JPH0751728B2 - Method for manufacturing sliding member made of high-strength sintered AL alloy - Google Patents

Method for manufacturing sliding member made of high-strength sintered AL alloy

Info

Publication number
JPH0751728B2
JPH0751728B2 JP61029875A JP2987586A JPH0751728B2 JP H0751728 B2 JPH0751728 B2 JP H0751728B2 JP 61029875 A JP61029875 A JP 61029875A JP 2987586 A JP2987586 A JP 2987586A JP H0751728 B2 JPH0751728 B2 JP H0751728B2
Authority
JP
Japan
Prior art keywords
alloy
strength
extrusion
temperature
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61029875A
Other languages
Japanese (ja)
Other versions
JPS62188740A (en
Inventor
良一 村樫
治男 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61029875A priority Critical patent/JPH0751728B2/en
Publication of JPS62188740A publication Critical patent/JPS62188740A/en
Publication of JPH0751728B2 publication Critical patent/JPH0751728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば内燃機関の摺動部分に使用される高強
度焼結Al合金製摺動部材の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sliding member made of a high-strength sintered Al alloy, which is used, for example, in a sliding portion of an internal combustion engine.

従来技術およびその問題点 従来より使用されている高Si含有Al合金は、優れた耐摩
耗性を有しているが、潤滑油の濡れ性が悪く、苛酷な摺
動条件の下で該Al合金製部材と他部材との間の摺動を開
始させると、油膜が切れ、耐焼付き性が低下する不具合
があった。この問題を解決する手法として、例えば、
アルミナ粉等を用いて摺動面のラッピング(仕上げ研
磨)を行う、摺動面に特殊なエッチングを施す等によ
り、初晶Si粒子を周囲のマトリックス層から浮き上がら
せ、該初晶Si粒子間に形成された凹陥部を油溜りにする
方法があるが、最適表面状態を与えるその表面処理作業
が難しく、量産品の処理法としては不適当であった。
Conventional technology and its problems Conventionally used high Si content Al alloys have excellent wear resistance, but the wettability of lubricating oil is poor, and the Al alloys under severe sliding conditions. When sliding between the manufactured member and another member is started, there is a problem that the oil film is broken and seizure resistance is lowered. As a method to solve this problem, for example,
Lapping (finish polishing) of the sliding surface using alumina powder, etc., and by subjecting the sliding surface to special etching, etc., the primary crystal Si particles are lifted from the surrounding matrix layer, and between the primary crystal Si particles. There is a method of making the formed recesses into oil reservoirs, but it is not suitable as a method for treating mass-produced products because the surface treatment work that gives the optimum surface condition is difficult.

また、高Si含有Al合金は本来鋳造用合金であって、鋳造
法によれば、粗大な初晶Siが晶出して必要な強度が得ら
れないため、改良処理(例、溶湯中にNaを添加する)を
行って初晶Siの微細化を計っているが、その効果には限
界があった。それに対して、高Si含有過共晶Al合金粉末
をアトマイジング法で製造することにより初晶Siの粒径
を数μm程度に抑え、その圧粉成形体を熱間押出し加工
して高強度の焼結Al合金製部材を得る方法が提案されて
いるが、耐焼付き性の問題が隘路になっている。その解
決策として、圧粉成形体中に二硫化モリブデン,黒鉛等
の潤滑性粉末を混合させる手法もあるが、焼結品製造過
程で割れが生じ易く、耐焼付き性を向上させることは極
めて困難である。しかも、Al合金粉末の表面には、室温
においてAl2O3・3H2Oの被膜が生じており、粉末を加圧
するとその吸着水が分解して水素が発生することから、
焼結品中に水素が残留するという問題があり、構造用部
材を得るには、不活性ガス雰囲気中で圧粉体を加熱する
ことにより残留水素量を制御,抑制する必要が生じ、製
造条件を複雑化する不利がある。
Further, the high Si content Al alloy is originally an alloy for casting, and according to the casting method, coarse primary crystal Si is crystallized and the required strength cannot be obtained. However, the effect was limited. On the other hand, by producing a hyper-eutectic Al alloy powder with a high Si content by an atomizing method, the grain size of primary crystal Si is suppressed to about several μm, and the compacted body is hot extruded to obtain high strength. Although a method of obtaining a sintered Al alloy member has been proposed, the problem of seizure resistance is a bottleneck. As a solution to this problem, there is a method of mixing lubricating powder such as molybdenum disulfide and graphite into the green compact, but cracks are likely to occur in the manufacturing process of sintered products, and it is extremely difficult to improve seizure resistance. Is. Moreover, a film of Al 2 O 3 .3H 2 O is formed on the surface of the Al alloy powder at room temperature, and when the powder is pressurized, the adsorbed water is decomposed to generate hydrogen,
There is a problem that hydrogen remains in the sintered product, and in order to obtain structural members, it is necessary to control and suppress the amount of residual hydrogen by heating the green compact in an inert gas atmosphere. Has the disadvantage of complicating.

問題点を解決するための手段および作用 本発明の目的は、含有水素量を制御,抑制することな
く、耐焼付き性の良好な高強度焼結Al合金製摺動部材を
得る点にある。
Means and Actions for Solving Problems The object of the present invention is to obtain a sliding member made of a high-strength sintered Al alloy having good seizure resistance without controlling or suppressing the content of hydrogen.

この目的は、重量%で、10.0≦Si≦30.0、2.0≦Fe≦10.
0、0.5≦Cu≦7.5、0.5≦Mn≦5.0および0.3≦Mg≦3.5を
含有し、残部がAlおよび不可避不純物であるAl合金粉末
を用いて、水素を含有する圧粉体を成形する工程と、前
記圧粉体に押出し温度300〜450℃にて押出し加工を施し
て押出し成形品を得る工程と、前記押出し成形品を真空
中にて温度450〜520℃に0.5〜7時間保持する脱水素処
理を行うことによりその押出し成形品に空孔を形成する
工程とを用いることによって達成される。
The purpose, in weight percent, is 10.0 ≦ Si ≦ 30.0, 2.0 ≦ Fe ≦ 10.
0, 0.5 ≤ Cu ≤ 7.5, 0.5 ≤ Mn ≤ 5.0 and 0.3 ≤ Mg ≤ 3.5, with the balance Al and Al alloy powder that is an unavoidable impurity, and a step of molding a green compact containing hydrogen. A step of subjecting the green compact to an extrusion process at an extrusion temperature of 300 to 450 ° C. to obtain an extruded product, and dehydrogenation of keeping the extruded product at a temperature of 450 to 520 ° C. for 0.5 to 7 hours in a vacuum. Forming a hole in the extruded product by performing a treatment.

この摺動部材においては、その金属組織中に初晶Siが均
一微細に分布し、少なくとも表面層の空孔率が0.5〜5.0
体積%となる。
In this sliding member, primary crystal Si is uniformly and finely distributed in the metal structure, and the porosity of at least the surface layer is 0.5 to 5.0.
It becomes volume%.

本発明で使用するAl合金粉末は、製造経費の低廉なる空
気アトマイジング法でこれを製造するのが有効である。
そして、その際の粉末冷却速度を102℃/秒以上にする
ことにより、粗大な金属間化合物の析出を抑え、焼結品
の伸び率、衝撃値の低下を防ぐことが可能である。
The Al alloy powder used in the present invention is effectively produced by an air atomizing method which is inexpensive to produce.
By setting the powder cooling rate at that time to 10 2 ° C / sec or more, it is possible to suppress the precipitation of coarse intermetallic compounds and prevent the elongation rate and impact value of the sintered product from decreasing.

今仮に、製造されたAl合金粉末を圧粉成形した後、圧粉
体を不活性ガス雰囲気中で予熱し、熱間押出し加工を行
うならば、押出し成形品である焼結品の含有水素量を2
〜13cc/100g(Al合金)にすることが可能であり、焼結
品の熱処理を行う際のブリスター(表面膨れ)発生を効
果的に防ぐことができる。
If the manufactured Al alloy powder is compacted, then the compact is preheated in an inert gas atmosphere and hot extrusion is performed, the hydrogen content of the extruded sintered product 2
It can be up to 13cc / 100g (Al alloy), and can effectively prevent the occurrence of blisters (surface swelling) during heat treatment of the sintered product.

しかるに、本発明では、斯かるAl合金粉末のガス処理を
行うことなく圧粉体の熱間押出し加工(押出し温度300
〜450℃)を行い、押出し成形品である焼結品中に、比
較的多量(13〜25cc/100g(Al合金))の水素を残留さ
せることとした。この焼結品を真空中(気圧10-2〜10-5
Torr)にて温度450〜520℃に0.5〜7時間保持する脱水
素処理を行うことにより、初晶Siが均一に分布したマト
リックス層に大きさ数μm程度の空孔が生じ、この空孔
が、摺動部材における潤滑油溜りとして機能することに
なる。斯くして、残留水素が除かれた焼結品に熱処理を
施しても、ブリスター、割れ等の欠陥が生ずる心配はな
く、健全な摺動部材を得ることができる。
However, in the present invention, hot extrusion of the green compact (extrusion temperature 300
~ 450 ℃) was carried out, and a relatively large amount of hydrogen (13 to 25 cc / 100 g (Al alloy)) was left in the sintered product which was an extrusion molded product. In vacuum (atmospheric pressure 10 -2 to 10 -5
By performing a dehydrogenation treatment at a temperature of 450 to 520 ° C. for 0.5 to 7 hours, a matrix layer in which primary Si is uniformly distributed has pores with a size of several μm. , It functions as a lubricating oil reservoir in the sliding member. Thus, even if the sintered product from which the residual hydrogen is removed is subjected to the heat treatment, there is no fear of causing defects such as blisters and cracks, and a sound sliding member can be obtained.

Al合金粉末において、各合金元素は下記の理由で添加さ
れる。
Each alloy element is added to the Al alloy powder for the following reasons.

Siについて(10.0≦Si≦30.0重量%):Siは、耐摩耗
性およびヤング率の向上に寄与し、熱膨張率を低く抑え
るとともに熱伝導率を向上させる。10.0重量%未満では
耐摩耗性が不足し、特に空孔率0.5体積%以上の空孔を
有する部材においては強度低下要因となる。また、30重
量%を越えると、熱間押出し加工を行う際の加工性が悪
化し、歩留の低減化と量産性の低下を招来する。
Regarding Si (10.0 ≦ Si ≦ 30.0% by weight): Si contributes to improvement of wear resistance and Young's modulus, suppresses thermal expansion coefficient to a low level, and improves thermal conductivity. If it is less than 10.0% by weight, the wear resistance is insufficient, and it becomes a factor of lowering the strength especially in the member having pores having the porosity of 0.5% by volume or more. On the other hand, if it exceeds 30% by weight, the workability at the time of hot extrusion is deteriorated, resulting in a reduction in yield and a decrease in mass productivity.

Feについて(2.0≦Fe≦10.0重量%):Feは、高温強度
と、ヤング率を向上させるために必要である。ただし、
2.0重量%未満では、高温強度の向上が期待できが、10.
0重量%を越えると、成形性が悪化し、熱間押出し加工
が事実上不可能である。
Regarding Fe (2.0 ≦ Fe ≦ 10.0% by weight): Fe is necessary to improve high temperature strength and Young's modulus. However,
If it is less than 2.0% by weight, improvement in high temperature strength can be expected.
When it exceeds 0% by weight, moldability is deteriorated and hot extrusion is practically impossible.

Cuについて(0.5≦Cu≦7.5重量%):Cuは、熱処理に
よるAlマトリックスの強化に有効である。ただし0.5重
量%未満では、添加効果がなく、7.5重量%を上回る
と、耐応力腐蝕割れ特性が悪化するため好ましくない。
Regarding Cu (0.5 ≦ Cu ≦ 7.5 wt%): Cu is effective for strengthening the Al matrix by heat treatment. However, if it is less than 0.5% by weight, there is no effect of addition, and if it exceeds 7.5% by weight, stress corrosion cracking resistance is deteriorated, which is not preferable.

Mnについて(0.5≦Mn≦5.0重量%):Mnは、重要成分
であり、高温強度の改善、熱間押出し加工の向上および
耐応力腐蝕割れ特性の改善に寄与する。ただし0.5重量
%未満では、添加効果がなく、5.0重量%を超えると却
って熱間押出し加工性が悪化するとともに、切欠き性が
悪化し、強度低下要因となる。
Regarding Mn (0.5 ≦ Mn ≦ 5.0% by weight): Mn is an important component and contributes to improvement of high temperature strength, improvement of hot extrusion and improvement of stress corrosion cracking resistance. However, if it is less than 0.5% by weight, there is no effect of addition, and if it exceeds 5.0% by weight, the hot extrusion processability rather deteriorates and the notch property deteriorates, which becomes a factor of strength reduction.

Mgについて(0.3≦Mg≦3.5重量%):Mgは、Cuと同じ
く、熱処理によるAlマトリックスの強化に有効である。
ただし、0.3重量%未満では、添加効果がなく、3.5重量
%を超えると、耐応力腐蝕割れ特性が悪化し、熱間押出
し加工性が低下する。
Regarding Mg (0.3 ≦ Mg ≦ 3.5% by weight): Mg, like Cu, is effective in strengthening the Al matrix by heat treatment.
However, if it is less than 0.3% by weight, there is no effect of addition, and if it exceeds 3.5% by weight, the stress corrosion cracking resistance property is deteriorated and the hot extrudability is deteriorated.

次に、本発明による高強度焼結Al合金製摺動部材の製造
工程について具体的に説明する。
Next, the manufacturing process of the sliding member made of the high-strength sintered Al alloy according to the present invention will be specifically described.

先ず、製造経費が廉価であるが故に推奨される空気アト
マイジング法によって製造した前記組成のAl合金粉末を
用い、これを、冷間静水圧プレス成形法(CIP法)、あ
るいは金型圧縮成形法により、密度比75%程度に圧粉成
形して圧粉体を得る。
First, the Al alloy powder having the above composition produced by the air atomizing method which is recommended because of its low manufacturing cost is used, and this is subjected to cold isostatic pressing (CIP method) or die compression molding method. Thus, a green compact is obtained by compacting to a density ratio of about 75%.

この圧粉体を、大気中で押出し温度300〜450℃に加熱
し、その温度範囲で押出し加工を行う。押出し温度が30
0℃未満であると、圧粉体の変形抵抗が大きく、成形性
が悪化し、一方、450℃を越えると、組織の粗大化(特
にSi粒の粗大化)が生じ、強度が低下する。
This green compact is heated to an extrusion temperature of 300 to 450 ° C. in the atmosphere and extruded within that temperature range. Extrusion temperature is 30
When the temperature is lower than 0 ° C, the deformation resistance of the green compact is large and the formability is deteriorated. On the other hand, when the temperature is higher than 450 ° C, the structure is coarsened (particularly Si grains are coarsened) and the strength is lowered.

得られた押出し成形品、すなわち焼結品の含有水素量
は、13〜25cc/100g(Al合金)であり、該焼結品を真空
中にて温度450〜520℃に0.5〜7時間保持する脱水素処
理を行うと、焼結品に水素ガスの除去に伴い空孔が生
じ、その空孔率は0.5〜5.0体積%となる。この保持温度
が450℃未満であると、狙いとする空孔が発生し難く、
耐焼付き性の向上を企図し得ず、520℃を越えると、液
相が生じ易く、空孔径が粗大化することも相俟って、製
品強度の低下を招く。また、温度450〜520℃での保持時
間が0.5時間未満では、空孔が発生し難く、7時間を越
えると、組織が粗大化(特に、Si粒の粗大化)して、製
品強度が低下する。さらにまた、焼結品の空孔率が0.5
体積%未満では、製品強度はある程度確保されるもの
の、潤滑油溜りとしての空孔容積が不足して耐焼付き性
が劣り、5.0体積%を越えると、製品強度が低下して耐
久性が損なわれる。
The content of hydrogen in the obtained extruded product, that is, the sintered product, is 13 to 25 cc / 100 g (Al alloy), and the sintered product is kept in vacuum at a temperature of 450 to 520 ° C. for 0.5 to 7 hours. When the dehydrogenation treatment is performed, pores are generated in the sintered product as the hydrogen gas is removed, and the porosity becomes 0.5 to 5.0% by volume. If this holding temperature is less than 450 ° C, it will be difficult for target holes to occur,
If the seizure resistance cannot be improved, and if the temperature exceeds 520 ° C., a liquid phase is likely to occur and the pore diameter becomes coarse, which causes a decrease in product strength. Also, if the holding time at a temperature of 450 to 520 ° C is less than 0.5 hours, it is difficult for pores to occur, and if it exceeds 7 hours, the structure becomes coarse (particularly Si grains become coarse) and the product strength decreases. To do. Furthermore, the porosity of the sintered product is 0.5.
If it is less than volume%, the product strength is secured to some extent, but the pore volume as a lubricating oil reservoir is insufficient and seizure resistance is poor, and if it exceeds 5.0 volume%, the product strength is reduced and durability is impaired. .

なお、初晶Siは組織中にほぼ均一に分散して存在する
が、その粒径が5μm未満であると、耐摩耗性が劣り、
20μmを越えると、製品強度が低下するため、粒径5〜
20μmを目標とするのが好ましい。
The primary crystal Si is present in the structure in a substantially uniform distribution, but if the grain size is less than 5 μm, the wear resistance is poor,
If it exceeds 20 μm, the product strength will decrease, so the particle size will be 5
A target of 20 μm is preferable.

試験例 表1に実施例試料I,IIとして示す組成のAl合金粉末
を、冷却速度102〜104℃/秒にて空気アトマイジング法
により製造し、該粉末を用いて冷間静水圧プレス成形法
(CIP法)により、密度比75%の圧粉体を成形した。こ
の冷間静水圧プレス成形法では、ゴム製チューブ内に合
金粉末を入れ、1.5〜3.0ton/cm2程度の静水圧下で成形
を行なった。
Test Example An Al alloy powder having a composition shown as Example Samples I and II in Table 1 was produced by an air atomizing method at a cooling rate of 10 2 to 10 4 ° C./second, and the powder was used for cold isostatic pressing. A green compact having a density ratio of 75% was molded by the molding method (CIP method). In this cold isostatic pressing method, the alloy powder was put in a rubber tube and the molding was performed under hydrostatic pressure of about 1.5 to 3.0 ton / cm 2 .

前段階で得た圧粉体を、押出し用素材として大気中、
押出し温度380℃、押出し比20以上の条件で、熱間押出
し加工を行なった。この時、押出し比が5未満である
と、強度がばらつくため、実用上は好ましくない。ま
た、押出し比が35を越えると、変形抵抗が増大して成形
性が悪化し量産性に欠けることになる。
The green compact obtained in the previous step was used as an extrusion material in the atmosphere,
Hot extrusion was performed under the conditions of an extrusion temperature of 380 ° C. and an extrusion ratio of 20 or more. At this time, if the extrusion ratio is less than 5, the strength varies, which is not preferable in practice. On the other hand, if the extrusion ratio exceeds 35, the deformation resistance increases, the moldability deteriorates, and the mass productivity falls.

得られた押出し成形品、すなわち焼結品の含有水素量
を分析して、その結果を表2に示した。なお、表2に
は、表1に従来例試料aとして示す組成の高Si合金鋳造
品の含有水素量をも示している。
The content of hydrogen content of the obtained extrusion molded product, that is, the sintered product was analyzed, and the results are shown in Table 2. Table 2 also shows the amount of hydrogen contained in the high Si alloy cast product having the composition shown in Table 1 as the conventional sample a.

次に、項目で得た複数の焼結品に脱水素処理を施し
た。即ち各焼結品を10-2〜10-5Torrの真空炉内に各別に
装入し、表3に示す各条件(温度、加熱時間)で保持し
た後、炉内で放冷した。そして、脱水素処理された焼結
品の空孔率を調べ、その結果を表3に示した。なお、空
孔径は数μmであった。
Next, the plurality of sintered products obtained in the item was subjected to dehydrogenation treatment. That is, each sintered product was separately charged into a vacuum furnace of 10 -2 to 10 -5 Torr, held under each condition (temperature, heating time) shown in Table 3, and then allowed to cool in the furnace. Then, the porosity of the dehydrogenated sintered product was examined, and the results are shown in Table 3. The pore diameter was several μm.

さらに、項目で処理した各試料につき溶体化処理後
人工時効硬化処理(T6処理)を行なったが、割れは生じ
なかった。
Further, each sample treated in the item was subjected to an artificial age hardening treatment (T 6 treatment) after the solution treatment, but no crack occurred.

前記項目で470℃、4時間処理した試料および従来
例試料aについて、表4に示す強度試験を行った(常温
にて実施)。
The strength test shown in Table 4 was performed on the sample treated at 470 ° C. for 4 hours and the sample a of the conventional example (implemented at room temperature).

同じく項目で470℃、4時間処理した試料および従
来例試料aについて耐焼付き性試験を行い、その結果を
表5に示した。
Similarly, a seizure resistance test was conducted on the sample treated at 470 ° C. for 4 hours and the sample a of the conventional example, and the results are shown in Table 5.

耐焼付き性試験は次の通りである。直径70mmの円板状を
なす試験片に、Cuメッキ処理した縦5mm、横5mm、厚さ10
mmの球状黒鉛鋳鉄製相手材を接触させ、摺動面に90℃の
潤滑油(エンジンオイル)を500ml/分にて供給し、試験
片を速度5m/秒で回転させ、相手材の面圧を100kg/cm2
ら増分5kg/cm2で段階的に増加させて、焼付きが発生し
た時点における面圧を測定した。
The seizure resistance test is as follows. A disc-shaped test piece with a diameter of 70 mm is Cu-plated with a length of 5 mm, width of 5 mm, and thickness of 10
mm spheroidal graphite cast iron mating material is brought into contact, lubricating oil (engine oil) at 90 ° C is supplied to the sliding surface at 500 ml / min, and the test piece is rotated at a speed of 5 m / sec. Was gradually increased from 100 kg / cm 2 in increments of 5 kg / cm 2 , and the surface pressure at the time when seizure occurred was measured.

<試験結果の評価> 表2より、押出し成形品(焼結品)である実施例試料
I,IIの含有水素量が、従来例試料aに比して極めて大き
いことが判る。
<Evaluation of Test Results> From Table 2, Example samples which are extrusion molded products (sintered products)
It can be seen that the hydrogen contents of I and II are extremely large as compared with the conventional sample a.

図3より、押出し成形品(焼結品)である実施例試料
I,IIに脱水素処理を施すと、試料に含まれる水素ガスの
除去に伴い空孔が生じ、その空孔率は、時間が長いほ
ど、また温度が高いほど増大することが判る。
From FIG. 3, an example sample which is an extrusion molded product (sintered product)
It can be seen that when dehydrogenation treatment is performed on I and II, vacancies are generated with the removal of hydrogen gas contained in the sample, and the porosity increases as the time increases and the temperature increases.

空孔を有する実施例試料I,IIは、従来例試料aに比し
て十分大きな引張り強度を有しており(表4)、この事
は、形成された空孔が有害でないことを示している。
The example samples I and II having pores have a sufficiently high tensile strength as compared with the conventional example sample a (Table 4), which shows that the formed pores are not harmful. There is.

空孔を有する実施例試料I,IIと従来例試料aとの耐焼
付き性の比較(表5)から、空孔の存在が耐焼付き性の
向上に貢献することが明らかである。
From the comparison of seizure resistance between the sample samples I and II having pores and the conventional sample a (Table 5), it is clear that the presence of pores contributes to the improvement of seizure resistance.

発明の効果 本発明によれば、優れた機械的強度と耐焼付き性を有す
る高強度焼結Al合金製摺動部材を得ることができる。ま
たAl合金粉末表面における吸着水の分解によって生じる
有害な水素ガスを押出し加工前に予め除去することな
く、これを積極的に利用したため、押出し加工を行うに
先立って圧粉体を加熱する際の雰囲気調整(不活性ガス
等によるその調整は面倒である)を行う必要がなく、こ
れにより前記部材の生産性を向上させることができる。
EFFECTS OF THE INVENTION According to the present invention, a high-strength sintered Al alloy sliding member having excellent mechanical strength and seizure resistance can be obtained. Further, since the harmful hydrogen gas generated by the decomposition of the adsorbed water on the surface of the Al alloy powder was positively used without being removed in advance before the extrusion processing, it was possible to heat the green compact before the extrusion processing. There is no need to adjust the atmosphere (the adjustment with an inert gas or the like is troublesome), and thus the productivity of the member can be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、10.0≦Si≦30.0、2.0≦Fe≦10.
0、0.5≦Cu≦7.5、0.5≦Mn≦5.0および0.3≦Mg≦3.5を
含有し、残部がAlおよび不可避不純物であるAl合金粉末
を用いて、水素を含有する圧粉体を成形する工程と、前
記圧粉体に押出し温度300〜450℃にて押出し加工を施し
て押出し成形品を得る工程と、前記押出し成形品を真空
中にて温度450〜520℃に0.5〜7時間保持する脱水素処
理を行うことによりその押出し成形品に空孔を形成する
工程とを用いることを特徴とする高強度焼結Al合金製摺
動部材の製造方法。
1. In weight%, 10.0 ≦ Si ≦ 30.0, 2.0 ≦ Fe ≦ 10.
0, 0.5 ≤ Cu ≤ 7.5, 0.5 ≤ Mn ≤ 5.0 and 0.3 ≤ Mg ≤ 3.5, with the balance Al and Al alloy powder that is an unavoidable impurity, and a step of molding a green compact containing hydrogen. A step of subjecting the green compact to an extrusion process at an extrusion temperature of 300 to 450 ° C. to obtain an extruded product, and dehydrogenation of keeping the extruded product at a temperature of 450 to 520 ° C. for 0.5 to 7 hours in a vacuum. And a step of forming pores in the extruded product by performing a treatment, the method for producing a sliding member made of a high-strength sintered Al alloy.
JP61029875A 1986-02-15 1986-02-15 Method for manufacturing sliding member made of high-strength sintered AL alloy Expired - Lifetime JPH0751728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61029875A JPH0751728B2 (en) 1986-02-15 1986-02-15 Method for manufacturing sliding member made of high-strength sintered AL alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61029875A JPH0751728B2 (en) 1986-02-15 1986-02-15 Method for manufacturing sliding member made of high-strength sintered AL alloy

Publications (2)

Publication Number Publication Date
JPS62188740A JPS62188740A (en) 1987-08-18
JPH0751728B2 true JPH0751728B2 (en) 1995-06-05

Family

ID=12288150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61029875A Expired - Lifetime JPH0751728B2 (en) 1986-02-15 1986-02-15 Method for manufacturing sliding member made of high-strength sintered AL alloy

Country Status (1)

Country Link
JP (1) JPH0751728B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129905A (en) * 1987-11-13 1989-05-23 Sumitomo Heavy Ind Ltd Method and device for treatment of atomized powder of aluminum alloy
JP4590784B2 (en) * 2001-06-18 2010-12-01 アイシン精機株式会社 Sliding member and valve opening / closing timing control device
KR20040025003A (en) * 2002-09-18 2004-03-24 현대자동차주식회사 Al based metal powder composition for valve seat and preparation method for valve seat by using them

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS60125347A (en) * 1983-12-12 1985-07-04 Mitsubishi Metal Corp Sintered al alloy for sliding member

Also Published As

Publication number Publication date
JPS62188740A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
US4853179A (en) Method of manufacturing heat resistant, high-strength structural members of sintered aluminum alloy
KR100345206B1 (en) Process for producing particle-reinforced titanium alloy
JPS6210237A (en) Aluminum alloy for hot forging
JPS6056040A (en) Dispersion-enhanced mechanically alloyed aluminum-magnesium-lithium alloy
US5521016A (en) Light weight boron carbide/aluminum cermets
CN110662847A (en) Method for producing mold casting product of nodular cast iron having ultrafine spheroidal graphite and spheroidizing agent
JPH02232324A (en) Production of parts made of aluminum alloy keeping high fatigue strength even after being kept in high temperature for hours
WO1998010111A1 (en) Casting material for thixocasting, method for preparing partially solidified casting material for thixocasting, thixo-casting method, iron-base cast, and method for heat-treating iron-base cast
JP3721393B2 (en) Porous preform, metal matrix composite and production method thereof
JPH0751728B2 (en) Method for manufacturing sliding member made of high-strength sintered AL alloy
JPH0699771B2 (en) Aluminum alloy porous member and method for manufacturing the same
JP2003277867A (en) Aluminum powder alloy having excellent high temperature strength, method of producing piston for internal combustion engine and piston for internal combustion engine
JP3846149B2 (en) Heat treatment method for casting aluminum alloy
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPS63243245A (en) Aluminum-alloy member excellent in forgeability
JPS6320297B2 (en)
JPH07507840A (en) metal matrix composite
WO1990002824A1 (en) Reinforced composite material
JPS62224602A (en) Production of sintered aluminum alloy forging
EP0568705B1 (en) Method for degassing and solidifying aluminum alloy powder
JP2688729B2 (en) Aluminum corrosion resistant material
JPH0368941B2 (en)
JPH01212730A (en) Manufacture of ceramic grain dispersion-type aluminum-based composite material
JP2846941B2 (en) Electrode material and method for manufacturing electrode material
JPS62273820A (en) Composite cylinder for plastic molding apparatus