JPH0750216A - Gas insulating transformer - Google Patents

Gas insulating transformer

Info

Publication number
JPH0750216A
JPH0750216A JP19352393A JP19352393A JPH0750216A JP H0750216 A JPH0750216 A JP H0750216A JP 19352393 A JP19352393 A JP 19352393A JP 19352393 A JP19352393 A JP 19352393A JP H0750216 A JPH0750216 A JP H0750216A
Authority
JP
Japan
Prior art keywords
gas
tank
coolers
phase
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19352393A
Other languages
Japanese (ja)
Other versions
JP3154874B2 (en
Inventor
Yasunobu Togawa
安信 戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19352393A priority Critical patent/JP3154874B2/en
Publication of JPH0750216A publication Critical patent/JPH0750216A/en
Application granted granted Critical
Publication of JP3154874B2 publication Critical patent/JP3154874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To minimize the flow rate of insulating gas as well as to reduce the number of spare gas coolers to the minimum by a method wherein one gas cooler is used in common to adjacent tanks by the opening and shutting of gas partition valves. CONSTITUTION:In the case where a gas insulating transformer is formed into a constitution, wherein three regular gas coolers 10a and one spare gas cooler 1Ob are arranged in one row in the lateral direction and are mounted, a piping is branched at the respective exits and entrances of the two gas coolers, which are arranged between a central tank 4b and outside tanks 4a and 4c to the tank 4b, out of the four gas coolers in all. The branch piping is connected to the tanks 4a and 4b by a connection piping 7 via gas partition valves 11 and moreover, the other branch piping is connected to the tanks 4c and 4b by the connection piping 7 via gas partition valves 11. The gas insulating transformer is constituted into such a structure that each gas cooler, which is capable of feeding gas to both of two adjacent tanks, is connected to the tanks by the piping and at the same time, the partition valves 11 are provided on this piping and the transformer is made to correspond to trouble using the one spare gas cooler.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えばSF6 のような絶
縁性のガスを変圧器中身の絶縁および冷却媒体に用いる
ガス絶縁変圧器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-insulated transformer which uses an insulating gas such as SF 6 for the insulation and cooling medium of the transformer contents.

【0002】[0002]

【従来の技術】近年、ビルディング、地下街、交通機関
および公共施設等の都市建造施設に対する防火、防災対
策の強化が要請されている。特に、これらの施設に設置
される受変電設備に対してはコンパクト化、不燃化要求
がますます高まっており、その絶縁媒体として不燃性、
無害、無公害の絶縁ガスである六フッ化硫黄(SF6
ガスを用いたガス絶縁変圧器の使用が急激に増加してい
る。
2. Description of the Related Art In recent years, there has been a demand for strengthening fire prevention and disaster prevention measures for urban construction facilities such as buildings, underground malls, transportation facilities and public facilities. In particular, the demand for compactness and non-combustibility for power receiving and transforming equipment installed in these facilities is increasing, and non-combustible as an insulating medium,
Sulfur hexafluoride (SF 6 ) is a harmless and pollution-free insulating gas
The use of gas-insulated transformers with gas is rapidly increasing.

【0003】図12はガス絶縁変圧器の構成を示すもの
で、鉄心1の外周部に巻線2を巻回した変圧器中身を所
定の圧力に高められたSF6 等の絶縁ガス3と共にタン
ク4内に収納している。この場合、変圧器中身の各巻線
間および鉄心1と巻線間には絶縁ダクト8が配設されて
いる。また、タンク4の外部には暖められた絶縁ガス3
を冷却するための熱交換器5が設けられ、タンク4内の
絶縁ガス3がガスブロア6により接続配管7を介して図
示矢印のように循環するようになっている。通常、熱交
換器5とガスブロア6は対で構成されるので、これらを
組合わせてガス冷却器10と呼ぶ。
FIG. 12 shows the structure of a gas-insulated transformer, in which the contents of the transformer in which a winding 2 is wound around the outer periphery of an iron core 1 together with an insulating gas 3 such as SF 6 which has been raised to a predetermined pressure are stored in a tank. It is stored in 4. In this case, an insulating duct 8 is arranged between the windings of the transformer contents and between the iron core 1 and the windings. In addition, the insulating gas 3 warmed outside the tank 4
A heat exchanger 5 for cooling is provided, and the insulating gas 3 in the tank 4 is circulated by a gas blower 6 through a connecting pipe 7 as shown by an arrow in the figure. Usually, the heat exchanger 5 and the gas blower 6 are constituted by a pair, and thus they are called a gas cooler 10 in combination.

【0004】また、ガス冷却器の上下には、図示しない
ガス仕切弁を取付け、ガス冷却器10あるいはガスブロ
ア6が故障した場合、タンク4内のガスを抜くことなく
冷却器を取外し、修理、交換することが可能な構造とな
っている。
Further, gas sluice valves (not shown) are attached above and below the gas cooler, and when the gas cooler 10 or the gas blower 6 fails, the cooler is removed without removing the gas in the tank 4, and the repair or replacement is performed. It has a structure that can be done.

【0005】これらガス冷却器10やガスブロア6が故
障により停止すると、冷却能力が不足し、巻線2や鉄心
1の温度上昇を招き、変圧器の寿命に影響を来すため、
電力系統内で重要な部分を担っている電力用変圧器で
は、最小限必要な冷却器の他に予備用の冷却器を備えて
いるのが一般的である。
If the gas cooler 10 and the gas blower 6 stop due to a failure, the cooling capacity becomes insufficient, the temperature of the winding 2 and the iron core 1 rises, and the life of the transformer is affected.
In the power transformer, which plays an important part in the electric power system, it is general to provide a spare cooler in addition to the minimum required cooler.

【0006】一方、ガス絶縁変圧器の適用範囲が拡大す
るに伴い、輸送条件の厳しい地下変電所や、山間部の水
力変電所などに変圧器を輸送する場合、1台の変圧器を
分割して運ばざるを得ない状況も出てきている。分割の
仕方としては3相器を各相毎に3分割するのが一般的で
あるが、各相についてさらに分割する場合もある。
On the other hand, as the scope of application of gas-insulated transformers expands, when transporting a transformer to an underground substation with severe transport conditions or a hydraulic substation in the mountains, one transformer must be split. There are also situations in which we cannot help carrying it. As a method of division, it is general to divide the three-phase device into three for each phase, but there are cases where each phase is further divided.

【0007】図13および図14は各相毎に3分割した
変圧器に対し、予備を含めたガス冷却器10を配置した
従来例である。図13では常用ガス冷却器10aおよび
予備ガス冷却器10bを含めた全てのガス冷却器10を
共通配管9を介して各相タンク4a〜4cに接続してい
る。また、図14では共通配管9を用いず、各相タンク
4a〜4cに常用ガス冷却器10aに加えて予備用ガス
冷却器10bを1台ずつ配置している。
13 and 14 show a conventional example in which a gas cooler 10 including a spare is arranged for a transformer divided into three for each phase. In FIG. 13, all the gas coolers 10 including the normal gas cooler 10a and the spare gas cooler 10b are connected to the respective phase tanks 4a to 4c via the common pipe 9. Further, in FIG. 14, the common pipe 9 is not used, and in addition to the regular gas cooler 10a, one spare gas cooler 10b is arranged in each of the phase tanks 4a to 4c.

【0008】しかし、図13に示すような構成のガス絶
縁変圧器では、共通配管9の内部で絶縁ガス3の分岐、
合流などが生じるため、絶縁ガス3の流れにおける圧力
損失が大きくなり、ガスブロア6の能力以下のガス流量
しか得られないことがある。そこで、共通配管9のサイ
ズを大きくする必要があるが、このようにすると冷却系
の占めるスペースが増大する。また、共通配管9内での
合流や分岐、あるいは配管内を高速でガスが流れること
によるガス流騒音が発生し、変圧器全体の騒音値に影響
する場合がある。これらは特にガス冷却器10の台数が
多くなるにつれて顕著になる。
However, in the gas-insulated transformer having the structure shown in FIG. 13, the insulating gas 3 is branched inside the common pipe 9.
Since merging or the like occurs, the pressure loss in the flow of the insulating gas 3 increases, and only a gas flow rate less than the capacity of the gas blower 6 may be obtained. Therefore, it is necessary to increase the size of the common pipe 9, but doing so increases the space occupied by the cooling system. Further, gas flow noise may occur due to merging or branching in the common pipe 9 or gas flowing at high speed in the pipe, which may affect the noise value of the entire transformer. These become remarkable especially as the number of gas coolers 10 increases.

【0009】また、図14に示すような構成のガス絶縁
変圧器では、各相毎に予備用ガス冷却器10bを備えて
いるため、共通配管9を使用したときのような問題は生
じないが、ガス冷却器10の台数が増え、コスト上昇を
招く。
In the gas-insulated transformer having the structure as shown in FIG. 14, since the backup gas cooler 10b is provided for each phase, the problem as when the common pipe 9 is used does not occur. However, the number of gas coolers 10 increases, leading to an increase in cost.

【0010】[0010]

【発明が解決しようとする課題】このように従来のガス
絶縁変圧器では、予備用ガス冷却器を共通配管に接続す
ると、前述したようなガス流の圧力損失の増加や設置ス
ペースの増大、騒音増加という問題があり、また予備用
ガス冷却器を各相毎に接続すると、予備用ガス冷却器の
台数増加によるコストアップを招くという問題がある。
As described above, in the conventional gas insulated transformer, when the spare gas cooler is connected to the common pipe, the pressure loss of the gas flow, the installation space, and the noise are increased as described above. There is a problem that the number of spare gas coolers increases if the spare gas coolers are connected for each phase.

【0011】本発明は上記のような問題を解消するため
になされたもので、その目的は絶縁ガス流量を最小限に
すると共に、予備用ガス冷却器の台数を最小にして、コ
ンパクトで騒音の小さい経済的に有利なガス変圧器を提
供することにある。
The present invention has been made in order to solve the above problems, and its purpose is to minimize the flow rate of insulating gas and minimize the number of backup gas coolers to achieve a compact and noisy environment. It is to provide a small and economically advantageous gas transformer.

【0012】[0012]

【課題を解決するための手段】本発明は上記の目的を達
成するため、次のような構成とするものである。 (1)鉄心に巻線を巻装した変圧器中身を絶縁ガスと共
に収納したタンクを1相毎に3相分構成し、これらのタ
ンクを3相各相に対応させて横並びに配設してなる3相
ガス絶縁変圧器において、絶縁ガスを冷却するための3
n台(nは自然数)のガス冷却器を常用とし、1台のガ
ス冷却器を予備用としてそれぞれ配設し、これら合計
(3n+1)台のうち2台のガス冷却器の出入口で配管
をそれぞれ分岐し、その一方の分岐配管を中間に配置さ
れる中央タンクとその一側方に配置される第1の外側タ
ンクに仕切弁を介してそれぞれ配管により接続し、他方
の分岐配管を中央タンクとその他側方に配置される第2
の外側タンクに仕切弁を介してそれぞれ配管により接続
し、残りの(3n−1)台のガス冷却器は第1及び第2
の外側タンクにn台のガス冷却器の出入口をガス仕切弁
をそれぞれ介して配管により接続すると共に、中央タン
クに(n−1)台のガス冷却器の出入口をガス仕切弁を
介して配管により接続して冷却系を構成し、変圧器運転
時にはこれら全てのガス冷却器の何ずれか1台を予備用
とし、各相タンクにはそれぞれn台のガス冷却器のガス
が循環するように各ガス仕切弁を開または閉の状態にし
て運転する。 (2)鉄心に巻線を巻装した変圧器中身を絶縁ガスと共
に収納したタンクを1相毎に3相分構成し、これらのタ
ンクを3相各相に対応させて横並びに配設してなる3相
ガス絶縁変圧器において、絶縁ガスを冷却するための3
n台(nは自然数)のガス冷却器を常用とし、1台のガ
ス冷却器を予備用としてそれぞれ配設し、予備用のガス
冷却器の出入口を共通配管に接続し、さらにこの共通配
管と各相タンクとをガス仕切弁を介して配管により接続
し、残りの3n台のガス冷却器の出入口を各相タンクに
それぞれn台ずつガス仕切弁を介してそれぞれ配管によ
り接続して冷却系を構成し、通常運転時には共通配管と
各相タンクとの接続配管の途中に設けられたガス仕切弁
を閉の状態にすると共に、各相タンクに直結されたガス
冷却器側のガス仕切弁を全て開の状態としてそれぞれの
タンクにn台のガス冷却器のガスが循環するようにして
運転する。 (3)鉄心に巻線を巻装した変圧器中身を絶縁ガスと共
に収納したタンクを1相毎に3相分構成し、これらのタ
ンクを3相各相に対応させて横並びに配設してなる3相
ガス絶縁変圧器において、絶縁ガスを冷却するためのガ
ス冷却器を常用として(3n+1)台(nは自然数)、
予備用として1台それぞれそれぞれ配設し、これら合計
(3n+2)台のうち2台のガス冷却器の出入口で配管
をそれぞれ分岐し、その一方の分岐配管を中間に配置さ
れる中央タンクとその一側方に配置される第1の外側タ
ンクに仕切弁を介してそれぞれ配管により接続し、他方
の分岐配管を中央タンクとその他側方に配置される第2
の外側タンクに仕切弁を介してそれぞれ配管により接続
し、残りの3n台のガス冷却器は第1及び第2の外側タ
ンクの一方にn台のガス冷却器の出入口をガス仕切弁を
それぞれ介して配管により接続すると共に、他方の外側
タンクと中央タンクにそれぞれ(n−1)台のガス冷却
器の出入口をガス仕切弁を介して配管により接続し、残
りの2台のガス冷却器の出入口を配管によりガス仕切弁
を介して共通配管に接続し、さらに共通配管と各相タン
クとを配管で接続して冷却系を構成し、共通配管に接続
した2台のガス冷却器の内の1台は予備用とし、出入口
部から配管を分岐してその一方を共通配管に、もう一方
は(n−1)台のガス冷却器が直結された外側タンクに
ガス仕切弁を介して配管により接続し、変圧器運転時に
は各相タンクにそれぞれ(n+1/3)台のガス冷却器
のガスが循環するように各ガス仕切弁を開または閉の状
態にして運転する。 (4)鉄心に巻線を巻装した変圧器中身を絶縁ガスと共
に収納したタンクを1相毎に3相分構成し、これらのタ
ンクを3相各相に対応させて横並びに配設してなる3相
ガス絶縁変圧器において、絶縁ガスを冷却するためのガ
ス冷却器を常用として(3n+2)台(nは自然数)、
予備用として1台それぞれ配設し、これら合計(3n+
3)台のうち2台のガス冷却器をその出入口で配管をそ
れぞれ分岐し、その一方の分岐配管を中間に配置される
中央タンクとその一側方に配置される第1の外側タンク
に仕切弁を介してそれぞれ配管により接続し、他方の分
岐配管を中央タンクとその他側方に配置される第2の外
側タンクに仕切弁を介してそれぞれ配管により接続し、
残りの(3n+1)台のガス冷却器は第1及び第2の外
側タンクの一方にn台のガス冷却器の出入口をガス仕切
弁をそれぞれ介して配管により接続すると共に、他方の
外側タンクと中央タンクにそれぞれ(n−1)台のガス
冷却器の出入口をガス仕切弁を介して配管により接続
し、残りの3台のガス冷却器の出入口を配管によりガス
仕切弁を介して共通配管に接続し、さらに共通配管と各
相タンクとを配管で接続して冷却系を構成し、共通配管
に接続した3台のガス冷却器の内の1台は予備用とし、
出入口部から配管を分岐してその一方を共通配管に、も
う一方は(n−1)台のガス冷却器が直結された外側タ
ンクにガス仕切弁を介して配管により接続し、変圧器運
転時には各相タンクにそれぞれ(n+2/3)台のガス
冷却器のガスが循環するように各ガス仕切弁を開または
閉の状態にして運転する。
The present invention has the following constitution in order to achieve the above object. (1) A tank containing the contents of a transformer in which windings are wound around an iron core together with insulating gas is configured for each phase for three phases, and these tanks are arranged side by side corresponding to each of the three phases. In order to cool the insulating gas in the three-phase gas insulation transformer
n (n is a natural number) gas coolers are always used, and one gas cooler is provided as a spare, and two of these (3n + 1) gas coolers have pipes at the inlet and outlet of each. One of the branch pipes is branched and is connected to a central tank arranged in the middle and a first outer tank arranged on one side of the branch pipe via a sluice valve, and the other branch pipe is connected to the central tank. The second placed on the other side
To the outer tank of each of the gas coolers of the (3n-1) units through the sluice valve, and the remaining (3n-1) gas coolers are the first and second
The inlets and outlets of the n gas coolers are connected to the outer tanks of the pipes via the gas sluice valves, respectively, and the inlets and outlets of the (n-1) gas coolers are connected to the central tank by the pipes via the gas sluice valves. Connected to form a cooling system, some one of these gas coolers is used as a spare during transformer operation, and each phase tank has n gas coolers so that each gas circulates. Operate with the gas gate valve open or closed. (2) A tank containing the contents of a transformer in which windings are wound around an iron core together with insulating gas is configured for each three phases, and these tanks are arranged side by side corresponding to each of the three phases. In order to cool the insulating gas in the three-phase gas insulation transformer
n gas coolers (n is a natural number) are always used, and one gas cooler is provided for each spare, and the inlet and outlet of the spare gas cooler are connected to a common pipe, and this common pipe is also used. Each phase tank is connected via a gas sluice valve by piping, and the remaining 3n gas cooler inlets / outlets are connected to each phase tank by n pipes each via a gas sluice valve to form a cooling system. The gas sluice valve installed in the middle of the connecting pipe between the common pipe and each phase tank is closed during normal operation, and all gas sluice valves on the gas cooler side directly connected to each phase tank are closed. In the open state, the gas of n gas coolers is circulated in each tank for operation. (3) A tank containing the contents of a transformer in which windings are wound around an iron core together with insulating gas is configured for each phase for three phases, and these tanks are arranged side by side corresponding to each of the three phases. In the three-phase gas insulation transformer, the gas cooler for cooling the insulating gas is regularly used (3n + 1) units (n is a natural number),
One of each of them is provided as a spare, and two of the total (3n + 2) gas coolers are branched at the inlet and outlet of the gas cooler, and one of the branch pipes is arranged in the middle of the central tank and one of them. A second outer pipe, which is connected to the first outer tank that is arranged laterally via a sluice valve, and the other branch pipe is arranged on the central tank and the other side.
Connected to each of the outer tanks through a sluice valve by piping, and the remaining 3n gas coolers connect the inlets and outlets of the n gas coolers to one of the first and second outer tanks through the gas sluice valves, respectively. And the other outer tank and the central tank are connected to the inlets and outlets of the (n-1) gas coolers via the gas sluice valves, and the inlets and outlets of the remaining two gas coolers. Is connected to a common pipe via a gas sluice valve by a pipe, and the common pipe and each phase tank are connected by a pipe to form a cooling system. One of two gas coolers connected to the common pipe The stand is used as a spare, and the pipe is branched from the entrance / exit, and one of them is connected to the common pipe, and the other is connected to the outer tank directly connected to the (n-1) gas cooler via the gas sluice valve. However, when operating the transformer, Each (n + 1/3) stand gas cooler gas operated by each gas gate valve in the open or closed state to circulate. (4) A tank containing the contents of a transformer in which windings are wound around an iron core together with insulating gas is configured for each phase for three phases, and these tanks are arranged side by side corresponding to each of the three phases. In the three-phase gas insulation transformer, the gas cooler for cooling the insulation gas is usually used (3n + 2) units (n is a natural number),
One for each spare is installed, and the total of these (3n +
3) Of the two units, two gas coolers are branched at their inlets and outlets, and one branch pipe is divided into a central tank arranged in the middle and a first outer tank arranged on one side of the central tank. And connecting the other branch pipes to the central tank and the second outer tank arranged on the other side through the gate valve, respectively.
The remaining (3n + 1) gas coolers connect the inlets and outlets of the n gas coolers to one of the first and second outer tanks by pipes through gas sluice valves, and connect the other outer tank to the center. The inlets and outlets of (n-1) gas coolers are connected to the tanks by piping via gas sluice valves, and the remaining three gas coolers' inlets and outlets are connected by piping to a common pipe via gas sluice valves. Further, a common pipe and each phase tank are connected by a pipe to form a cooling system, and one of the three gas coolers connected to the common pipe is a spare,
When the transformer is in operation, the pipe is branched from the inlet / outlet part, one of which is connected to the common pipe, and the other is connected to the outer tank to which (n-1) gas coolers are directly connected via a gas sluice valve. Each gas sluice valve is operated in an open or closed state so that the gas of (n + 2/3) gas coolers circulates in each phase tank.

【0013】[0013]

【作用】上記(1)のような構成のガス絶縁変圧器にあ
っては、1台のガス冷却器をガス仕切弁の開閉により、
隣合ったタンクに共通に使用することが可能となる。上
記(2)のような構成のガス絶縁変圧器にあっては、予
備用のガス冷却器のみを共通配管で接続しているので、
全てのタンクに絶縁ガスを供給することが可能となる。
In the gas-insulated transformer having the above-mentioned configuration (1), one gas cooler is opened and closed by opening and closing the gas sluice valve.
It can be commonly used for adjacent tanks. In the gas-insulated transformer having the configuration as described in (2) above, since only the spare gas cooler is connected by the common pipe,
Insulating gas can be supplied to all tanks.

【0014】上記(3),(4)のような構成のガス絶
縁変圧器にあっては、ガスブロア1台あるいは2台分の
みの絶縁ガスを各相タンクに分配するための共通配管を
備えているので、予備用のガス冷却器はガス仕切弁の開
閉により、この共通配管と1相分のタンクとに共通に使
用することが可能である。
The gas-insulated transformer having the above configurations (3) and (4) is provided with a common pipe for distributing the insulating gas for only one or two gas blowers to each phase tank. Therefore, the spare gas cooler can be commonly used for this common pipe and the tank for one phase by opening and closing the gas sluice valve.

【0015】したがって、共通配管をなくすか、少量の
絶縁ガスを流すための小さい共通配管でよい上、予備用
ガス冷却器の台数も最小にすることができるので、圧力
損失の増加による循環ガス量の低下、あるいは大きな共
通配管による設置スペースの増加、ガス流による騒音増
加、予備用ガス冷却器の台数増加によるコスト増加の問
題が解消できる。
Therefore, the common pipe can be eliminated or a small common pipe for flowing a small amount of insulating gas can be used, and the number of spare gas coolers can be minimized. It is possible to solve the problems of decrease in cost, increase in installation space due to large common pipe, increase in noise due to gas flow, and increase in cost due to increase in number of spare gas coolers.

【0016】[0016]

【実施例】以下本発明の実施例を図面を参照して説明す
る。図1は本発明によるガス絶縁変圧器の第1の実施例
として各相毎に3分割した場合の構成を示すものであ
る。図1に示すように各相タンク4a,4b,4cは、
3個横並べにして配置される。これは設置スペースが最
小になる上、各相間の電気的接続構造が簡素化されるた
めである。また、冷却器も特に地下変電所などで水冷式
のガス冷却器を使用する場合には水系配管との接続を容
易にするため、横一列に配置されることが多い。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a gas-insulated transformer according to a first embodiment of the present invention when it is divided into three parts for each phase. As shown in FIG. 1, each phase tank 4a, 4b, 4c is
Three are arranged side by side. This is because the installation space is minimized and the electrical connection structure between each phase is simplified. In addition, the coolers are often arranged in a horizontal row in order to facilitate the connection with the water system piping, especially when a water-cooled gas cooler is used in an underground substation or the like.

【0017】第1の実施例では、常用3台、予備1台の
ガス冷却器10を横一列に配置して取付ける構成とする
ものである。すなわち、合計4台のガス冷却器の内、中
央タンク4bとその外側タンク4a,4cとの間に配置
される2台のガス冷却器10の出入口で配管をそれぞれ
分岐し、その一方の分岐配管を外側タンク4aと中央タ
ンク4bにガス仕切弁11を介して接続配管7によりそ
れぞれ接続し、他方の分岐配管を外側タンク4cと中央
タンク4bにガス仕切弁11を介して接続配管7により
それぞれ接続する。
In the first embodiment, three gas coolers 10 for normal use and one spare gas cooler 10 are arranged in a horizontal row and mounted. That is, of the four gas coolers in total, the pipes are branched at the entrances and exits of the two gas coolers 10 arranged between the central tank 4b and the outer tanks 4a and 4c, respectively, and one of the branch pipes is branched. Are connected to the outer tank 4a and the central tank 4b via a gas sluice valve 11, respectively, and the other branch pipes are connected to the outer tank 4c and the central tank 4b via a gas sluice valve 11, respectively. To do.

【0018】さらに、外側タンク4a,4cの外側に配
置される残りの2台のガス冷却器10については、外側
タンク4a,4cにガス仕切弁11を介して接続配管7
によりそれぞれ接続する。
Further, regarding the remaining two gas coolers 10 arranged outside the outer tanks 4a and 4c, the connecting pipe 7 is connected to the outer tanks 4a and 4c through the gas sluice valve 11.
To connect respectively.

【0019】次に上記のように構成されたガス絶縁開閉
器の作用について述べる。いま、4台のガス冷却器10
のうち、予備用ガス冷却器10bを何ずれにしてもよい
が、ここではNO.4のガス冷却器を予備用としてい
る。
Next, the operation of the gas-insulated switch having the above structure will be described. Now four gas coolers 10
Of these, the spare gas cooler 10b may be arranged in any offset, but in this case, NO. The gas cooler of No. 4 is used as a spare.

【0020】通常運転時はガス仕切弁11のうち、v
1,v3,v5を開状態とし、v2,v4,v6を閉状
態とすることにより、各相タンク4a〜4cにガス冷却
器1台分の絶縁ガスが供給され、タンク内とガス冷却器
10内を循環する。
During normal operation, of the gas gate valve 11, v
1, v3, v5 are in the open state, and v2, v4, v6 are in the closed state, so that the insulating gas for one gas cooler is supplied to each of the phase tanks 4a to 4c and the inside of the tank and the gas cooler 10 are supplied. Circulate inside.

【0021】このような状態で変圧器が運転されている
とき、ガス冷却器10の1台、例えば図2に示すように
NO.3のガス冷却器10aが故障した場合には、N
O.4の予備用ガス冷却器10bと外側配置タンク4c
間のガス仕切弁11を開き、NO.4の予備用ガス冷却
器10bを運転すると共に、ガス仕切弁(v5)11を
閉状態にすることで、各相タンクへのガス供給量は確保
されるので、変圧器の運転を継続することができる。
When the transformer is operated in such a state, one of the gas coolers 10, for example, as shown in FIG. If the gas cooler 10a of No. 3 fails, N
O. No. 4 spare gas cooler 10b and outer placement tank 4c
The gas sluice valve 11 between them is opened, and NO. By operating the spare gas cooler 10b of No. 4 and closing the gas sluice valve (v5) 11, the gas supply amount to each phase tank is secured, so the operation of the transformer should be continued. You can

【0022】さらに、ガス冷却器10の1台、例えば図
3に示すようにNO.2のガス冷却器10aが故障した
場合には、ガス仕切弁(v6)11を直ちに開状態にし
てNO.4のガス冷却器10bの運転を開始すると共
に、ガス仕切弁(v5)11を閉状態に、ガス仕切弁
(v4)11を開状態にして定常運転時には外側配置タ
ンク4cにガスを供給していたNO.3のガス冷却器1
0aを中央タンク4b側に切換える。さらにガス仕切弁
(v3)11を閉状態にすることにより、各相タンクに
ガス冷却器1台分の絶縁ガスが供給される。
Further, one of the gas coolers 10, for example, as shown in FIG. When the gas cooler 10a of No. 2 fails, the gas sluice valve (v6) 11 is immediately opened and NO. The gas cooler 10b of No. 4 is started, and the gas sluice valve (v5) 11 is closed and the gas sluice valve (v4) 11 is opened to supply gas to the outer tank 4c during steady operation. NO. Gas cooler 1 of 3
0a is switched to the central tank 4b side. Further, by closing the gas sluice valve (v3) 11, the insulating gas for one gas cooler is supplied to each phase tank.

【0023】以上説明したように第1の実施例によれ
ば、2個の隣接したタンクの両方にガスを供給できるガ
ス冷却器を配管で接続すると共に、この配管に仕切弁を
設けることにより、共通配管を使用することなく、1台
の予備用ガス冷却器で全ての常用ガス冷却器の故障に対
応させることができる。
As described above, according to the first embodiment, a gas cooler capable of supplying gas to both of two adjacent tanks is connected by a pipe, and a sluice valve is provided in this pipe. One spare gas cooler can be used to deal with the failure of all the service gas coolers without using common piping.

【0024】図4は本発明によるガス絶縁変圧器の第2
の実施例を示すもので、図1と同一部分には同一符号を
付して示す。第2の実施例では、図4に示すように常用
6台、予備1台のガス冷却器10を横一列に配置して取
付ける構成とするものである。すなわち、合計7台のガ
ス冷却器の内、外側タンク4aに対応させてNO.1,
NO.2のガス冷却器10を配置し、接続配管7により
ガス仕切弁(v1,v2)を介して外側タンク4aに接
続すると共に,外側タンク4aと中央タンク4bとの間
に対応させてNO.3のガス冷却器10を配置し、その
配管を分岐して外側タンク4aと中央タンク4bにガス
仕切弁(v3,v4)11を介して接続配管7によりそ
れぞれ接続する。また、中央タンク4bに対応させてN
O.4のガス冷却器10を配置し、接続配管7によりガ
ス仕切弁(v5)11を介して、中央タンク4bに接続
する。さらに、中央タンク4bと外側タンク4cとの間
に対応させてNO.4のガス冷却器10を配置し、その
配管を分岐して中央タンク4bと外側タンク4cにガス
仕切弁(v6,v7)11を介して接続配管7によりそ
れぞれ接続すると共に、外側タンク4cに対応させてN
O.6,NO.7のガス冷却器10を配置し、接続配管
7によりガス仕切弁(v8,v9)11を介して外側タ
ンク4cに接続する。
FIG. 4 shows a second gas-insulated transformer according to the present invention.
The same parts as those in FIG. 1 are designated by the same reference numerals. In the second embodiment, as shown in FIG. 4, six gas coolers 10 for regular use and one gas cooler 10 for spare are arranged in a horizontal row and attached. That is, of the seven gas coolers in total, the NO. 1,
NO. The gas cooler 10 of No. 2 is arranged, connected to the outer tank 4a through the gas sluice valves (v1, v2) by the connecting pipe 7, and is connected to the outer tank 4a and the central tank 4b by NO. The gas cooler 10 of No. 3 is arranged, the piping is branched, and it connects with the outer tank 4a and the central tank 4b by the connection piping 7 via the gas sluice valves (v3, v4) 11, respectively. In addition, N corresponding to the central tank 4b
O. The gas cooler 10 of No. 4 is arranged and connected to the central tank 4b through the gas sluice valve (v5) 11 by the connecting pipe 7. Further, the NO. 3 is provided so as to correspond between the central tank 4b and the outer tank 4c. No. 4 gas cooler 10 is arranged, the pipe is branched and connected to the central tank 4b and the outer tank 4c via the gas sluice valves (v6, v7) 11 by the connecting pipes 7, respectively, and corresponds to the outer tank 4c. Let me N
O. 6, NO. The gas cooler 10 of No. 7 is arrange | positioned, and it connects with the outer tank 4c through the gas sluice valve (v8, v9) 11 by the connection piping 7.

【0025】このような第2の実施例においても、ガス
冷却器の台数が常用台数が3の倍数であれば、第1の実
施例と同様に対応させることができる。すなわち、いま
NO.7のガス冷却器10を予備とすれば、定常運転で
各相タンク4a〜4cに2台分のガス冷却器10により
絶縁ガスが循環している。このような状態にあるとき、
NO.1のガス冷却器10が故障すると図5に示すよう
にガス仕切弁(v1,v4,v7)11を閉じ、予備の
ガス冷却器10bに対応するガス仕切弁(v9)11を
開くことにより、各相タンク4a〜4cに対して定常運
転時と同様に2台分のガス冷却器の絶縁ガスを供給する
ことができる。
In the second embodiment as well, if the number of gas coolers is a multiple of 3 in common use, it is possible to deal with the same as in the first embodiment. That is, the NO. If the gas cooler 10 of No. 7 is used as a spare, the insulating gas is circulated by the two gas coolers 10 in each of the phase tanks 4a to 4c in the steady operation. When in such a state,
NO. When the gas cooler 10 of No. 1 fails, the gas sluice valves (v1, v4, v7) 11 are closed and the gas sluice valve (v9) 11 corresponding to the spare gas cooler 10b is opened as shown in FIG. Insulating gas for two gas coolers can be supplied to each of the phase tanks 4a to 4c in the same manner as during steady operation.

【0026】図6は本発明によるガス絶縁変圧器の第3
の実施例を示すもので、図13及び図14に示す従来の
構成と同一部分には同一符号を付して示す。第3の実施
例では、図6に示すように4台のガス冷却器を横一列に
配置し、その内1台を予備用ガス冷却器10bとして共
通配管9に接続すると共に、ガス仕切弁(v4,v5,
v6)11をそれぞれ介して配管により各相タンク4
a,4b,4cに接続する。また、3台の常用ガス冷却
器10aを各タンク4a,4b,4cに仕切弁(v1,
v2,v3)11を介して接続配管7により直結する。
FIG. 6 shows a third gas-insulated transformer according to the present invention.
The same parts as those of the conventional configuration shown in FIGS. 13 and 14 are designated by the same reference numerals. In the third embodiment, as shown in FIG. 6, four gas coolers are arranged in a horizontal row and one of them is connected to the common pipe 9 as a spare gas cooler 10b, and a gas gate valve ( v4, v5
v6) Each phase tank 4 by piping through 11
a, 4b, 4c. In addition, three common gas coolers 10a are provided to each tank 4a, 4b, 4c by a gate valve (v1,
Directly connected by the connecting pipe 7 via v2, v3) 11.

【0027】このような構成のガス絶縁変圧器において
は、予備用ガス冷却器10bがガス仕切弁(v4,v
5,v6)11を介して全てのタンクに接続されている
ため、通常運転中は共通配管7に接続された接続配管7
のガス仕切弁(v4,v5,v6)11を全て閉状態に
してある。
In the gas-insulated transformer having such a structure, the backup gas cooler 10b has the gas gate valves (v4, v4).
5, v6) 11 is connected to all tanks, so connection pipe 7 connected to common pipe 7 during normal operation
All the gas gate valves (v4, v5, v6) 11 are closed.

【0028】このような状態で変圧器が運転されている
とき3台のガス冷却器10の1台が故障、例えば図7に
示すようにNO.1のガス冷却器10aが停止したとす
る。この場合には、NO.3の予備用ガス冷却器10b
を運転すると共に、共通配管9とタンク間のガス仕切弁
の内、故障したガス冷却器が接続されていたタンクと共
通配管9との間のガス仕切弁11を開状態にする。故障
したガス冷却器が接続されていたタンクへは予備用ガス
冷却器10bのガスが供給されるようになるため、各相
タンクへのガス供給量は確保され、変圧器の運転を継続
できる。
When the transformer is operated in such a state, one of the three gas coolers 10 fails, for example, as shown in FIG. It is assumed that the gas cooler 10a of No. 1 is stopped. In this case, NO. 3 spare gas cooler 10b
Of the gas sluice valve between the common pipe 9 and the tank, the gas sluice valve 11 between the tank to which the malfunctioning gas cooler is connected and the common pipe 9 is opened. Since the gas of the spare gas cooler 10b is supplied to the tank to which the failed gas cooler is connected, the gas supply amount to each phase tank is secured and the operation of the transformer can be continued.

【0029】以上述べた第3の実施例によれば、1台の
予備用ガス冷却器10bを共通配管9と、ガス仕切弁1
1を設けた配管とを介して各相タンク4a〜4cと接続
したため、共通配管9内にはガス冷却器1台分以上の絶
縁ガスが流れることがないため、共通配管9の大きさは
最小にでき、絶縁ガスの合流や分岐によるガス流の圧力
損失も殆どなく、ガス流による騒音も非常に小さい。ま
た、ガス冷却器10の数も最小にできる。
According to the third embodiment described above, one spare gas cooler 10b is connected to the common pipe 9 and the gas gate valve 1.
Since the phase tanks 4a to 4c are connected to each other through the pipe provided with 1, the size of the common pipe 9 is the minimum because the insulating gas for one gas cooler or more does not flow in the common pipe 9. In addition, there is almost no pressure loss of the gas flow due to the merging or branching of the insulating gas, and the noise due to the gas flow is very small. Also, the number of gas coolers 10 can be minimized.

【0030】図8は本発明によるガス絶縁変圧器の第4
の実施例を示すもので、図13及び図14に示す従来の
構成と同一部分には同一符号を付して示す。第4の実施
例では、図8に示すように5台のガス冷却器を横一列に
配置し、その内4台を常用ガス冷却器10a、1台を予
備用ガス冷却器10bとして取付けた場合である。これ
ら5台のガス冷却器10の内、中央タンク4bとその外
側タンク4a,4cとの間に配置される2台のガス冷却
器10の出入口で配管をそれぞれ分岐し、その一方の分
岐配管を外側タンク4aと中央タンク4bにガス仕切弁
11を介して接続配管7によりそれぞれ接続し、他方の
分岐配管を外側タンク4cと中央タンク4bにガス仕切
弁11を介して接続配管7によりそれぞれ接続する。
FIG. 8 shows a gas insulated transformer according to a fourth embodiment of the present invention.
The same parts as those of the conventional configuration shown in FIGS. 13 and 14 are designated by the same reference numerals. In the fourth embodiment, as shown in FIG. 8, when five gas coolers are arranged in a horizontal row and four of them are installed as a service gas cooler 10a and one as a spare gas cooler 10b. Is. Of these five gas coolers 10, the pipes are respectively branched at the entrances and exits of the two gas coolers 10 arranged between the central tank 4b and the outer tanks 4a and 4c, and one of the branch pipes is The outer tank 4a and the central tank 4b are connected to each other by a connecting pipe 7 via a gas sluice valve 11, and the other branch pipes are connected to the outer tank 4c and the central tank 4b via a gas sluice valve 11, respectively. .

【0031】さらに、外側タンク4a,4cの外側に配
置される残りの3台のガス冷却器10の内、1台のガス
冷却器10の出入口を中間にガス仕切弁11を設けた接
続配管7により共通配管9に接続し、さらにこの共通配
管9を各相タンク4a〜4cに接続配管7によりそれぞ
れ接続する。
Further, of the remaining three gas coolers 10 arranged outside the outer tanks 4a and 4c, a connecting pipe 7 is provided with a gas sluice valve 11 in the middle of the inlet / outlet of one gas cooler 10. To the common pipe 9, and the common pipe 9 is connected to each of the phase tanks 4a to 4c by the connection pipe 7.

【0032】また、残りの1台のガス冷却器10につい
ては出入口で配管を分岐し、その一方は外側タンク4c
へ、もう一方は共通配管9へそれぞれ中間にガス仕切弁
11を設けた接続配管7により接続する。
For the remaining one gas cooler 10, the pipe is branched at the entrance and exit, and one of them is connected to the outer tank 4c.
The other one is connected to the common pipe 9 by a connection pipe 7 provided with a gas sluice valve 11 in the middle.

【0033】このような構成のガス絶縁変圧器におい
て、通常運転時は図8に示すガス仕切弁(v1,v3,
v4,v6)11を開状態とし、ガス仕切弁(v2,v
5,v7,v8)11を閉状態とすることにより、各相
タンクにガス冷却器(1+1/3)台分の絶縁ガスが供
給され、タンク内とガス冷却器内を循環する。
In the gas-insulated transformer having such a structure, during normal operation, the gas gate valves (v1, v3, and v3 shown in FIG. 8 are shown.
(v4, v6) 11 is opened and the gas gate valves (v2, v6)
5, v7, v8) 11 are closed, each phase tank is supplied with the insulating gas for the gas cooler (1 + 1/3) units and circulates in the tank and the gas cooler.

【0034】この状態で変圧器が運転されているとき、
例えば図9に示すようにNO.1のガス冷却器が故障
し、停止したとする。この場合にはNO.5のガス冷却
器と外側タンク4c間のガス仕切弁(v8)11を開い
てNO.5の予備用ガス冷却器を運転すると共にガス仕
切弁(v6)11を閉、ガス仕切弁(v5)11を開、
ガス仕切弁(v3)11を閉、ガス仕切弁(v2)11
を開、ガス仕切弁(v1)11を閉状態とすることで、
各相タンクへのガス供給量は確保されるので、変圧器の
運転を継続でき、故障したガス冷却器の交換、修理が可
能である。
When the transformer is operated in this state,
For example, as shown in FIG. It is assumed that the gas cooler of No. 1 fails and stops. In this case, NO. No. 5 by opening the gas sluice valve (v8) 11 between the gas cooler of No. 5 and the outer tank 4c. 5, the gas sluice valve (v6) 11 is closed, the gas sluice valve (v5) 11 is opened,
Gas sluice valve (v3) 11 is closed, gas sluice valve (v2) 11
Is opened and the gas sluice valve (v1) 11 is closed,
Since the amount of gas supplied to each phase tank is secured, the operation of the transformer can be continued, and the defective gas cooler can be replaced and repaired.

【0035】また、共通配管に接続されるN0.3のガ
ス冷却器が故障した場合には、ガス仕切弁(v7)11
を開、ガス仕切弁(v4)11を閉状態にすることで各
相タンクへのガス供給量は確保できる。
When the N0.3 gas cooler connected to the common pipe fails, the gas gate valve (v7) 11
And the gas sluice valve (v4) 11 is closed to secure the gas supply amount to each phase tank.

【0036】以上述べた第4の実施例によれば、2個の
隣接したタンクの両方にガスを供給できるガス冷却器1
0をガス仕切弁11を設けた配管7で接続した上で、1
台のガス冷却器10の絶縁ガスは共通配管9を通じて各
相タンク4a〜4cの両方に接続されるガス冷却器10
を予備とすることにより、1台の予備用ガス冷却器で全
てのガス冷却器の故障に対応できる。また、共通配管9
には1台分の絶縁ガスしか流れないため、ガスの流量は
少なく、共通配管サイズの増加や騒音の問題も起きな
い。
According to the fourth embodiment described above, the gas cooler 1 capable of supplying gas to both of two adjacent tanks.
0 is connected by a pipe 7 provided with a gas sluice valve 11, and then 1
The insulating gas of the gas cooler 10 of the stand is connected to both of the phase tanks 4a to 4c through the common pipe 9
As a spare, one spare gas cooler can handle all gas cooler failures. Also, common piping 9
Since only one unit of insulating gas flows through, the gas flow rate is low, and there is no increase in common pipe size and noise.

【0037】上記第4の実施例では、4台の常用ガス冷
却器の場合について述べたが、常用台数が(3の倍数+
1)であれば、ガス冷却器台数が増加しても上記実施例
と同様に対応できる。例えば常用ガス冷却器が7台、予
備用ガス冷却器が1台の場合、各相タンクにガス仕切弁
を介して直結されるガス冷却器の台数が上記実施例に対
して1台ずつ増加するだけである。この場合も、ガス冷
却器が故障した場合のガス仕切弁の操作も上記実施例と
同様である。
In the above-mentioned fourth embodiment, the case of four service gas coolers has been described, but the service number is (a multiple of 3 +
In case of 1), even if the number of gas coolers is increased, it can be dealt with in the same manner as in the above embodiment. For example, when the number of service gas coolers is seven and the number of backup gas coolers is one, the number of gas coolers directly connected to each phase tank via the gas sluice valve is increased by one as compared with the above embodiment. Only. Also in this case, the operation of the gas sluice valve when the gas cooler fails is the same as in the above embodiment.

【0038】図10は本発明によるガス絶縁変圧器の第
5の実施例を示すもので、図13及び図14に示す従来
の構成と同一部分には同一符号を付して示す。第5の実
施例では、図10に示すように6台のガス冷却器10を
横一列に配置し、その内5台を常用ガス冷却器10a、
1台を予備用ガス冷却器10bとして取付けた場合であ
る。これら合計6台のガス冷却器10の内、中央タンク
4bとその外側タンク4a,4cとの間に配置される2
台のガス冷却器10の出入口で配管をそれぞれ分岐し、
その一方の分岐配管を外側タンク4aと中央タンク4b
にガス仕切弁11を介して接続配管7によりそれぞれ接
続し、他方の分岐配管を外側タンク4cと中央タンク4
bにガス仕切弁11を介して接続配管7によりそれぞれ
接続する。
FIG. 10 shows a fifth embodiment of the gas-insulated transformer according to the present invention. The same parts as those of the conventional structure shown in FIGS. 13 and 14 are designated by the same reference numerals. In the fifth embodiment, as shown in FIG. 10, six gas coolers 10 are arranged in a horizontal row, and five of them are the regular gas coolers 10a,
This is the case where one unit is mounted as the spare gas cooler 10b. Of the six gas coolers 10 in total, two are arranged between the central tank 4b and the outer tanks 4a and 4c.
The pipes are branched at the entrance and exit of the gas cooler 10 of the stand,
One of the branch pipes is connected to the outer tank 4a and the central tank 4b.
To the outer tank 4c and the central tank 4 respectively.
b through the gas sluice valve 11 by connecting pipes 7, respectively.

【0039】また、残りの4台のガス冷却器10の内の
1台は、外側タンク4aにガス仕切弁11を介して接続
配管7により接続される。さらに、残りの3台のガス冷
却器の内の2台は、出入口をタンク上下部に配設された
共通配管9にガス仕切弁11を設けた接続配管7により
接続され、この共通配管7を各相タンク4a〜4cに接
続配管7によりそれぞれ接続する。
Further, one of the remaining four gas coolers 10 is connected to the outer tank 4a via the gas sluice valve 11 by the connecting pipe 7. Further, two of the remaining three gas coolers are connected at their inlets and outlets by a connecting pipe 7 in which a gas sluice valve 11 is provided in a common pipe 9 arranged in the upper and lower parts of the tank. It connects to each phase tank 4a-4c by the connection piping 7, respectively.

【0040】このような構成のガス絶縁変圧器におい
て、通常運転時は図10に示すガス仕切弁(v1,v
3,v4,v5,v7)11を開状態とし、ガス仕切弁
(v2,v6,v7,v8)11を閉状態とすることに
より、各相タンクに(1+2/3)台分のガス冷却器1
0の絶縁ガスが供給され、タンク内とガス冷却器内を循
環する。
In the gas-insulated transformer having such a structure, during normal operation, the gas gate valves (v1, v1) shown in FIG.
3, v4, v5, v7) 11 are opened and the gas sluice valves (v2, v6, v7, v8) 11 are closed, so that each phase tank has (1 + 2/3) gas coolers. 1
Zero insulating gas is supplied and circulates in the tank and the gas cooler.

【0041】この状態で変圧器が運転されているとき、
1台の常用ガス冷却器が故障した場合のガス仕切弁の開
閉操作は前述した第4の実施例と全く同様である。した
がって、どのガス冷却器が停止しても予備用ガス冷却器
に切換えて故障前と同じ流量の絶縁ガスを各相タンクに
供給でき、故障したガス冷却器の交換、修理も可能であ
る。
When the transformer is operated in this state,
The operation of opening and closing the gas sluice valve when one of the service gas coolers fails is exactly the same as in the fourth embodiment described above. Therefore, no matter which gas cooler is stopped, the backup gas cooler can be switched to supply the insulating gas at the same flow rate as before the failure to each phase tank, and the failed gas cooler can be replaced or repaired.

【0042】以上述べた第5の実施例によれば、2個の
隣接したタンクの両方にガスを供給できるガス冷却器を
ガス仕切弁を設けた配管で接続した上で、2台のガス冷
却器の絶縁ガスは共通配管を通じて各相タンクに供給す
ると共に、共通配管と外側タンクの両方に接続されるガ
ス冷却器を予備とし、ガス冷却器が故障した場合にはガ
ス仕切弁を切換えることにより1台の予備用ガス冷却器
で全てのガス冷却器の故障に対応できる。また、共通配
管には2台分の絶縁ガスが分流して流れるため、共通配
管内部のガスの流量は少なく、共通配管サイズの増加や
騒音の問題も起きない。
According to the fifth embodiment described above, a gas cooler capable of supplying gas to both of two adjacent tanks is connected by a pipe provided with a gas sluice valve, and then two gas coolers are connected. By supplying the insulating gas of the reactor to each phase tank through a common pipe, and having a spare gas cooler connected to both the common pipe and the outer tank, and switching the gas gate valve when the gas cooler fails. One spare gas cooler can handle all gas cooler failures. In addition, since the insulating gas for two units flows in the common pipe in a branched manner, the gas flow rate inside the common pipe is small, and the problem of increase in the size of the common pipe and noise does not occur.

【0043】上記第5の実施例では、5台の常用ガス冷
却器の場合について述べたが、常用台数が(3の倍数+
2)であれば、ガス冷却器台数が増加しても上記実施例
と同様に対応できる。例えば図11に示すように常用ガ
ス冷却器が8台、予備用ガス冷却器が1台の場合、各相
タンクにガス仕切弁を介して直結されるガス冷却器の台
数が上記実施例に対して1台ずつ増加するだけである。
この場合も、ガス冷却器が故障した場合のガス仕切弁の
操作も上記実施例と同様である。
In the above fifth embodiment, the case where five service gas coolers are used has been described, but the service number is (a multiple of 3 +
In case of 2), even if the number of gas coolers is increased, it can be dealt with in the same manner as in the above embodiment. For example, as shown in FIG. 11, when there are eight service gas coolers and one backup gas cooler, the number of gas coolers directly connected to each phase tank via a gas sluice valve is different from the above embodiment. It only increases by one.
Also in this case, the operation of the gas sluice valve when the gas cooler fails is the same as in the above embodiment.

【0044】なお、前述した各実施例では各ガス冷却器
10と各相タンク4a〜4cとの間を結ぶ配管に設けら
れるガス仕切弁11としては、電動弁等のように電気的
に遠隔操作により開閉可能な弁を用いてもよい。
In each of the above-described embodiments, the gas sluice valve 11 provided in the pipe connecting the gas coolers 10 and the phase tanks 4a to 4c is electrically remotely operated like an electrically operated valve. You may use the valve which can be opened and closed by.

【0045】[0045]

【発明の効果】以上述べたように本発明によれば、共通
配管をなくすか、少量の絶縁ガスを流すための小さい共
通配管でよい上、予備用ガス冷却器の台数も最小にする
ことができるので、圧力損失の増加による循環ガス量の
低下、あるいは大きな共通配管による設置スペースの増
加、ガス流による騒音増加、予備用ガス冷却器の台数増
加によるコストの増加を解消することができるガス絶縁
変圧器を提供できる。
As described above, according to the present invention, the common pipe may be eliminated or a small common pipe for flowing a small amount of insulating gas may be used, and the number of spare gas coolers may be minimized. As a result, the amount of circulating gas decreases due to increased pressure loss, the installation space increases due to large common piping, noise increases due to gas flow, and the cost increase due to the increase in the number of backup gas coolers can be eliminated. Can provide a transformer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるガス絶縁変圧器の第1の実施例を
示す冷却系の構成図。
FIG. 1 is a configuration diagram of a cooling system showing a first embodiment of a gas insulation transformer according to the present invention.

【図2】同実施例において、NO.3のガス冷却器が故
障したときのガス仕切弁の開閉状態を説明するための
図。
FIG. 2 is a diagram showing a case where NO. The figure for demonstrating the open / close state of a gas sluice valve when the gas cooler of 3 is out of order.

【図3】同実施例において、NO.2のガス冷却器が故
障したときのガス仕切弁の開閉状態を説明するための
図。
FIG. 3 is a diagram showing the same embodiment of NO. The figure for demonstrating the open / close state of a gas sluice valve when the gas cooler of 2 breaks down.

【図4】本発明によるガス絶縁変圧器の第2の実施例を
示す冷却系の構成図。
FIG. 4 is a configuration diagram of a cooling system showing a second embodiment of the gas insulation transformer according to the present invention.

【図5】同実施例において、NO.1のガス冷却器が故
障したときのガス仕切弁の開閉状態を説明するための
図。
FIG. 5 is a graph showing the results of NO. The figure for demonstrating the open / close state of a gas sluice valve when the gas cooler of 1 fails.

【図6】本発明によるガス絶縁変圧器の第3の実施例を
示す冷却系の構成図。
FIG. 6 is a configuration diagram of a cooling system showing a third embodiment of the gas insulated transformer according to the present invention.

【図7】同実施例において、NO.1のガス冷却器が故
障したときのガス仕切弁の開閉状態を説明するための
図。
FIG. 7 is a graph showing the results of NO. The figure for demonstrating the open / close state of a gas sluice valve when the gas cooler of 1 fails.

【図8】本発明によるガス絶縁変圧器の第4の実施例を
示す冷却系の構成図。
FIG. 8 is a configuration diagram of a cooling system showing a fourth embodiment of the gas insulation transformer according to the present invention.

【図9】同実施例において、NO.1のガス冷却器が故
障したときのガス仕切弁の開閉状態を説明するための
図。
9 is a diagram showing the same embodiment of NO. The figure for demonstrating the open / close state of a gas sluice valve when the gas cooler of 1 fails.

【図10】本発明によるガス絶縁変圧器の第5の実施例
を示す冷却系の構成図。
FIG. 10 is a configuration diagram of a cooling system showing a fifth embodiment of the gas insulation transformer according to the present invention.

【図11】本発明によるガス絶縁変圧器の第6の実施例
を示す冷却系の構成図。
FIG. 11 is a configuration diagram of a cooling system showing a sixth embodiment of the gas insulated transformer according to the present invention.

【図12】ガス絶縁変圧器の中身及び外部冷却器の構成
を示す概略断面図。
FIG. 12 is a schematic sectional view showing the contents of a gas insulated transformer and the configuration of an external cooler.

【図13】従来のガス絶縁変圧器において、タンクとガ
ス冷却器とを接続する一例を示す冷却系の構成図。
FIG. 13 is a configuration diagram of a cooling system showing an example of connecting a tank and a gas cooler in a conventional gas-insulated transformer.

【図14】同じく従来のガス絶縁変圧器において、タン
クとガス冷却器とを接続する他の例を示す冷却系の構成
図。
FIG. 14 is a configuration diagram of a cooling system showing another example of connecting the tank and the gas cooler in the conventional gas-insulated transformer.

【符号の説明】[Explanation of symbols]

1……鉄心、2……巻線、3……絶縁ガス、4(4a,
4b,4c)……タンク、5……熱交換器、6……ガス
ブロア、7……接続配管、8……絶縁ダクト、9……共
通配管、10(10a,10b)……ガス冷却器、11
……ガス仕切弁。
1 ... iron core, 2 ... winding, 3 ... insulating gas, 4 (4a,
4b, 4c) ... Tank, 5 ... Heat exchanger, 6 ... Gas blower, 7 ... Connection pipe, 8 ... Insulation duct, 9 ... Common pipe, 10 (10a, 10b) ... Gas cooler, 11
...... Gas gate valve.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鉄心に巻線を巻装した変圧器中身を絶縁
ガスと共に収納したタンクを1相毎に3相分構成し、こ
れらのタンクを3相各相に対応させて横並びに配設して
なる3相ガス絶縁変圧器において、絶縁ガスを冷却する
ための3n台(nは自然数)のガス冷却器を常用とし、
1台のガス冷却器を予備用としてそれぞれ配設し、これ
ら合計(3n+1)台のうち2台のガス冷却器の出入口
で配管をそれぞれ分岐し、その一方の分岐配管を中間に
配置される中央タンクとその一側方に配置される第1の
外側タンクに仕切弁を介してそれぞれ配管により接続
し、他方の分岐配管を中央タンクとその他側方に配置さ
れる第2の外側タンクに仕切弁を介してそれぞれ配管に
より接続し、残りの(3n−1)台のガス冷却器は第1
及び第2の外側タンクにn台のガス冷却器の出入口をガ
ス仕切弁をそれぞれ介して配管により接続すると共に、
中央タンクに(n−1)台のガス冷却器の出入口をガス
仕切弁を介して配管により接続して冷却系を構成し、変
圧器運転時にはこれら全てのガス冷却器の何ずれか1台
を予備用とし、各相タンクにはそれぞれn台のガス冷却
器のガスが循環するように各ガス仕切弁を開または閉の
状態にして運転することを特徴とするガス絶縁変圧器。
1. A tank in which the contents of a transformer, in which a winding is wound around an iron core, is housed together with an insulating gas is constituted by three phases for each phase, and these tanks are arranged side by side corresponding to each of the three phases. In the three-phase gas insulation transformer, the 3n gas coolers (n is a natural number) for cooling the insulating gas are commonly used,
One gas cooler is arranged as a spare, and two of these (3n + 1) gas coolers have branch pipes at the entrances and exits of the gas cooler, and one branch pipe is arranged in the middle. The tank and the first outer tank arranged on one side of the tank are respectively connected by pipes through a gate valve, and the other branch pipe is connected to the central tank and a second outer tank arranged on the other side by a gate valve. And the remaining (3n-1) gas coolers are connected to the first
And connecting the inlets and outlets of the n gas coolers to the second outer tank through the gas sluice valves, respectively, and
A cooling system is constructed by connecting the inlet and outlet of (n-1) gas coolers to the central tank through a gas sluice valve to form a cooling system. A gas-insulated transformer for spare use, which is operated by opening or closing each gas sluice valve so that gas of n gas coolers circulates in each phase tank.
【請求項2】 鉄心に巻線を巻装した変圧器中身を絶縁
ガスと共に収納したタンクを1相毎に3相分構成し、こ
れらのタンクを3相各相に対応させて横並びに配設して
なる3相ガス絶縁変圧器において、絶縁ガスを冷却する
ための3n台(nは自然数)のガス冷却器を常用とし、
1台のガス冷却器を予備用としてそれぞれ配設し、予備
用のガス冷却器の出入口を共通配管に接続し、さらにこ
の共通配管と各相タンクとをガス仕切弁を介して配管に
より接続し、残りの3n台のガス冷却器の出入口を各相
タンクにそれぞれn台ずつガス仕切弁を介してそれぞれ
配管により接続して冷却系を構成し、通常運転時には共
通配管と各相タンクとの接続配管の途中に設けられたガ
ス仕切弁を閉の状態にすると共に、各相タンクに直結さ
れたガス冷却器側のガス仕切弁を全て開の状態としてそ
れぞれのタンクにn台のガス冷却器のガスが循環するよ
うにして運転することを特徴とするガス絶縁変圧器。
2. A tank in which the contents of a transformer, in which a winding is wound around an iron core, is housed together with an insulating gas is constituted by three phases for each phase, and these tanks are arranged side by side corresponding to each of the three phases. In the three-phase gas insulation transformer, the 3n gas coolers (n is a natural number) for cooling the insulating gas are commonly used,
One gas cooler is arranged for each spare, the inlet and outlet of the spare gas cooler are connected to a common pipe, and this common pipe and each phase tank are connected by a pipe through a gas gate valve. , The remaining 3n gas cooler inlets / outlets are connected to each phase tank by n pipes each via a gas sluice valve to form a cooling system, and a common pipe is connected to each phase tank during normal operation. The gas sluice valve provided in the middle of the piping is closed, and all the gas sluice valves on the gas cooler side directly connected to each phase tank are opened, and n gas coolers for each tank are installed. A gas-insulated transformer that operates by circulating gas.
【請求項3】 鉄心に巻線を巻装した変圧器中身を絶縁
ガスと共に収納したタンクを1相毎に3相分構成し、こ
れらのタンクを3相各相に対応させて横並びに配設して
なる3相ガス絶縁変圧器において、絶縁ガスを冷却する
ためのガス冷却器を常用として(3n+1)台(nは自
然数)、予備用として1台それぞれそれぞれ配設し、こ
れら合計(3n+2)台のうち2台のガス冷却器の出入
口で配管をそれぞれ分岐し、その一方の分岐配管を中間
に配置される中央タンクとその一側方に配置される第1
の外側タンクに仕切弁を介してそれぞれ配管により接続
し、他方の分岐配管を中央タンクとその他側方に配置さ
れる第2の外側タンクに仕切弁を介してそれぞれ配管に
より接続し、残りの3n台のガス冷却器は第1及び第2
の外側タンクの一方にn台のガス冷却器の出入口をガス
仕切弁をそれぞれ介して配管により接続すると共に、他
方の外側タンクと中央タンクにそれぞれ(n−1)台の
ガス冷却器の出入口をガス仕切弁を介して配管により接
続し、残りの2台のガス冷却器の出入口を配管によりガ
ス仕切弁を介して共通配管に接続し、さらに共通配管と
各相タンクとを配管で接続して冷却系を構成し、共通配
管に接続した2台のガス冷却器の内の1台は予備用と
し、出入口部から配管を分岐してその一方を共通配管
に、もう一方は(n−1)台のガス冷却器が直結された
外側タンクにガス仕切弁を介して配管により接続し、変
圧器運転時には各相タンクにそれぞれ(n+1/3)台
のガス冷却器のガスが循環するように各ガス仕切弁を開
または閉の状態にして運転することを特徴とするガス絶
縁変圧器。
3. A tank in which the contents of a transformer, in which a winding is wound around an iron core, is housed together with an insulating gas is constituted by three phases for each phase, and these tanks are arranged side by side corresponding to each of the three phases. In the three-phase gas insulation transformer, the gas cooler for cooling the insulating gas is normally (3n + 1) units (n is a natural number), and one is provided as a spare, respectively, and a total of these (3n + 2) The pipes are branched at the entrances and exits of the two gas coolers of the two units, and one of the branch pipes is arranged in the middle of the central tank and one side of the central tank.
To the outer tank of each of the two branch pipes via a sluice valve, and the other of the branch pipes is connected to a central tank and a second outer tank disposed on the other side of the stub via a sluice valve, and the remaining 3n The gas cooler of the stand is the first and second
The inlets and outlets of n gas coolers are connected to one of the outer tanks of the above by piping through gas sluice valves, and the inlet and outlet of (n-1) gas coolers are connected to the other outer tank and the central tank, respectively. Connect the remaining two gas coolers to the common pipe via the gas sluice valve, and connect the common pipe to each phase tank with the pipe. One of the two gas coolers that constitutes the cooling system and is connected to the common pipe is used as a spare, and the pipe is branched from the inlet / outlet part, one of which is the common pipe, and the other is (n-1) Each gas cooler is directly connected to the outer tank by a pipe through a gas sluice valve, and each of the (n + 1/3) gas coolers circulates in each phase tank during transformer operation. With the gas gate valve open or closed Gas insulated transformer, characterized by rolling.
【請求項4】 鉄心に巻線を巻装した変圧器中身を絶縁
ガスと共に収納したタンクを1相毎に3相分構成し、こ
れらのタンクを3相各相に対応させて横並びに配設して
なる3相ガス絶縁変圧器において、絶縁ガスを冷却する
ためのガス冷却器を常用として(3n+2)台(nは自
然数)、予備用として1台それぞれ配設し、これら合計
(3n+3)台のうち2台のガス冷却器をその出入口で
配管をそれぞれ分岐し、その一方の分岐配管を中間に配
置される中央タンクとその一側方に配置される第1の外
側タンクに仕切弁を介してそれぞれ配管により接続し、
他方の分岐配管を中央タンクとその他側方に配置される
第2の外側タンクに仕切弁を介してそれぞれ配管により
接続し、残りの(3n+1)台のガス冷却器は第1及び
第2の外側タンクの一方にn台のガス冷却器の出入口を
ガス仕切弁をそれぞれ介して配管により接続すると共
に、他方の外側タンクと中央タンクにそれぞれ(n−
1)台のガス冷却器の出入口をガス仕切弁を介して配管
により接続し、残りの3台のガス冷却器の出入口を配管
によりガス仕切弁を介して共通配管に接続し、さらに共
通配管と各相タンクとを配管で接続して冷却系を構成
し、共通配管に接続した3台のガス冷却器の内の1台は
予備用とし、出入口部から配管を分岐してその一方を共
通配管に、もう一方は(n−1)台のガス冷却器が直結
された外側タンクにガス仕切弁を介して配管により接続
し、変圧器運転時には各相タンクにそれぞれ(n+2/
3)台のガス冷却器のガスが循環するように各ガス仕切
弁を開または閉の状態にして運転することを特徴とする
ガス絶縁変圧器。
4. A tank containing the contents of a transformer in which a winding is wound around an iron core together with an insulating gas is constructed for each phase for three phases, and these tanks are arranged side by side corresponding to each of the three phases. In the three-phase gas insulation transformer formed as described above, a gas cooler for cooling the insulating gas is regularly (3n + 2) units (n is a natural number), and one is provided as a spare unit, for a total of (3n + 3) units. Two of the gas coolers are branched at their inlets and outlets, and one of the branched pipes is connected to a central tank arranged in the middle and a first outer tank arranged on one side thereof through a sluice valve. Connection by piping,
The other branch pipe is connected to the central tank and the second outer tank located on the other side by a pipe via a sluice valve, and the remaining (3n + 1) gas coolers are the first and second outer pipes. The inlets and outlets of n gas coolers are connected to one of the tanks by piping through gas sluice valves, and the other outer tank and the central tank are respectively connected to (n-
1) Connect the inlets and outlets of the gas coolers of the units through a gas sluice valve by piping, and connect the inlets and outlets of the remaining three gas chillers by pipes through a gas sluice valve to a common pipe A cooling system is configured by connecting each phase tank with a pipe, and one of the three gas coolers connected to the common pipe is a spare, and the pipe is branched from the inlet / outlet part and one of them is a common pipe. On the other hand, the other is connected to the outer tank to which (n-1) gas coolers are directly connected by a pipe through a gas sluice valve, and (n + 2 /
3) A gas-insulated transformer which is operated by opening or closing each gas sluice valve so that the gas of the gas cooler of the stand circulates.
JP19352393A 1993-08-04 1993-08-04 Gas insulated transformer Expired - Fee Related JP3154874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19352393A JP3154874B2 (en) 1993-08-04 1993-08-04 Gas insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19352393A JP3154874B2 (en) 1993-08-04 1993-08-04 Gas insulated transformer

Publications (2)

Publication Number Publication Date
JPH0750216A true JPH0750216A (en) 1995-02-21
JP3154874B2 JP3154874B2 (en) 2001-04-09

Family

ID=16309493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19352393A Expired - Fee Related JP3154874B2 (en) 1993-08-04 1993-08-04 Gas insulated transformer

Country Status (1)

Country Link
JP (1) JP3154874B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195400B2 (en) 2000-01-06 2007-03-27 Fujikura Ltd. Optical connector and assembling method for the same
JP2011200039A (en) * 2010-03-19 2011-10-06 Toshiba Plant Systems & Services Corp Cooling system for transformation facility of underground substation, cooling method for transformation facility of underground substation, and transformation facility having the cooling system for transformation facility of underground substation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748083B (en) * 2013-12-30 2019-03-26 展晶科技(深圳)有限公司 LED lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195400B2 (en) 2000-01-06 2007-03-27 Fujikura Ltd. Optical connector and assembling method for the same
JP2011200039A (en) * 2010-03-19 2011-10-06 Toshiba Plant Systems & Services Corp Cooling system for transformation facility of underground substation, cooling method for transformation facility of underground substation, and transformation facility having the cooling system for transformation facility of underground substation

Also Published As

Publication number Publication date
JP3154874B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
CN202310411U (en) Container based on data center
US20070188282A1 (en) Supplementary transformer cooling in a reactive power compensation system
US20060262465A1 (en) Power-station installation
KR101057246B1 (en) Superconducting cable operation method and superconducting cable system
JP3154874B2 (en) Gas insulated transformer
US5669228A (en) System for utilizing exhaust heat of stationary induction apparatus
JPH1012461A (en) Gas stationary induction electric apparatus
JPH07192928A (en) Transformer
JP3184431B2 (en) Gas insulated stationary induction cooler
JPH10106844A (en) Stationary induction electrical equipment
JP2001102226A (en) Gas-insulated stationary induction apparatus
JPH08138946A (en) Gas-insulated static induction equipment
KR100833691B1 (en) Power supply system and method by distributed switching system
JP3516412B2 (en) Gas insulated stationary induction device
JPH0869921A (en) Cooling device for gas insulated stationary induction electric equipment
JPH0218907A (en) Gas-insulated transformer
Jerome Cable pressurizing systems
JPS62244114A (en) Foil-wound transformer
JP2002217039A (en) Electrical equipment system containing insulation medium
Lane et al. Selection, Design, and Operation of Power Transformers on American Gas and Electric Company System
JPS60183710A (en) Oil-immersed electric apparatus
JPS58124217A (en) Oil-immersed multisplit stationary induction apparatus
Lane et al. Selection, design, and operation of power transformers
Blanco et al. The cryogenic system for the LHC Test String 2: design, commissioning and operation
JPH08203743A (en) Gas-insulated transformer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees