トランスの二次側に直列に接続する。
E. Means for Solving the Problem The means for solving the above problem in the present invention is to connect a plurality of matching circuits each including an induction heating coil and a capacitor in series to the secondary side of the matching transformer.

また、整合回路間を接続する連結ブスバーと、コンデン
サを接続する接続ブスバーとを電流方向が互いに逆向き
となるようにして近設配置する。
Further, the connecting bus bar connecting the matching circuits and the connecting bus bar connecting the capacitors are arranged close to each other so that the current directions are opposite to each other.

F.作用 被加熱材は、直列接続された複数の加熱コイルを順次通
過し、加熱コイルの通過数に比例して高温に加熱され
る。また、加熱コイルは直列接続されているので、イン
ダクタンスは、直列コイル数に比例して大となり、その
分電圧を上げることができる。例えば電源を1個で2倍
の容量(KVA)とするときは、整合トランスの一次電流
iをそのままとし、電圧を2倍とすればよい。また、コ
ンデンサは各整合回路間にわたる形で並列に挿入される
ので、電圧は倍になるが、電流は各コンデンサ1/2づつ
分担するので、コンデンサを接続するブスバー等は1/2
の電流容量の導体でよい。
F. Action The material to be heated sequentially passes through a plurality of heating coils connected in series and is heated to a high temperature in proportion to the number of passing heating coils. Further, since the heating coils are connected in series, the inductance becomes large in proportion to the number of series coils, and the voltage can be increased accordingly. For example, when using one power source to double the capacity (KVA), the primary current i of the matching transformer may be left unchanged and the voltage may be doubled. Also, since the capacitors are inserted in parallel across the matching circuits, the voltage doubles, but the current is shared by each capacitor 1/2, so the busbars that connect the capacitors are 1/2
A conductor with a current capacity of

大電流が流れる回路での損失を低減するため、逆方向の
電流のブスバー同士を近接配置すれば、連結されたブス
バーの逆方向電流が等しくなり、高周波の近接効果に起
因するインダクタンスドロップが少なくなる。また高電
圧電源にしても、従来のようなコイルインダクタンスに
よる制限を受けないので、回路電流は少ない状態で同一
の容量が確保できる。
In order to reduce the loss in the circuit where a large current flows, if the bus bars of the reverse current are placed close to each other, the reverse currents of the connected bus bars will be equal and the inductance drop due to the high frequency proximity effect will be reduced. . Further, even if a high-voltage power supply is used, it is not limited by the conventional coil inductance, and therefore the same capacity can be secured with a small circuit current.

G.実施例 以下、図面を参照して、本考案の実施例を詳細に説明す
る。
G. Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は、本考案の一実施例を示す構成図で、電源に接
続された整合トランスの二次側に、誘導加熱コイルを含
む整合回路を2組直列に接続したものである。第1図に
おいて、1は被加熱材、2及び3は整合回路で、第1の
整合回路2は、加熱コイル4,回転通電部5,コンデンサ6
を備え、第2の整合回路3は、加熱コイル7,回転通電部
8,コンデンサ9を備えていて、各加熱コイル4及び7は
横断磁束型の加熱コイルであって、夫々上部加熱コイル
4a,7aと下部加熱コイル4bと7bで成り、第2の加熱コイ
ル7a及び7bの間で誘導加熱した被加熱材1を第1の加熱
コイル4a及び4bの間を通過させて、2段に誘導加熱す
る。加熱コイル4,7は第5図と同様に回動自在に配設さ
れていて、それらの接続ジョイントに回転通電部5,8が
設けられている。
FIG. 1 is a block diagram showing an embodiment of the present invention, in which two matching circuits including an induction heating coil are connected in series to the secondary side of a matching transformer connected to a power source. In FIG. 1, reference numeral 1 is a material to be heated, 2 and 3 are matching circuits, and the first matching circuit 2 is a heating coil 4, a rotary energizing section 5, a capacitor 6
The second matching circuit 3 includes a heating coil 7 and a rotary energization unit.
8, heating capacitors 4 and 7 are heating coils 4 and 7 of the transverse flux type, each of which is an upper heating coil.
4a, 7a and lower heating coils 4b and 7b. The material to be heated 1 induction-heated between the second heating coils 7a and 7b is passed between the first heating coils 4a and 4b to form two stages. Induction heating. The heating coils 4 and 7 are rotatably arranged in the same manner as in FIG. 5, and the rotary joints 5 and 8 are provided at their connection joints.

整合コンデンサ6及び9は、第1の整合回路2の入力側
と第2の整合回路3の出力側の間に並列に架設され、そ
れら2本の結線と第1の整合回路2の出力側及び第2の
整合回路3の入力側の間の結線には、通常ブスバー10が
使用される。
The matching capacitors 6 and 9 are installed in parallel between the input side of the first matching circuit 2 and the output side of the second matching circuit 3, and these two connections are connected to the output side of the first matching circuit 2 and A bus bar 10 is usually used for connection between the input sides of the second matching circuit 3.

第1の整合回路2の入力側と第2の整合回路3の出力側
とは、整合トランス11の二次側に接続され、該整合トラ
ンス11の一次側は電源12に接続されている。電源12は1
個で、2倍の容量(KVA)とするためには、整合トラン
ス11の一次電流iをそのままとし、電圧を2倍の2Eにす
ればよい、iに対応するタンク電流は、コイルに電流I
がながれるので、回転通電部5,8及び各ブスバーの電流
容量は電流Iが流れるに足りるものであればよく、2Iの
電流容量は要しない。
The input side of the first matching circuit 2 and the output side of the second matching circuit 3 are connected to the secondary side of the matching transformer 11, and the primary side of the matching transformer 11 is connected to the power supply 12. Power supply 12 is 1
In order to obtain a double capacity (KVA) for each unit, the primary current i of the matching transformer 11 can be left unchanged and the voltage can be doubled to 2E. The tank current corresponding to i is the current I in the coil.
Therefore, the current carrying capacity of the rotary energizing parts 5 and 8 and each bus bar need only be sufficient for the current I to flow, and the current carrying capacity of 2I is not required.

2つの整合回路2及び3は、すべて同一種類の部品で構
成するものとする。これは、生産の合理化と各整合回路
の電力負担を均等にするために重要である。
The two matching circuits 2 and 3 are all composed of the same type of parts. This is important for streamlining production and equalizing the power burden on each matching circuit.

第2図は、前記ブスバー部分10の配列の一例を拡大した
断面斜視図である。第2図において、2つの整合回路間
の連結ブスバー20(電流I)とコンデンサの接続ブスバ
ー21(電流I/2)及び22(電流I/2)とは逆方向の大電流
が流れるので、同図に示すように電流方向が逆のブスバ
ー同士を近接させて配置すれば、連結したブスバーの逆
方向電流が等しくなり、高周波の近接効果に起因するイ
ンダクタンスドロップが少なくなり、ブスバー周辺の異
常過熱を防ぐことができる。
FIG. 2 is an enlarged sectional perspective view of an example of the arrangement of the bus bar portions 10. In FIG. 2, the connection busbar 20 (current I) between the two matching circuits and the connection busbars 21 (current I / 2) and 22 (current I / 2) between the two matching circuits have a large current flowing in the opposite direction. If busbars with opposite current directions are placed close to each other as shown in the figure, the reverse currents of the connected busbars will be equal and the inductance drop due to the high frequency proximity effect will be reduced, causing abnormal overheating around the busbar. Can be prevented.

第3図は、本実施例を具体的に形成した構造の一例を示
す説明図である。同図(a)において、31は過熱コイ
ル、32は回転通電部、33は加熱コイル31を回動駆動する
ためのモータ部、34は整合トランス、35はブスバー、36
はコンデンサ箱、37は絶縁体、38は基台である。同図
(b)は、コンデンサ箱36の設置状況を示す側面図で、
整合コンデンサを格納したコンデンサ箱36は絶縁体37に
よりアース面である基台38から絶縁されている。これ
は、コンデンサには、天(+),地(−)の2つの端子
があり、地側端子がコンデンサ箱36に設置されているた
め、コンデンサ箱が単に基台38に載置しただけでは、コ
ンデンサには第1図に示すように地側端子から天側端子
に向けて電流が流れるので、基台38が接地されると、過
熱コイルに流れた電流は大地にも流れ、電力の損失を来
し、また保守上も好ましくない結果をもたらす。そこ
で、コンデンサを収納したコンデンサ箱をアースから浮
かすため絶縁体37を設けたものである。
FIG. 3 is an explanatory diagram showing an example of a structure in which this embodiment is specifically formed. In the figure (a), 31 is a superheat coil, 32 is a rotary energization part, 33 is a motor part for rotationally driving the heating coil 31, 34 is a matching transformer, 35 is a bus bar, 36
Is a capacitor box, 37 is an insulator, and 38 is a base. FIG. 2B is a side view showing the installation state of the capacitor box 36,
The capacitor box 36 containing the matching capacitors is insulated by an insulator 37 from a base 38 which is a ground plane. This is because the capacitor has two terminals, the top (+) and the ground (-), and the ground side terminal is installed in the capacitor box 36. Therefore, simply mounting the capacitor box on the base 38 As shown in Fig. 1, current flows from the ground side terminal to the top side terminal in the capacitor, so when the base 38 is grounded, the current flowing in the overheating coil also flows to the ground, resulting in power loss. It also causes unfavorable maintenance results. Therefore, an insulator 37 is provided in order to float the capacitor box accommodating the capacitor from the ground.

本考案の実施例は下記の効果が明らかである。The following effects are apparent in the embodiment of the present invention.

(1)大容量の装置では、例えば第1図に示す構成の場
合、従来の半分の電流容量の回路でよい。
(1) In a large capacity device, for example, in the case of the configuration shown in FIG.

(2)コンデンサに関して、電圧は2倍になるが、電流
は1/2づつ分担するので、ブスバー等は電流容量が半分
の回路でよい。
(2) Regarding the capacitor, the voltage is doubled, but the current is divided into halves, so a busbar or the like may be a circuit with a half current capacity.

(3)大電流が流れるタンク回路での損失を低減するた
め、逆方向電流のブスバー同志は第2図に示す如く近接
配置すれば、2台を連結するブスバーの逆方向電流が等
しくなり、高周波の近接効果に起因して発生し易いイン
ダクタンスドロップが少なく、ブスバー周辺の異常過熱
を防止することができる。
(3) In order to reduce the loss in the tank circuit through which a large current flows, if the busbars of the reverse current are placed close to each other as shown in Fig. 2, the reverse currents of the busbars that connect the two will be equal and the high frequency The inductance drop that is likely to occur due to the proximity effect of 1 is small, and abnormal overheating around the bus bar can be prevented.

(4)高電圧電源にしてもコイルインダクタンスに制限
を受けないので、回路電流は少なくて同一のKVAが確保
できる。
(4) Since the coil inductance is not limited even with a high voltage power supply, the circuit current is small and the same KVA can be secured.

(5)整合コンデンサも電圧は2倍に成るが、電流容量
が1/4になるので、小型軽量化が可能になり、補修や交
換が容易である。
(5) The voltage of the matching capacitor is doubled, but the current capacity is 1/4, so it is possible to reduce the size and weight, and it is easy to repair and replace.

(6)加熱コイルを含む夫々の整合回路毎に電源を備え
る方式に比較して、電源及び整合トランスが(単位容量
は大きくなるが)1台でよい。
(6) Only one power supply and one matching transformer (although the unit capacity is large) are sufficient as compared with a system in which a power supply is provided for each matching circuit including a heating coil.

H.考案の効果 以上、説明したとおり、本考案によれば、電源及び整合
トランスが1台でよく、大容量の装置で従来の半分の電
流容量の回路でよく、ブスバー等の電流容量は半分、整
合コンデンサの電流容量は1/4で、小型軽量化が可能に
なり、補修や交換が容易で、高電圧電源でコイルインダ
クタンスに制限を受けず、回路電流は少なくて同一KVA
を確保し、高周波の近接効果に起因して発生し易いイン
ダクタンスドロップが少なく、ブスバー周辺の異常過熱
を防ぎ、大容量化を実現した平板加熱装置を提供するこ
とができる。
H. Effect of the Invention As described above, according to the present invention, only one power supply and matching transformer is required, a large capacity device can be used with a circuit having half the current capacity of the conventional circuit, and the current capacity of busbars etc. can be half. The matching capacitor has a current capacity of 1/4, which enables downsizing and weight reduction, easy repair and replacement, high voltage power supply does not limit coil inductance, and circuit current is small
It is possible to provide a flat plate heating device that secures the above-mentioned condition, has less inductance drop that tends to occur due to the proximity effect of high frequency, prevents abnormal overheating around the bus bar, and realizes a large capacity.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例の構成図、第2図は実施例の
ブスバーの部分斜視図、第3図は実施例構造の説明図、
第4図は平板誘導加熱装置の構成図、第5図は整合回路
の従来例の構成図である。 1,51……被加熱材、2,3,52……整合回路、4,7,55……加
熱コイル、5,8,56……回転通電部、6,9,57……コンデン
サ、10……ブスバー、11,53……整合トランス、12,54…
…電源、20……連結ブスバー、21,22……接続ブスバ
ー、36……コンデンサ箱、37……絶縁体。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a partial perspective view of a bus bar of the embodiment, and FIG. 3 is an explanatory view of the structure of the embodiment.
FIG. 4 is a block diagram of a flat plate induction heating device, and FIG. 5 is a block diagram of a conventional example of a matching circuit. 1,51 …… Material to be heated, 2,3,52 …… Matching circuit, 4,7,55 …… Heating coil, 5,8,56 …… Rotating current carrying part, 6,9,57 …… Capacitor, 10 ... Bus Bar, 11,53 ... Matching transformer, 12,54 ...
… Power supply, 20 …… Coupling busbars, 21,22 …… Connecting busbars, 36 …… Capacitor box, 37 …… Insulator.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】加熱コイル及びコンデンサを備えて成る複
数の整合回路を整合トランスの二次側に直列に接続する
ことを特徴とする平板加熱装置。
1. A flat plate heating apparatus comprising a plurality of matching circuits each comprising a heating coil and a capacitor connected in series to a secondary side of a matching transformer.
【請求項2】整合回路間を接続する連結ブスバーと、コ
ンデンサを接続する接続ブスバーとを電流方向が互いに
逆向きとなるようにして近設配置したことを特徴とする
請求項(1)に記載の平板加熱装置。
2. The connecting busbar connecting the matching circuits and the connecting busbar connecting the capacitors are arranged close to each other so that the current directions are opposite to each other. Flat plate heating device.
JP8720289U 1989-07-25 1989-07-25 Flat plate heating device Expired - Lifetime JPH0751755Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8720289U JPH0751755Y2 (en) 1989-07-25 1989-07-25 Flat plate heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8720289U JPH0751755Y2 (en) 1989-07-25 1989-07-25 Flat plate heating device

Publications (2)

Publication Number Publication Date
JPH0326094U JPH0326094U (en) 1991-03-18
JPH0751755Y2 true JPH0751755Y2 (en) 1995-11-22

Family

ID=31636852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8720289U Expired - Lifetime JPH0751755Y2 (en) 1989-07-25 1989-07-25 Flat plate heating device

Country Status (1)

Country Link
JP (1) JPH0751755Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038962B2 (en) 2008-04-09 2012-10-03 新日本製鐵株式会社 Induction heating apparatus and induction heating method

Also Published As

Publication number Publication date
JPH0326094U (en) 1991-03-18

Similar Documents

Publication Publication Date Title
US20160372995A1 (en) Methods and apparatus for integrated machine segmentation
US10177620B2 (en) Methods and apparatus for segmenting a machine
US8829711B2 (en) Modular power supply arrangement
JPH0883724A (en) Transformer for electric locomotive and its coil device
JPH0366108A (en) Stationary electromagnetic induction apparatus
JP2800383B2 (en) High frequency inverter
US20140265971A1 (en) Battery Charger/Export Power
JPH0751755Y2 (en) Flat plate heating device
US2448010A (en) Transverse flux induction heating furnace structure
US5812365A (en) Mounting device for power capacitor banks
US3175175A (en) Unitary transformer and saturable reactor
US2878455A (en) Three winding transformer
US2855576A (en) Transformers
US11515078B2 (en) Harmonics filters using semi non-magnetic bobbins
CN2140554Y (en) Dual-purpose 3-phase or single phase transformer
US2500802A (en) Induction motor and method of manufacture
US3436703A (en) Internal bus connection for high current y-connected transformers and the like
US4951024A (en) High efficiency saturating reactor for starting a three phase motor
CA1104672A (en) Furnace transformer having a low-voltage internally- connected delta winding
JPS61216289A (en) Induction heating coil
US2579522A (en) Transformer construction
JP3663249B2 (en) Neutral point grounding reactor device
JP2698753B2 (en) Electromagnetic induction heating roller device
TW203132B (en)
US1990238A (en) Electrical heating apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term