JPH0750636A - Light transmitting device for light amplifying and repeating transmission - Google Patents

Light transmitting device for light amplifying and repeating transmission

Info

Publication number
JPH0750636A
JPH0750636A JP5194407A JP19440793A JPH0750636A JP H0750636 A JPH0750636 A JP H0750636A JP 5194407 A JP5194407 A JP 5194407A JP 19440793 A JP19440793 A JP 19440793A JP H0750636 A JPH0750636 A JP H0750636A
Authority
JP
Japan
Prior art keywords
light
optical
polarized
axis
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5194407A
Other languages
Japanese (ja)
Inventor
Yoichi Fukada
陽一 深田
Takamasa Imai
崇雅 今井
Mamoru Yosogi
守 四十木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5194407A priority Critical patent/JPH0750636A/en
Publication of JPH0750636A publication Critical patent/JPH0750636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To make it difficult to generate the large loss and the degradation of an SN based on polarization direction dependency of the loss of optical parts in a light repeating transmission system composed of the multistage repeatings by a light amplifier. CONSTITUTION:Non-polarized state light 22 in a prescribed band is taken out from non-polarized state light from a light emitting diode 26 by an optical band-pass filter 28, an intensity modulation is performed for this non-polarized state light by a transmission pattern 24 in an optical modulator 23 and the light is defined as transmission signal light 25. An intensity modulation is performed for polarized light 34 from a laser diode 33 by the transmission pattern 24 in the optical modulator 23, the emission signal light is fluctuated in a polarized direction at higher speed than the transmission pattern 24 in a polarized modulator 36 and the signal is defined as transmission signal light 37.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光増幅中継器が多数
縦続的に設けられて構成された光増幅中継伝送路に光信
号を入射する光送信器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmitter for injecting an optical signal into an optical amplification repeater transmission line constructed by arranging a large number of optical amplification repeaters in cascade.

【0002】[0002]

【従来の技術】光増幅中継器は光信号に利得を与えるエ
ルビウムドープファイバと、損失を与える光部品とから
なる。このうち光部品には通常、損失の偏光状態依存性
が僅かながら存在している。光増幅中継器を多数縦列接
続する光増幅中継伝送系では、光部品の損失の偏光方向
による差異の影響が、累積により大きくなる場合があ
る。ここで一般に、損失量に偏光状態依存性のある光部
品では、損失量の最大値が与えられる偏光状態と最小値
が与えられる偏光状態とは互いに直交している。以降、
信号光の進行方向をz軸、これと直交し、また互いに直
交する2軸をx軸およびy軸とする。また、i番目の光
部品の損失が最大となる偏光方向をai 軸、損失が最小
となる偏光方向をbi 軸とする。図3にこれを模式的に
表す。ここで、ai 軸、bi 軸およびz軸は互いに直交
している。なお、ai 軸、bi 軸とx軸、y軸との関係
はランダムである。
2. Description of the Related Art An optical amplifier repeater comprises an erbium-doped fiber that gives a gain to an optical signal and an optical component that gives a loss. Of these, the optical component usually has a slight polarization state dependency of the loss. In an optical amplification repeater transmission system in which a large number of optical amplification repeaters are connected in cascade, the influence of the difference in the loss of optical components depending on the polarization direction may be increased due to accumulation. Here, generally, in an optical component in which the loss amount depends on the polarization state, the polarization state in which the maximum value of the loss amount is given and the polarization state in which the minimum value is given are orthogonal to each other. Or later,
The traveling direction of the signal light is defined as the z-axis, and the two axes orthogonal to each other and the x-axis and the y-axis. Further, a polarization direction loss of the i-th optical component is a maximum a i axis, a polarization direction loss is minimized and b i axis. This is schematically shown in FIG. Here, the a i axis, the b i axis, and the z axis are orthogonal to each other. Note that the relationship between the a i axis and the b i axis and the x axis and the y axis is random.

【0003】ここで、光増幅中継伝送系において、信号
光の偏光方向が各光部品透過時に常にai 軸方向(1≦
i≦主信号が透過する光部品の個数)である場合と、偏
光方向が常にbi 軸方向である場合とでは、信号光が光
部品から受ける全過剰損失は大きく異なる。例えば、光
増幅中継伝送系において、送信器−受信器間で主信号光
が透過する光部品の個数が100個、各光部品の損失の
偏光状態依存性が0.1dBの場合、信号光に対する全過剰
損失は10dB増加することがある。また、全過剰損失が
増加すると受信信号のSN比も過剰に劣化する。このた
め、受信信号のSN比も偏光状態に依存する。さらに、
信号光の偏光状態が時間的にゆらぐ場合には、これに伴
って受信信号のSN比も変動し、安定性、信頼性に関し
ての問題が生じる。
In the optical amplification repeater transmission system, the polarization direction of the signal light is always in the a i axis direction (1≤
and if i ≦ main signal is the number of light components transmitted through), in the case the polarization direction is always b i axis, the total excess loss of signal light received from the light components differ greatly. For example, in an optical amplification repeater transmission system, when the number of optical components through which the main signal light passes between the transmitter and the receiver is 100 and the polarization state dependency of the loss of each optical component is 0.1 dB, The total excess loss can increase by 10 dB. Further, if the total excess loss increases, the SN ratio of the received signal also deteriorates excessively. Therefore, the SN ratio of the received signal also depends on the polarization state. further,
When the polarization state of the signal light fluctuates with time, the SN ratio of the received signal also fluctuates, which causes problems with stability and reliability.

【0004】[0004]

【発明が解決しようとする課題】光増幅中継伝送系の中
継器構成部品の損失の偏光状態依存性により、信号光の
損失および受信信号のSN比劣化が過剰に生じることが
ある。この発明は、これらを低減させ、光増幅中継伝送
系の安定性、信頼性を高めることを可能とする光増幅中
継伝送用光送信器を提供することを目的とする。
Due to the polarization state dependence of the loss of the repeater components of the optical amplification repeater transmission system, excessive loss of signal light and deterioration of the SN ratio of the received signal may occur. An object of the present invention is to provide an optical transmitter for optical amplification repeater transmission, which can reduce these and improve the stability and reliability of the optical amplification repeater transmission system.

【0005】[0005]

【課題を解決するための手段】請求項1の発明によれば
光源として無偏光状態の光を出すものが用いられる。請
求項2の発明によれば光源として偏光した光を出射する
ものが用いられ、偏光状態を情報信号よりも高速で変動
させる偏光状態制御手段が光変調器と直列に設けられ
る。
According to the invention of claim 1, a light source that emits light in a non-polarized state is used. According to the second aspect of the invention, a light source that emits polarized light is used as the light source, and the polarization state control means for changing the polarization state at a higher speed than the information signal is provided in series with the optical modulator.

【0006】[0006]

【作用】この構成によれば、制御信号の各ビットごとに
信号光の電界成分を常にx軸およびy軸の双方に存在さ
せて送信される。従って、光部品の損失の偏光方向依存
性により、信号光の電界のx軸方向成分(またはy軸方
向成分)が過大な損失を受けたとしても、y軸方向成分
(またはx軸方向成分)は過大な損失を受けずに光受信
器まで伝播することが可能となる。
According to this structure, the electric field component of the signal light is always present in both the x-axis and the y-axis for each bit of the control signal for transmission. Therefore, even if the x-axis direction component (or the y-axis direction component) of the electric field of the signal light receives an excessive loss due to the polarization direction dependence of the loss of the optical component, the y-axis direction component (or the x-axis direction component). Can propagate to the optical receiver without suffering from excessive loss.

【0007】[0007]

【実施例】図1Aに請求項1の発明の実施例を示す。無
偏光光源21からの無偏光状態の出力光22が光変調器
24で送信パタン(情報信号)により変調され、信号光
25は無偏光状態で送信される。無偏光光源21は例え
ばブロック図である。図1Bに示すように発光ダイオー
ド26からの出力光27は無偏光状態であり、この光2
7は光バンドパスフィルタ28によって狭帯域化した光
22もやはり無偏光状態であり、電界はx軸成分、y軸
成分双方を持つこととなり、この無偏光状態光22が光
源21よりの光とされる。
FIG. 1A shows an embodiment of the invention of claim 1. The output light 22 in the non-polarized state from the non-polarized light source 21 is modulated by the transmission pattern (information signal) by the optical modulator 24, and the signal light 25 is transmitted in the non-polarized state. The non-polarized light source 21 is, for example, a block diagram. As shown in FIG. 1B, the output light 27 from the light emitting diode 26 is in a non-polarized state.
The light 22 narrowed in band by the optical bandpass filter 28 is also in the non-polarized state, and the electric field has both the x-axis component and the y-axis component. To be done.

【0008】さらに図1B中の発光ダイオード26に代
え、例えば図1Cに示すように入力側に光無反射終端器
29を接続した光増幅回路、例えばエルビウムドープ光
増幅回路31を用いてもよい。入力光がない光増幅回路
31は光雑音を増幅し、光増幅回路31から広帯域の無
偏光状態光32が出射される。図1Dに請求項2の発明
の実施例を示す。偏光した光を出射する光源33からの
偏光光34は送信パタン24により光変調器23で強度
変調される。光変調器23より出射される信号光35は
偏光状態制御器36により送信パタン24よりも高速で
偏光状態が変動され、信号光37として送信される。偏
光した光の光源としては、例えばレーザダイオードから
の出力光は通常完全偏光状態であって、これが利用され
る。
Further, instead of the light emitting diode 26 in FIG. 1B, an optical amplifier circuit, for example, an erbium-doped optical amplifier circuit 31 having an optical non-reflection terminator 29 connected to the input side as shown in FIG. 1C may be used. The optical amplifier circuit 31 having no input light amplifies optical noise, and the optical amplifier circuit 31 emits broadband unpolarized light 32. FIG. 1D shows an embodiment of the invention of claim 2. The polarized light 34 from the light source 33 that emits polarized light is intensity-modulated by the optical modulator 23 by the transmission pattern 24. The polarization state controller 36 changes the polarization state of the signal light 35 emitted from the optical modulator 23 at a speed higher than that of the transmission pattern 24, and is transmitted as the signal light 37. As a light source of polarized light, for example, output light from a laser diode is usually in a completely polarized state, and this is used.

【0009】偏光状態の変動は偏光方向を90度程度変
化させることが望ましいが、偏光方向を10度程度以上
変化させれば効果が得られる。またその変化速度は送信
パタンのビットレートと同程度以上であればよい。さら
に偏光方向を十分高速にかつランダムに変化させると、
出射される信号光37は無偏光状態となる。図2Aに請
求項2の発明の実施例を更に具体的に示す。送信パタン
により強度変調された信号光35は偏光ビームスプリッ
タ38により2等分され、信号光39,41となる。こ
のうち一方の信号光39は光位相変調器42に入射され
る。光位相変調器42は送信パタン24のビットレート
以上の速さで信号光39に位相変調が行われ、光位相変
調器42から出射された信号光43は、偏光ビームスプ
リッタ44により信号光41と合波され、偏光状態が高
速で変動する信号光37となる。なお、図に示していな
いが2つのビームスプリッタ38と44との間の2つの
経路の光路長差が0になるように信号光41の経路には
光遅延手段を挿入することが好ましい。
It is desirable to change the polarization direction by about 90 degrees in order to change the polarization state, but the effect can be obtained by changing the polarization direction by about 10 degrees or more. The rate of change may be at least as high as the bit rate of the transmission pattern. Furthermore, if the polarization direction is changed sufficiently fast and randomly,
The emitted signal light 37 is in a non-polarized state. FIG. 2A shows the embodiment of the invention of claim 2 more specifically. The signal light 35 intensity-modulated by the transmission pattern is bisected by the polarization beam splitter 38 to be signal lights 39 and 41. One of the signal lights 39 is incident on the optical phase modulator 42. The optical phase modulator 42 performs phase modulation on the signal light 39 at a speed equal to or higher than the bit rate of the transmission pattern 24, and the signal light 43 emitted from the optical phase modulator 42 is converted into the signal light 41 by the polarization beam splitter 44. The signal light 37 is combined and becomes a signal light 37 whose polarization state changes at high speed. Although not shown in the figure, it is preferable to insert an optical delay unit in the path of the signal light 41 so that the optical path length difference between the two paths between the two beam splitters 38 and 44 becomes zero.

【0010】図2Bに図1D中の偏光状態制御器36の
別の例を示す。この偏光状態制御器は1軸性結晶を用い
た偏光変調器であって、1軸性結晶の電気光学定数の大
きな軸の方向がx軸である電気光学結晶46に対し、信
号光35がx軸とy軸双方向の偏波成分の電力が等しい
ように入射する。電気光学結晶46にはx軸方向の電界
強度が変化させられるように、例えば、x軸と垂直な2
平面に電極47,48が付けられ、この2電極47,4
8間の電位差を変化させることにより、x軸方向の電界
強度が変化させられる。電位差の変化および電気光学効
果により、x軸方向およびy軸方向の偏波の信号光の位
相に変化が生じるが、x軸方向とy軸方向で電気光学定
数が異なるため、x軸方向およびy軸方向偏波の信号光
の位相変化の大きさが異なる。従って、このように2つ
の電極47,48間に電位差の変化を与えることによ
り、信号光に偏光変調をかけることができる。ここでこ
の2つの電極47,48間に電位差を送信パタン24の
ビットレート以上の早さで変化させる。そうすると、こ
の偏光変調器からの出力光信号37は送信パタン24の
ビットレート以上の高速で偏光状態を変化させることが
できる。
FIG. 2B shows another example of the polarization state controller 36 shown in FIG. 1D. This polarization state controller is a polarization modulator using a uniaxial crystal, and the signal light 35 is transmitted to the electro-optic crystal 46 whose x-axis is the direction of the axis having a large electro-optic constant of the uniaxial crystal. The polarization components in both the axis and the y-axis are incident so that their electric powers are equal. In the electro-optic crystal 46, for example, 2 perpendicular to the x-axis is used so that the electric field strength in the x-axis direction can be changed.
The electrodes 47 and 48 are attached to the plane, and the two electrodes 47 and 4
By changing the potential difference between 8, the electric field strength in the x-axis direction can be changed. A change in the potential difference and the electro-optical effect cause a change in the phase of the signal light of the polarized waves in the x-axis direction and the y-axis direction. The magnitude of the phase change of the axially polarized signal light is different. Therefore, the polarization modulation can be applied to the signal light by changing the potential difference between the two electrodes 47 and 48 in this way. Here, the potential difference between the two electrodes 47 and 48 is changed at a speed higher than the bit rate of the transmission pattern 24. Then, the output optical signal 37 from this polarization modulator can change the polarization state at a high speed higher than the bit rate of the transmission pattern 24.

【0011】図2Bに示した偏光変調器にかえて、電気
光学効果を用いた位相変調器を用いる構成も使用可能で
ある。この場合、位相変調器として用いる場合の偏波方
向の成分が、入射信号光電力の1/2となるように信号
光35の偏光方向49を設定する。この構成の場合に
も、位相変調用電気入力の変化による、位相変調器とし
て用いる場合の入力偏波方向信号成分の位相変化量と、
それと直交する偏波方向の信号成分の位相変化量は異な
るため、偏光変調をかけることができる。この構成は、
既存の位相変調器を用いることができるため、新たに変
調器の設計、開発を行う必要がない、よって安価に使用
できるという特徴がある。
Instead of the polarization modulator shown in FIG. 2B, a configuration using a phase modulator using the electro-optical effect can be used. In this case, the polarization direction 49 of the signal light 35 is set so that the component in the polarization direction when used as a phase modulator is 1/2 of the incident signal light power. Also in the case of this configuration, the phase change amount of the input polarization direction signal component when used as a phase modulator due to the change of the phase modulation electric input,
Since the phase change amount of the signal component in the polarization direction orthogonal to that is different, polarization modulation can be applied. This configuration
Since the existing phase modulator can be used, there is no need to newly design and develop the modulator, and thus it can be used at low cost.

【0012】上述において、光変調器23としては強度
変調のみならず、周波数変調でもよい。また図1Dにお
いて偏光状態制御器36を光変調器23の前段に設けて
もよい。
In the above description, the optical modulator 23 may be frequency modulation as well as intensity modulation. Further, in FIG. 1D, the polarization state controller 36 may be provided before the optical modulator 23.

【0013】[0013]

【発明の効果】以上説明したとおり、この発明の光送信
器によれば、光増幅中継伝送系に入射される信号光はx
軸、y軸双方に電界成分をもっているため、光増幅中継
伝送系において、中継器構成部品の損失の偏光方向依存
性による過剰な損失およびSN比劣化が防止され、安定
性、信頼性を高めることが可能となる。
As described above, according to the optical transmitter of the present invention, the signal light incident on the optical amplification repeater transmission system is x.
Since there is an electric field component in both the axis and the y-axis, in the optical amplification repeater transmission system, excessive loss due to polarization direction dependency of repeater component parts and deterioration of the SN ratio are prevented, and stability and reliability are improved. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aは請求項1の発明による光増幅中継伝送用光
送信器の実施例を示すブロック図、Bはその無偏光光源
21の具体例を示すブロック図、Cは無偏光光源21の
他の例の一部を示すブロック図、Dは請求項2の発明に
よる光増幅中継伝送用光送信器の実施例を示すブロック
図である。
1A is a block diagram showing an embodiment of an optical transmitter for optical amplification relay transmission according to the invention of claim 1, B is a block diagram showing a specific example of a non-polarized light source 21, and C is a non-polarized light source 21. FIG. FIG. 11 is a block diagram showing a part of another example, and D is a block diagram showing an embodiment of an optical transmitter for optical amplification relay transmission according to the invention of claim 2.

【図2】Aは請求項2の発明の実施例を更に具体化して
示すブロック図、Bは図1D中の偏光状態制御器36の
他の例を示す斜視図である。
FIG. 2A is a block diagram showing the embodiment of the invention of claim 2 in further detail; FIG. 2B is a perspective view showing another example of the polarization state controller 36 in FIG. 1D.

【図3】伝送系のx−y座標系と、損失最大となる偏光
方向ai と損失最小となる偏光方向bi との関係を示す
図。
FIG. 3 is a diagram showing a relationship between an xy coordinate system of a transmission system and a polarization direction a i that maximizes loss and a polarization direction b i that minimizes loss.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 情報信号により光源よりの光を変調して
送信する光増幅中継伝送用光送信器において、 上記光源として無偏光状態の光源が用いられていること
を特徴とする光増幅中継伝送用光送信器。
1. An optical amplification relay transmission optical transmitter for modulating and transmitting light from a light source according to an information signal, wherein an unpolarized light source is used as the light source. Optical transmitter.
【請求項2】 光源より光を光変調器で情報信号により
光変調して送信する光増幅中継伝送用光送信器におい
て、 上記光源として偏光した光を出射する光源が用いられ、 上記光変調器と直列に設けられ、偏光状態を、上記情報
信号より高速で変動させる偏光状態制御手段が設けられ
ていることを特徴とする光増幅中継伝送用光送信器。
2. An optical transmitter for optical amplification relay transmission, wherein light is optically modulated by an optical modulator with an information signal and transmitted from an optical source, wherein a light source for emitting polarized light is used as the light source, and the optical modulator. An optical transmitter for optical amplification relay transmission, which is provided in series with the polarization state control means for varying the polarization state at a higher speed than the information signal.
JP5194407A 1993-08-05 1993-08-05 Light transmitting device for light amplifying and repeating transmission Pending JPH0750636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5194407A JPH0750636A (en) 1993-08-05 1993-08-05 Light transmitting device for light amplifying and repeating transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5194407A JPH0750636A (en) 1993-08-05 1993-08-05 Light transmitting device for light amplifying and repeating transmission

Publications (1)

Publication Number Publication Date
JPH0750636A true JPH0750636A (en) 1995-02-21

Family

ID=16324094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5194407A Pending JPH0750636A (en) 1993-08-05 1993-08-05 Light transmitting device for light amplifying and repeating transmission

Country Status (1)

Country Link
JP (1) JPH0750636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135937A (en) * 2008-12-02 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> Polarization modulator, optical transmitter/receiver, and light transmission system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135937A (en) * 2008-12-02 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> Polarization modulator, optical transmitter/receiver, and light transmission system using the same

Similar Documents

Publication Publication Date Title
JP3751542B2 (en) Optical fiber transmission system using polarization multiplexing to suppress stimulated Brillouin scattering.
US6603593B2 (en) Optical transmission link including raman amplifier
US6977769B2 (en) Pump light source device for optical Raman amplification and optical Raman amplification system using the same
US5999283A (en) Optical logic devices and methods
US5280549A (en) Frequency dependent optical isolator
US5539566A (en) Optical transmission method and apparatus and optical amplification method and apparatus for optical communication system
US5898716A (en) Structure of a passively mode-locked optical fiber laser
AU709120B2 (en) Modulated and depolarised optical signal transmission system
JPH08204636A (en) Optical communication system
JPS62116030A (en) Coherent light wave transmitter
US5835260A (en) Optical amplifier, optical amplifying method and optical transmission system using the optical amplifier
JPH11237594A (en) Optical modulator using isolator and optical transmitting device provided with the optical modulator
US5721637A (en) Wavelength converter apparatus
EP0615356A1 (en) Technique for reducing nonlinear signal degradation and fading in a long optical transmission system
US5828682A (en) Rational-harmonic apparatus and technique
CA2375832A1 (en) Depolarized laser sources
JPH0750636A (en) Light transmitting device for light amplifying and repeating transmission
EP0660548A1 (en) Technique for improving performance in an optical transmission system
JPH06504407A (en) interferometer
US6947617B2 (en) Polarized wave scrambler and optical signal transmission apparatus
JP3485226B2 (en) Polarization scrambling method and polarization modulator
JP2001324734A (en) Wavelength conversion circuit
JPH09269428A (en) Reflective return light compensation circuit
JPH0362638A (en) Optical transmitter
JPH0766777A (en) Opto/microwave transmitting equipment