JPH0750188B2 - Self-actuated reactor controller - Google Patents

Self-actuated reactor controller

Info

Publication number
JPH0750188B2
JPH0750188B2 JP1103067A JP10306789A JPH0750188B2 JP H0750188 B2 JPH0750188 B2 JP H0750188B2 JP 1103067 A JP1103067 A JP 1103067A JP 10306789 A JP10306789 A JP 10306789A JP H0750188 B2 JPH0750188 B2 JP H0750188B2
Authority
JP
Japan
Prior art keywords
chamber
boiling
cylindrical chamber
temperature
neutron absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1103067A
Other languages
Japanese (ja)
Other versions
JPH02281189A (en
Inventor
斎藤  誠
稔 軍司
Original Assignee
動力炉・核燃料開発事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 動力炉・核燃料開発事業団 filed Critical 動力炉・核燃料開発事業団
Priority to JP1103067A priority Critical patent/JPH0750188B2/en
Publication of JPH02281189A publication Critical patent/JPH02281189A/en
Publication of JPH0750188B2 publication Critical patent/JPH0750188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、液体の沸騰に伴う急激な体積膨脹により液体
中性子吸収材を炉心内に導入し、また該液体の液化に伴
う急激な体積収縮により液状中性子吸収材を炉心外に排
出して、原子炉の出力を調整または停止させるようにし
た自己作動型原子炉制御装置に関するものである。
The present invention introduces the liquid neutron absorber into the core by the rapid volume expansion accompanied by boiling of the liquid, and also discharges the liquid neutron absorber to the outside of the core by the rapid volume contraction accompanying the liquefaction of the liquid, atomic The present invention relates to a self-operating nuclear reactor control device that adjusts or shuts down the power output of a reactor.

【従来の技術】[Prior art]

従来、原子炉の出力調整あるいは停止は制御棒を挿入し
たり引き抜いたりして行っている。このため制御棒の位
置は外部で常に制御する必要があり、従って制御棒駆動
装置といった制御系の故障や御動作等によって炉の制御
が困難となる可能性があったほか、地震などによって制
御棒案内管の位置ずれや湾曲等を生じて制御棒の挿入が
困難になる可能性があった。 また、バックアップとしてスクラム専用の炉停止機構の
一つに一定の温度で自動的に作動するよう設定された自
己作動型炉停止機構があるが、炉のゆらぎ等により温度
が瞬間的且つ一時的に設定値を越える場合でも作動する
危険があり、一旦作動すると制御棒が落下して炉を停止
させるので、運転に著しい支障をきたすおそれがあっ
た。
Conventionally, the power output of a nuclear reactor is adjusted or stopped by inserting or pulling out control rods. For this reason, it is necessary to always control the position of the control rod externally.Therefore, there is a possibility that the control of the furnace may be difficult due to the failure or operation of the control system such as the control rod drive device, and the control rod may be damaged due to an earthquake. There is a possibility that the guide rod may be displaced or bent, which makes it difficult to insert the control rod. Also, as a backup, there is a self-operating type furnace stop mechanism that is set to automatically operate at a constant temperature as one of the furnace stop mechanisms dedicated to scrum, but the temperature is momentary and temporary due to fluctuations in the furnace. Even if the value exceeds the set value, there is a risk of activation, and once activated, the control rod will fall and stop the furnace, which may cause a significant hindrance to operation.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

本発明は、上記した制御棒による出力調整・停止装置に
伴う欠点に鑑み、制御棒によらず、しかも外部制御を必
要としない自己作動型の原子炉制御装置たらしめること
によって、出力調整は勿論、スクラム専用の自己作動型
炉停止機構として用いる場合でもスクラム失敗の可能性
を低減せしめ、誤動作による運転への悪影響を防止でき
るようにすることを目的としてなされたものである。
In view of the drawbacks associated with the output adjusting / stopping device using the control rods described above, the present invention is not dependent on the control rods, and by using a self-actuated reactor control device that does not require external control, the output adjustment is of course performed. The purpose of the present invention is to reduce the possibility of scrum failure even when used as a self-actuated reactor shutdown mechanism dedicated to scrum, and to prevent adverse effects on operation due to malfunction.

【課題を解決するための手段】[Means for Solving the Problems]

上記の目的を達成するため、本発明にあっては、炉の定
常運転温度より若干高い沸騰点を有する搬送用物質と、
炉の定常運転状態での温度では液体であって沸騰点は前
記搬送用物質のそれより十分高い液状中性子吸収体とを
収納した沸騰−液化用チャンバを燃料集合体の冷却材出
口に近接して配設し、複数の燃料集合体により囲繞され
る炉心内位置に筒状チャバを配設し、上記沸騰−液化用
チャンバと筒状チャバとは沸騰−液化用チャンバの底部
に取付けた移動管を上記筒状チャンバ内に挿入して連結
したものである。 上記した筒状チャンバは密閉式とし、その筒状チャンバ
に膨脹吸収用チャンバを連設するとともに、筒状チャン
バと膨脹吸収用チャンバを連通させる管を設け、内部に
不活性ガスを封入する。上記した膨張吸収用チャンバ設
置場所の一例としては筒状チャンバの下方がある。
In order to achieve the above object, in the present invention, a carrier material having a boiling point slightly higher than the steady operating temperature of the furnace,
A boiling-liquefying chamber containing a liquid neutron absorber that is liquid at a temperature in a steady state of operation of the furnace and has a boiling point sufficiently higher than that of the carrier substance is provided close to the coolant outlet of the fuel assembly. The tubular chabah is disposed at a position in the core surrounded by a plurality of fuel assemblies, and the boiling-liquefying chamber and the tubular chabah are a boiling-liquefying moving tube attached to the bottom of the chamber. It is inserted and connected in the cylindrical chamber. The above-mentioned tubular chamber is of a hermetically sealed type, the expansion chamber is connected to the tubular chamber, and a pipe is provided to connect the tubular chamber to the expansion chamber, and an inert gas is sealed inside. An example of the installation location of the expansion / absorption chamber is below the cylindrical chamber.

【作 用】[Work]

高温冷却材による加熱によって沸騰−液化用チャンバ内
の搬送用物質が沸騰し、体積を膨脹するから、沸騰−液
化用チャンバ内の液状中性子吸収体は移動管を通って筒
状チャンバに導入される。筒状チャンバに導入された液
状中性子吸収体は核反応を制御する。この核反応の制御
により高温冷却材の温度が下ると、沸騰−液化用チャン
バ内の搬送用物質は液化し、体積を収縮するから、筒状
チャンバ内の液状中性子吸収体は移動管を通って沸騰−
液化用チャンバに戻される。そこでまた核反応は活発化
する。 筒状チャンバが密閉式であっても、膨脹吸収用チャンバ
と連通させて圧力の緩衡をできるようにしておくと、筒
状チャンバの圧力が増大して沸騰−液化用チャンバから
筒状チャンバへの液状中性子吸収体の送出が可能で、こ
の場合の液状中性子吸収体の送出量は外環境の圧力の影
響を受けず、常に環境温度でのみ送出量が決まることに
なるから、炉の制御には適している。
Since the carrier substance in the boiling-liquefying chamber is boiled and expands in volume by heating with the high-temperature coolant, the liquid neutron absorber in the boiling-liquefying chamber is introduced into the cylindrical chamber through the moving pipe. . The liquid neutron absorber introduced into the cylindrical chamber controls the nuclear reaction. When the temperature of the high temperature coolant is lowered by the control of this nuclear reaction, the carrier substance in the boiling-liquefying chamber is liquefied and the volume is contracted, so that the liquid neutron absorber in the cylindrical chamber passes through the moving tube. Boiling-
It is returned to the liquefaction chamber. There, the nuclear reaction becomes active again. Even if the cylindrical chamber is a closed type, if the expansion chamber is communicated with the expansion chamber so that the pressure can be balanced, the pressure in the cylindrical chamber increases and the boiling-liquefying chamber moves to the cylindrical chamber. It is possible to deliver the liquid neutron absorber of, and the delivery amount of the liquid neutron absorber in this case is not affected by the pressure of the external environment, and the delivery amount is always determined only by the environmental temperature. Is suitable.

【実施例】【Example】

本発明の第1実施例を示した第1図AからCにおいて、
10は燃料集合体であり、格子状の斜線でもって核燃料11
の装荷位置を現している。Na等の冷却材は、矢印で示し
たように、燃料集合体10下方の冷却材入口から送り込ま
れ、高温になって燃料集合体10上端の冷却材出口から出
て行く。この冷却材出口に近接し、高温冷却材に接触す
る炉心上部位置に、沸騰−液化用チャンバ1が設置され
ている。沸騰−液化用チャンバ1内には、炉の定常運転
温度より若干高い沸騰点Tvapを有する搬送用物質aと、
中性子吸収能を有する液状中性子吸収体bが収納されて
いる。液状中性子吸収体bは炉の定常運転状態での温度
では液体であって、沸騰点は搬送用物質aのそれより十
分高いものとする。一例を示すと、高速炉の場合の搬送
用物質aは、Cs(沸点637℃)、Rb(沸点686℃)があ
り、液状中性子吸収体bとしてはB4Cの微粒子を含むK
(沸点756℃)、Na(沸点882℃)、Li(沸点1342℃)が
ある。また軽水炉の場合の搬送用物質aはジフェニール
・エーテル(沸点257℃)があり、液状中性子吸収体b
としてはB4Cの微粒子を含むジエチル・アミン(沸点320
℃)がある。 沸騰−液化用チャンバ1の底部には連絡管3が取付けら
れている。この連絡管3は、従来の制御棒案内管内乃至
はその位置に設置された複数の燃料集合体10により囲繞
されている筒状チャンバ2の下部近くまで挿入される。
筒状チャンバ2の上端に連通管4を取付けていて、筒状
チャンバ2の内部を炉内心ガス空間に開放している。 上記の構成としたときの動作説明をすると、定常運転温
度では搬送用物質aの沸点Tvapの方が高いので、搬送用
物質aは液体または固体の状態である。この状態では、
連通管4を介して筒状チャンバ2内に加わる炉心内に充
填されたアルゴン等の不活性ガス圧力によって、液状中
性子吸収体bは、第1図Aに示すように、沸騰−液化用
チャンバ1内にあり、核燃料11は液状中性子吸収体bの
影響を受けない。このため炉は核分裂反応を持続する。
ところが炉の核反応が高まり、燃料集合体10出口からの
冷却材温度が上昇し、やがて搬送用物質aの沸騰点Tvap
とほぼ等しいかまたはこれを越えると、搬送用物質aが
気化して急激に体積を膨脹し、このため沸騰−液化用チ
ャンバ1内の圧力が急上昇して液状中性子吸収bを筒状
チャンバ2へ圧送する。こうして炉の反応は筒状チャン
バ2内の液状中性子吸収体bによって抑制されることに
なる。この状態を第1図Bに示す。搬送用物質aの全て
が気化した第1図Cの状態で、筒状チャンバ2内の液状
中性子吸収体bは核燃料11装荷部分の高さまで充填され
ている。 筒状チャンバ2内の液状中性子吸収体bにより核反応が
抑制されて、燃料集合体10の冷却材出口からの冷却材温
度が搬送用物質aの液化点を下回ると、搬送用物質aは
液化し、沸騰−液化用チャンバ1内の圧力が急激に低下
するので、筒状チャンバ2内の液状中性子吸収体bは沸
騰−液化用チャンバ1に戻され、その結果、炉の核反応
は再び活発になる。 上記した搬送用物質aの飽和蒸気圧が沸騰点で急激に変
化するものであると、作動の応答性能に勝れスクラムに
は有利であるが、出力調整には適さず、炉の出力が振動
することになる。反対に搬送用物質aの飽和蒸気圧が沸
騰点近傍で比較的緩やかに変化するものであると、炉の
出力変動を小さくすることができて出力調整も可能とな
るが、炉の急激な温度上昇に対しては応答が遅くなって
スクラム機能は低下する。従って原子炉の出力調整が、
それともスクラム専用かの用途別によって適切な搬送用
物質aを選択する必要がある。 第1図AからCは、連通管4を介して筒状チャンバ2を
炉心内ガス空間に開放したものであったが、本発明は決
してこれに限定されるものではなく、筒状チャンバ2を
密閉式とすることもできる。筒状チャンバ2を解放式と
した場合の第1図AからCに相当する、筒状チャンバ2
密閉式の場合のものを第2図AからCに示す。筒状チャ
ンバ2の下方には膨脹吸収用チャンバ5が連設され、筒
状チャンバ2と膨脹吸収用チャンバ5とは管6によって
連通させている。また内部にはアルゴン等の不活性ガス
を封入している。こうすると筒状チャンバ2の内圧が高
くなろうとしても管6を通って膨脹吸収用チャンバ5に
逃げ圧力を緩和するから、液状中性子吸収体bの受入に
支障はない。尚、管6の高さは核燃料11装荷部分の高さ
よりも高くして、膨脹吸収用チャンバ5内に液状中性子
吸収体bを入れないようにする。 第2図Aのように、液状中性子吸収体bを沸騰−液化用
チャンバ1に保持できるには、筒状チャンバ2および膨
脹吸収用チャンバ5の体積VB,C内に封中されたアルゴ
ン(モル数nAR、温度TB,C)の圧力PB,Cが液状中性子
吸収体b(密度ρ)の水頭hによる圧力と釣合うように
すればよい。そのとき、関係式 PB,C・VB,C=nAR・R・TB,CB,C=h・ρ が成立するから、 nAR=h・ρ・VB,C/R・TB,Cモルのアルゴンを封入す
ればよい。VB,C,hの値はチャンバ形状により決まる。 また第2図Cのように、液状中性子吸収体bを筒状チャ
ンバ2に保持するには、沸騰−液化用チャンバ1におけ
る搬送用物質a(モル数na、温度TB,C)の気化に伴う
内圧が、液状中性子吸収体bの移動による筒状チャンバ
2(体積VB)および膨脹吸収用チャンバ5(体積VC)の
内圧上昇と釣合うようにすればよい。移動する液状中性
子吸収体bの体積をVb,搬送用物質aが全て気化したと
きの体積をVaとすると、Va=Vbであるから、そのとき
は、関係式 PB,C(VB,C−Vb)=nARRTB,C PA・Vb=na・R・TAB,C=PA が成立するから、 VB,C=VbnARTB,C/naTA 温度TA、TB,Cの値は原子炉の運転状況で決まり、Vb
値は炉を停止するに必要な液状中性子吸収体bの体積で
決まるから、予めVB,Cを決めておくと、nARが決まる。
膨脹吸収用チャンバ5の体積VCは、VB,C−Vbを両チャ
ンバ2,5に適当に配分することで決めることができる。 第3図は、第2図Aにおける沸騰−液化用チャンバ1の
具体的構造を示している。即ち筒状チャンバ2の上端に
設けられた沸騰−液化用チャンバ1には、放射方向に張
出す複数の張出容室部1aを形成していて、各張出容室部
1a間は燃料集合体10の冷却材出口から出た高温の冷却材
が通過するようになっている。従って各張出容室部1a中
に入っている搬送用物質aと液状中性子吸収体bは、燃
料集合体10からの高温冷却材の温度に可及的迅速に応答
することができ、沸騰気化した搬送用物質aは炉の出力
が低下する以前には再び液化しなくしている。
1A to 1C showing the first embodiment of the present invention,
Reference numeral 10 is a fuel assembly, and the nuclear fuel is indicated by a grid-like diagonal line.
It shows the loading position of. The coolant such as Na is fed from the coolant inlet below the fuel assembly 10 as shown by the arrow, becomes high temperature, and exits from the coolant outlet at the upper end of the fuel assembly 10. A boiling-liquefying chamber 1 is installed in the core upper position near the coolant outlet and in contact with the high temperature coolant. In the boiling-liquefying chamber 1, a carrier substance a having a boiling point Tvap slightly higher than the steady operating temperature of the furnace,
A liquid neutron absorber b having a neutron absorbing capacity is stored. The liquid neutron absorber b is liquid at the temperature in the steady operation state of the furnace, and its boiling point is sufficiently higher than that of the carrier substance a. As an example, in the case of a fast reactor, the material a for transportation has Cs (boiling point 637 ° C) and Rb (boiling point 686 ° C), and the liquid neutron absorber b contains K containing B 4 C fine particles.
(Boiling point 756 ℃), Na (Boiling point 882 ℃), Li (Boiling point 1342 ℃). In the case of a light water reactor, the substance a for transportation is diphenyl ether (boiling point 257 ° C), and the liquid neutron absorber b
Is diethyl amine containing B 4 C particles (boiling point 320
℃). A connecting pipe 3 is attached to the bottom of the boiling-liquefying chamber 1. The connecting pipe 3 is inserted into a conventional control rod guide pipe or near a lower portion of a cylindrical chamber 2 surrounded by a plurality of fuel assemblies 10 installed at that position.
A communication pipe 4 is attached to the upper end of the cylindrical chamber 2 to open the inside of the cylindrical chamber 2 to the core gas space in the reactor. To explain the operation in the case of the above configuration, since the boiling point Tvap of the carrier substance a is higher at the steady operating temperature, the carrier substance a is in a liquid or solid state. In this state,
As shown in FIG. 1A, the liquid neutron absorber b is moved to the boiling-liquefying chamber 1 by the pressure of an inert gas such as argon filled in the core through the communication pipe 4 and filling the core. And the nuclear fuel 11 is not affected by the liquid neutron absorber b. Therefore, the reactor continues the fission reaction.
However, the nuclear reaction of the furnace is increased, the temperature of the coolant from the outlet of the fuel assembly 10 rises, and eventually the boiling point Tvap of the substance a for transport is increased.
When it is substantially equal to or exceeds, the carrier substance a is vaporized and its volume is expanded rapidly, so that the pressure in the boiling-liquefying chamber 1 is rapidly increased and the liquid neutron absorption b is transferred to the cylindrical chamber 2. Send by pressure. In this way, the reaction of the furnace is suppressed by the liquid neutron absorber b in the cylindrical chamber 2. This state is shown in FIG. 1B. The liquid neutron absorber b in the cylindrical chamber 2 is filled up to the height of the nuclear fuel 11 loading portion in the state of FIG. 1C in which all of the carrier substance a is vaporized. When the nuclear reaction is suppressed by the liquid neutron absorber b in the cylindrical chamber 2 and the coolant temperature from the coolant outlet of the fuel assembly 10 falls below the liquefaction point of the carrier substance a, the carrier substance a is liquefied. However, since the pressure in the boiling-liquefying chamber 1 drops sharply, the liquid neutron absorber b in the cylindrical chamber 2 is returned to the boiling-liquefying chamber 1, and as a result, the nuclear reaction of the reactor becomes active again. become. If the saturated vapor pressure of the above-mentioned carrier substance a is abruptly changed at the boiling point, the response performance of the operation is excellent and it is advantageous for scrum, but it is not suitable for output adjustment and the output of the furnace vibrates. Will be done. On the other hand, if the saturated vapor pressure of the substance a for transportation changes relatively gently near the boiling point, fluctuations in the output of the furnace can be reduced and output adjustment is possible, but the rapid temperature change of the furnace The response to the rise is slow and the scrum function is reduced. Therefore, adjusting the power output of the reactor
Alternatively, it is necessary to select an appropriate substance a for transportation depending on the purpose of use, such as exclusive use for scrum. In FIGS. 1A to 1C, the cylindrical chamber 2 is opened to the gas space in the core through the communication pipe 4, but the present invention is not limited to this, and the cylindrical chamber 2 is not limited to this. It can also be closed. A cylindrical chamber 2 corresponding to FIGS. 1A to 1C when the cylindrical chamber 2 is of an open type.
The case of the closed type is shown in FIGS. 2A to 2C. An expansion / absorption chamber 5 is continuously provided below the cylindrical chamber 2, and the cylindrical chamber 2 and the expansion / absorption chamber 5 are connected by a pipe 6. Further, an inert gas such as argon is sealed inside. In this way, even if the internal pressure of the cylindrical chamber 2 is increased, the escape pressure is relieved to the expansion absorption chamber 5 through the pipe 6, so that there is no problem in receiving the liquid neutron absorber b. The height of the tube 6 is set higher than the height of the portion where the nuclear fuel 11 is loaded so that the liquid neutron absorber b is not placed in the expansion absorption chamber 5. As shown in FIG. 2A, in order to hold the liquid neutron absorber b in the boiling-liquefying chamber 1, the argon (A) enclosed in the volumes V B, C of the cylindrical chamber 2 and the expansion absorbing chamber 5 ( The pressure P B, C at the number of moles n AR and the temperature T B, C may be balanced with the pressure due to the head h of the liquid neutron absorber b (density ρ). At that time, since the relational expression P B, C · V B, C = n AR · R · T B, C P B, C = h · ρ holds, n AR = h · ρ · V B, C / R -T B, C mol of argon may be enclosed. The value of V B, C , h depends on the chamber shape. Further, as shown in FIG. 2C, in order to hold the liquid neutron absorber b in the cylindrical chamber 2, vaporization of the carrier substance a (mol number n a , temperature T B, C ) in the boiling-liquefying chamber 1 is performed. The internal pressure due to the above may be balanced with the increase in the internal pressure of the cylindrical chamber 2 (volume V B ) and the expansion absorption chamber 5 (volume V C ) due to the movement of the liquid neutron absorber b. Assuming that the volume of the moving liquid neutron absorber b is V b and the volume when the transporting substance a is completely vaporized is V a , V a = V b , and at that time, the relational expression P B, C ( V B, C −V b ) = n AR RT B, C P A · V b = n a · R · T A P B, C = P A holds, so V B, C = V b n AR T The values of B, C / n a T A temperature T A , T B, C are determined by the operating conditions of the reactor, and the value of V b is determined by the volume of the liquid neutron absorber b required to shut down the reactor, If V B, C is determined in advance, n AR is determined.
Expansion volume V C of the absorption chamber 5, V B, can be determined by appropriately distributing the C -V b in both chambers 2 and 5. FIG. 3 shows a specific structure of the boiling-liquefying chamber 1 in FIG. 2A. That is, the boiling-liquefying chamber 1 provided at the upper end of the cylindrical chamber 2 is formed with a plurality of overhanging chamber portions 1a that overhang in the radial direction.
During the period 1a, the high temperature coolant flowing out from the coolant outlet of the fuel assembly 10 passes. Therefore, the carrier substance a and the liquid neutron absorber b contained in each of the overhanging chambers 1a can respond to the temperature of the high temperature coolant from the fuel assembly 10 as quickly as possible, and evaporate by boiling. The transported substance a is not liquefied again before the output of the furnace is reduced.

【発明の効果】【The invention's effect】

以上の説明からわかるように、本発明は、炉心温度に応
答する燃料集合体の冷却材出口温度によって搬送用物質
を沸騰−液化させ、そのときの搬送用物質の体積変化で
液状中性子吸収体吸収体を炉心内に導入したり炉心外に
排出したりするための移動を行うようにしたから、従来
のような外部からの制御を必要としないし、制御棒駆動
機構の如き機械的可動部分はなくすことができ、従来の
制御棒案内管が著しく湾曲するような大規模地震の場合
でもスクラムが可能であるし、スクラム失敗の危険性は
極めて小さいものとなる。また、冷却材の出口温度が瞬
間的且つ一時的に上昇して、仮に液状中性子吸収体が炉
心内に一時的に送り込まれても、炉の出力が低下して温
度が下がると直ちに液状中性子吸収体を炉心外に排出す
ることになるので、炉の出力は再度上昇して自然に元の
定常状態に復帰し、例え作動しても事実上運転に及ぼす
影響は殆どない。更に誤動作の心配がなくなると作動温
度を低く設定できるから、異常時における作動応答性の
信頼性向上に寄与する。 本発明の装置は密閉タイプとするのに好適である。密閉
タイプは解放タイプと違って外部との物質の出入りがな
く、外部の圧力の影響を受けず温度だけで作動し、作動
温度は常に一定という利点がある。密閉式の場合、その
筒状チャンバに膨脹吸収用チャンバを連設するととも
に、筒状チャンバと膨脹吸収用チャンバを連通させる管
を設け、内部に不活性ガスを封入すると、搬送用物質A
の沸騰に伴って筒状チャンバ2の圧力を増大させなくで
きるから、沸騰−液化用チャンバ1から筒状チャンバ2
への液状中性子吸収体bの送出効率は阻害されないよう
にできる。
As can be seen from the above description, the present invention is boiling-liquefaction of the carrier substance by the coolant outlet temperature of the fuel assembly in response to the core temperature, liquid neutron absorber absorption by the volume change of the carrier substance at that time Since the body is moved so as to be introduced into the core or discharged to the outside of the core, there is no need for external control as in the conventional case, and a mechanically movable part such as a control rod drive mechanism is not required. It can be eliminated, scram is possible even in the case of a large-scale earthquake in which the conventional control rod guide tube is significantly curved, and the risk of scrum failure is extremely small. In addition, even if the outlet temperature of the coolant rises momentarily and temporarily, and even if the liquid neutron absorber is temporarily fed into the core, the liquid neutron absorption immediately decreases as the reactor output decreases and the temperature drops. Since the body is discharged to the outside of the core, the power of the furnace rises again and naturally returns to the original steady state, and even if it operates, it has practically no effect on operation. Furthermore, when there is no fear of malfunction, the operating temperature can be set low, which contributes to improving the reliability of the operating response in the event of an abnormality. The device of the present invention is suitable for being of a sealed type. Unlike the open type, the closed type has the advantage that there is no entry and exit of substances from the outside, it operates only at temperature without being affected by the external pressure, and the operating temperature is always constant. In the case of the closed type, the expansion and absorption chamber is connected to the cylindrical chamber, and a pipe for connecting the cylindrical chamber and the expansion and absorption chamber is provided.
Since it is possible to prevent the pressure in the cylindrical chamber 2 from increasing with the boiling of water, the boiling-liquefying chamber 1 to the cylindrical chamber 2
It is possible to prevent the delivery efficiency of the liquid neutron absorber b to be not disturbed.

【図面の簡単な説明】[Brief description of drawings]

第1図AからCは本発明にある装置の第1実施例の説明
図、第2図AからCはの断面図、第3図は本発明になる
装置の第2実施例の説明図である。 1……沸騰−液化用チャンバ、2……筒状チャンバ、3
……連絡管、4……連通管、5……膨脹吸収用チャン
バ、6……管、10……燃料集合体、11……核燃料、a…
…搬送用物質、b……液状中性子吸収体。
1A to 1C are explanatory views of a first embodiment of the apparatus according to the present invention, FIGS. 2A to 2C are sectional views of the apparatus, and FIG. 3 is an explanatory view of a second embodiment of the apparatus according to the present invention. is there. 1 ... Boiling-liquefaction chamber, 2 ... Cylindrical chamber, 3
...... Communication pipe, 4 ... Communication pipe, 5 ... Expansion absorption chamber, 6 ... Pipe, 10 ... Fuel assembly, 11 ... Nuclear fuel, a ...
... Transport material, b ... Liquid neutron absorber.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−284289(JP,A) 特開 昭57−45489(JP,A) 特開 昭50−36897(JP,A) 実開 昭57−31700(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 62-284289 (JP, A) JP 57-45489 (JP, A) JP 50-36897 (JP, A) Practical application Sho 57- 31700 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炉の定常運転温度より若干高い沸騰点を有
する搬送用物質と、炉の定常運転状態での温度では液体
であって沸騰点は前記搬送用物質のそれより十分高い液
状中性子吸収体とを収納した沸騰−液化用チャンバを燃
料集合体の冷却材出口に近接して配設し、複数の燃料集
合体により囲繞される炉心内位置に筒状チャンバを配設
し、上記沸騰−液化用チャンバと筒状チャンバとは沸騰
−液化用チャンバの底部に取付けた移動管を上記筒状チ
ャンバ内に挿入して連結したことを特徴とする自己作動
型原子炉制御装置。
1. A carrier material having a boiling point slightly higher than the steady-state operating temperature of the furnace, and a liquid neutron absorption which is liquid at a temperature in the steady-state operating state of the furnace and has a boiling point sufficiently higher than that of the carrier material. Boiling containing the body-a liquefying chamber is arranged in the vicinity of the coolant outlet of the fuel assembly, and a cylindrical chamber is arranged at a position in the core surrounded by a plurality of fuel assemblies, and the boiling- A self-actuating nuclear reactor control device, wherein the liquefaction chamber and the tubular chamber are connected by inserting a moving pipe attached to the bottom of the boiling-liquefaction chamber into the tubular chamber.
【請求項2】上記筒状チャンバは密閉式とし、筒状チャ
ンバに膨脹吸収用チャンバを連設するとともに、筒状チ
ャンバと膨脹吸収用チャンバを連通させる管を設け、内
部に不活性ガスを封入した請求項1の自己作動型原子炉
制御装置。
2. The cylindrical chamber is hermetically sealed, an expansion absorbing chamber is connected to the cylindrical chamber, and a pipe is provided for connecting the cylindrical chamber and the expansion absorbing chamber, and an inert gas is sealed inside. The self-actuating nuclear reactor control device according to claim 1.
JP1103067A 1989-04-21 1989-04-21 Self-actuated reactor controller Expired - Lifetime JPH0750188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1103067A JPH0750188B2 (en) 1989-04-21 1989-04-21 Self-actuated reactor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1103067A JPH0750188B2 (en) 1989-04-21 1989-04-21 Self-actuated reactor controller

Publications (2)

Publication Number Publication Date
JPH02281189A JPH02281189A (en) 1990-11-16
JPH0750188B2 true JPH0750188B2 (en) 1995-05-31

Family

ID=14344322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103067A Expired - Lifetime JPH0750188B2 (en) 1989-04-21 1989-04-21 Self-actuated reactor controller

Country Status (1)

Country Link
JP (1) JPH0750188B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608826C2 (en) 2015-06-01 2017-01-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Device for passive protection of nuclear reactor

Also Published As

Publication number Publication date
JPH02281189A (en) 1990-11-16

Similar Documents

Publication Publication Date Title
US8045671B2 (en) Injection system and associated operating method
US20230377763A1 (en) Nuclear reactors having liquid metal alloy fuels and/or moderators
US11043309B2 (en) Fail-safe reactivity compensation method for a nuclear reactor
US4227967A (en) Method and apparatus for reducing the power level in a nuclear reactor during temperature transient
US3261755A (en) Nuclear reactor control
JPH05134078A (en) Spare safe injecting system for atomic reactor plant
US4127443A (en) Compact power reactor
US3475272A (en) Gas-cooled fast reactor
US3247073A (en) Multi-pass, vapor moderated and cooled nuclear reactor and method of operating to variably moderate and control same
US3085959A (en) Liquid moderated vapor superheat reactor
JPH0750188B2 (en) Self-actuated reactor controller
US3284307A (en) Fluid control system for boiling nuclear reactor
US3822185A (en) Fuel element for a compact power reactor
US2875143A (en) Push-pull power reactor
US3247072A (en) Nuclear reactor and method of operating to variably moderate and control same
US2989454A (en) Nuclear reactor
US3498879A (en) Nuclear reactor control using neutron absorption fluid
US3210253A (en) Self-limiting radiant nuclear boiler and superheater
Kambe RAPID-A fast reactor concept without any control rods
JPH02259495A (en) Automatic safety device for nuclear reactor
GB915773A (en) A graphite moderated heterogeneous nuclear reactor
JPH1026686A (en) Reactor and its safety device
JPH0727888A (en) Boiling suppression type reactor stopping device
US3290221A (en) Boiling water nuclear reactor with buoyant fuel or reflector control assembly
JPH067178B2 (en) Fuel control Autonomous safety fast breeder reactor