JPH0750100B2 - Method of measuring smoke point of fuel oil - Google Patents

Method of measuring smoke point of fuel oil

Info

Publication number
JPH0750100B2
JPH0750100B2 JP27732987A JP27732987A JPH0750100B2 JP H0750100 B2 JPH0750100 B2 JP H0750100B2 JP 27732987 A JP27732987 A JP 27732987A JP 27732987 A JP27732987 A JP 27732987A JP H0750100 B2 JPH0750100 B2 JP H0750100B2
Authority
JP
Japan
Prior art keywords
smoke point
fuel oil
refractive index
measurement
kerosene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27732987A
Other languages
Japanese (ja)
Other versions
JPH01119764A (en
Inventor
吉彦 橋本
勝末 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA YOTSUKAICHI SEKYU KK
Original Assignee
SHOWA YOTSUKAICHI SEKYU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA YOTSUKAICHI SEKYU KK filed Critical SHOWA YOTSUKAICHI SEKYU KK
Priority to JP27732987A priority Critical patent/JPH0750100B2/en
Publication of JPH01119764A publication Critical patent/JPH01119764A/en
Publication of JPH0750100B2 publication Critical patent/JPH0750100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は燃料油の煙点測定法に関するものである。TECHNICAL FIELD The present invention relates to a method for measuring a smoke point of fuel oil.

特に石油精製の際に留出する燃料油の煙点を正確迅速に
かつ連続的に測定する方法に関するものである。
In particular, the present invention relates to a method for accurately, quickly and continuously measuring the smoke point of fuel oil distilled during oil refining.

従来技術、発明の解決しようとする問題点 従来、石油精製工程に於て留出される燃料油の品質を管
理、コントロールする場合、煙点の測定はその管理、試
験項目として欠くことのできない重要項目である。
Conventional technology and problems to be solved by the invention Conventionally, when controlling and controlling the quality of fuel oil distilled in a petroleum refining process, smoke point measurement is an important and essential control and test item. It is an item.

従来、燃料油の煙点測定は測定しようとするサンプルを
予めプラント等より採取し、試験室等に持込み、回分法
により個々のサンプルについて、定められた試験法(JI
S K2537,ASTM D1322,IP 57−55)に従い、煙を生じ始め
る炎の長さを測定者の視覚により測定(JIS K2537)さ
れる。この測定方法は油種の相違や連続的に測定を必要
とする場合、測定件数の増加に伴ない、多大の時間を要
し、測定法が回分式であるため連続的に詳細な結果が望
まれる場合、それらの要件については満足されない。
又、視覚によるため測定者により測定結果に個人誤差も
発生する場合が多い。
Conventionally, for the smoke point measurement of fuel oil, the sample to be measured is collected in advance from a plant, etc. and brought into a test room, etc.
According to S K2537, ASTM D1322, IP 57-55), the length of the flame that starts to produce smoke is measured visually by the measurer (JIS K2537). This measurement method requires a large amount of time with the increase in the number of measurements when the difference in oil type or continuous measurement is required.Because the measurement method is a batch method, continuous detailed results are desired. If not, those requirements are not met.
In addition, since it is visual, there are many cases in which the measurement person also causes an individual error in the measurement result.

一方、燃料油の煙点は燃料油に含まれる非飽和化合物す
なわちナフチン分、オレフィン分、芳香族分等の濃度に
支配されることは知られているが明確ではない。また、
石油留分の概略の構成要素であるパラフィン分、ナフテ
ン分、オレフィン分、芳香族分は通常PONA分析と呼ばれ
る方法でシリカゲルを用いたカラムクロマト法により定
量されるが、簡易的にはその留分の粘度と屈折率がわか
れば計算により推定できることも知られている。
On the other hand, the smoke point of fuel oil is known to be governed by the concentration of unsaturated compounds contained in the fuel oil, that is, naphthin content, olefin content, aromatic content, etc., but it is not clear. Also,
Paraffin components, naphthene components, olefin components, and aromatic components, which are the general constituents of petroleum fractions, are usually quantified by column chromatography using silica gel by a method called PONA analysis. It is also known that if the viscosity and the refractive index of is known, it can be estimated by calculation.

従来、光の屈折率は物理的手法を間接的に利用した測定
法として上述の他に、潤滑油基油中の芳香族の管理等種
々の測定に使われている。しかしながら、これまで屈折
率を利用した燃料油の煙点を測定する方法、しかも正確
かつ迅速に連続的に測定が可能な方法は見られない。
Conventionally, the refractive index of light has been used for various measurements such as control of aromatics in a lubricating base oil, in addition to the above as a measurement method indirectly using a physical method. However, there has been no method of measuring the smoke point of fuel oil using the refractive index, and a method of accurately and continuously measuring the smoke point.

問題を解決するための手段 上記方法が解決されれば石油精製に於ける工程管理およ
び製品の品質管理に多大の貢献をすると共に自動化され
れば省力化、経済性の面でも多大の効果を得ることがで
きる。発明者等は鋭憲努力した結果、上述の要件を満足
する本発明に至った。すなわち発明者は一定の温度のも
とでは燃料油の煙点は屈折率と相関関係を示し、その関
係は直線的になることを見出して本発明に至った。
Means for Solving Problems If the above method is solved, it will make a great contribution to process control and product quality control in petroleum refining, and if it is automated, it will bring great effects in terms of labor saving and economical efficiency. be able to. As a result of earnest constitutional efforts, the inventors have reached the present invention satisfying the above requirements. That is, the inventor of the present invention has found that the smoke point of fuel oil has a correlation with the refractive index under a constant temperature, and the relationship is linear, and thus the present invention has been accomplished.

一方、屈折率は温度補正が可能であることから、任意の
温度で所望の燃料油に関する屈折率を測定することによ
って燃料油の煙点を決定することができる。
On the other hand, since the refractive index can be temperature-corrected, the smoke point of the fuel oil can be determined by measuring the refractive index of a desired fuel oil at an arbitrary temperature.

本発明に至る過程の詳細について述べれば、燃料油例え
ば灯油の実験室に於ける煙点測定結果と屈折率(実験室
測定値)との相関関係を第1図に示した。
To explain the details of the process leading to the present invention, FIG. 1 shows the correlation between the smoke point measurement result of a fuel oil such as kerosene in a laboratory and the refractive index (laboratory measurement value).

第1図から、明らかなように、煙点と屈折率との相関関
係は非常に良好な直線関係にあることは明らかである。
また屈折率の測定温度が異なる場合、所定の温度で示す
屈折率の値に温度補正すれば良い。又、実プラントにお
いては屈折率計に温度補正機能を保持させることは容易
である。
As is apparent from FIG. 1, it is clear that the correlation between the smoke point and the refractive index has a very good linear relationship.
Further, when the measurement temperatures of the refractive index are different, the temperature may be corrected to the value of the refractive index shown at a predetermined temperature. Further, in an actual plant, it is easy to make the refractometer have a temperature correction function.

この場合の相関係数(R)は0.9029と好ましい結果を示
している。
The correlation coefficient (R) in this case is 0.9029, which is a favorable result.

また、上述と同様に、実際のプラントにおける燃料油の
工程管理及び品質管理として、例えば灯油の煙点と実際
のプラントに設置した屈折率計での測定値との相関関係
を第2図に示した。
Further, as in the above, as the process control and quality control of the fuel oil in the actual plant, for example, the correlation between the smoke point of kerosene and the measurement value of the refractometer installed in the actual plant is shown in FIG. It was

第2図から明らかなように、煙点と屈折率計測定値との
相関関係は、上述の第1図に見られたと同様に、非常に
良好な直線関係にある。
As is apparent from FIG. 2, the correlation between the smoke point and the refractometer measurement value is in a very good linear relationship, as in the case of FIG. 1 described above.

この場合の相関係数(R)も0.8705と好ましい結果を示
している。この際用いられる屈折率計は任意のものでよ
い。
The correlation coefficient (R) in this case is 0.8705, which is a preferable result. Any refractometer may be used in this case.

一方、燃料油例えば煙点の異なる同一の灯油の屈折率に
ついて実験室測定値と実際のプラントでの屈折率測定値
との相関関係を第3図に示した。
On the other hand, FIG. 3 shows the correlation between the laboratory measurement value and the refractive index measurement value in the actual plant for the refractive index of the same kerosene having different smoke points, such as fuel oil.

この場合の相関係数(R)は1.0と非常によく相関す
る。
The correlation coefficient (R) in this case correlates very well with 1.0.

従って実験室に於ける屈折率測定値とプラントに設置さ
れた屈折率計測定値とは良く一致していることがわか
り、石油精製に於ける工程管理又は品質管理用として何
ら問題が生じないことは明白である。
Therefore, it can be seen that the measured values of the refractive index in the laboratory and the measured values of the refractometer installed in the plant are in good agreement, and that there is no problem for process control or quality control in oil refining. It's obvious.

実験室測定値自体が±2.0mm程度(JIS K2537の規格)の
繰り返し測定の許容誤差を持つことを考慮に入れれば、
燃料油の煙点は所定の温度で測定された屈折率より十分
な精度をもって迅速かつ連続的に測定できることがわか
る。
Taking into account that the laboratory measurement itself has a tolerance of ± 2.0 mm (JIS K2537 standard) for repeated measurement,
It can be seen that the smoke point of fuel oil can be measured rapidly and continuously with sufficient accuracy than the refractive index measured at a predetermined temperature.

実施例 以下に実施例を挙げて本発明の詳細を説明するが、これ
に限定されるものではない。
Examples The present invention will be described in detail below with reference to examples, but the invention is not limited thereto.

実施例1 第4図に示すように、石油精製工程においてケロシンス
トリッパー1から出る導管に設けられたサンプルライン
4に直列に水クーラー5と屈折率計6とを設ける(循環
ポンプ無しのシステム)。
Example 1 As shown in FIG. 4, in a petroleum refining process, a water cooler 5 and a refractometer 6 are provided in series with a sample line 4 provided in a conduit from the kerosene stripper 1 (system without a circulation pump).

屈折率計には、温度補正機能が付加されているので水ク
ーラーで灯油(試料)の温度を所定の温度±0.5℃に設
定しても良いが、試験法に記載された測定温度の±30℃
程度の範囲となるように、設定しておけば灯油の煙点を
連続して精度よく測定できる。勿論、得られた屈折率の
測定値の煙点への変換はコンピュータにより演算され
る。
Since the refractometer has a temperature correction function added, the temperature of kerosene (sample) may be set to a specified temperature ± 0.5 ° C with a water cooler, but it is ± 30 ° C of the measurement temperature described in the test method. ℃
If it is set so that the range is within a certain range, the smoke point of kerosene can be continuously and accurately measured. Of course, the conversion of the obtained refractive index measurement value into a smoke point is calculated by a computer.

第4図において、1はケロシンストリッパー、2は燃料
油の熱交換器、3はサンプル循環ライン、4はサンプル
ライン、5は水クーラー、6は屈折率計である。LCは液
位制御装置、R.O.はオリフィスである。
In FIG. 4, 1 is a kerosene stripper, 2 is a heat exchanger for fuel oil, 3 is a sample circulation line, 4 is a sample line, 5 is a water cooler, and 6 is a refractometer. LC is a liquid level control device and RO is an orifice.

実施例2 第5図に示すように、石油精製工程において、ケロシン
ストリッパー1から出る導管に設けられたサンプルライ
ン4に直列にサンプル循環ポンプ7、水クーラーおよび
屈折率計6を設ける(循環ポンプ設置型システム)。
Example 2 As shown in FIG. 5, in a petroleum refining process, a sample circulation pump 7, a water cooler and a refractometer 6 are provided in series with a sample line 4 provided in a conduit coming out of a kerosene stripper 1. Type system).

実施例1の場合と同様に、屈折率計には温度補正機能が
付加されているので水クーラーで灯油(試料)の温度を
所定の測定温度±0.5℃に設定しても良いが、試験法に
記載された測定温度の±30℃程度の範囲になるように設
定しておけば灯油の煙点を連続して精度良く測定でき
る。尚循環ポンプ設置型システムはサンプル取入口と戻
し口で差圧が取れない場合には特に有用である。
As in the case of Example 1, since the refractometer has a temperature correction function, the temperature of kerosene (sample) may be set to a predetermined measurement temperature ± 0.5 ° C. with a water cooler. If the temperature is set within ± 30 ° C of the measurement temperature described in, the smoke point of kerosene can be measured continuously and accurately. The circulation pump installed system is particularly useful when a differential pressure cannot be obtained between the sample intake port and the return port.

第5図において、1はケロシンストリッパー、2はサン
プルライン、3はサンプル循環ライン、4はサンプルラ
イン、5は水クーラー、6は屈折率計、7はサンプル循
環ポンプである。LC,R.O.は第4図と同様である。
In FIG. 5, 1 is a kerosene stripper, 2 is a sample line, 3 is a sample circulation line, 4 is a sample line, 5 is a water cooler, 6 is a refractometer, and 7 is a sample circulation pump. LC and RO are the same as in FIG.

発明の効果 (1) 計測器及び計測値に対し油種による依存性がな
い。
Advantages of the Invention (1) There is no dependence on the measuring instrument and the measured value depending on the oil type.

(2) 処理油の運転条件変更時に於ても、煙点の実測
値への計測値の追従性は良好である。
(2) The measured value follows the measured value of the smoke point well even when the operating conditions of the treated oil are changed.

(3) 試験法に規定された精度と同等又はそれ以上の
精度を有する。
(3) The accuracy is equal to or higher than the accuracy specified in the test method.

(4) 迅速かつ連続的に測定が可能である。(4) It is possible to measure quickly and continuously.

(5) 管理費が大幅に低減できる。(5) Management costs can be significantly reduced.

(6) 省力化が計れる。(6) Labor saving can be achieved.

(7) 燃料油の増産が容易となる。(7) Increased production of fuel oil becomes easy.

【図面の簡単な説明】[Brief description of drawings]

第1図は、灯油の煙点と屈折率(実験室測定値)との相
関関係を示すグラフ、 第2図は、実際のプラントにおける灯油の煙点と実際の
プラントに設置した屈折率計での測定値との相関関係を
示すグラフ、 第3図は、灯油の屈折率(実験室測定値)と実際のプラ
ントにおける屈折率計測定値との相関関係を示すグラフ
である。 第4図は、煙点測定方法を示す説明図および第5図は煙
点測定方法を示す他の説明図(サンプル循環ポンプ併用
の場合)である。 第4図および第5図において、 1……ケロシンストリッパー、 2……熱交換器、 3……サンプル循環ライン、 4……サンプルライン、 5……水クーラー、 6……屈折率計、 7……サンプル循環ポンプ、 LC……液位制御装置、 R.O.……オリフィス。
Fig. 1 is a graph showing the correlation between the smoke point of kerosene and the refractive index (laboratory measured value), and Fig. 2 is the smoke point of kerosene in an actual plant and the refractometer installed in the actual plant. Fig. 3 is a graph showing the correlation with the measurement value of Fig. 3, and Fig. 3 is a graph showing the correlation between the refractive index of kerosene (laboratory measurement value) and the refractive index measurement value of an actual plant. FIG. 4 is an explanatory diagram showing a smoke point measuring method, and FIG. 5 is another explanatory diagram showing a smoke point measuring method (when a sample circulation pump is used together). In FIGS. 4 and 5, 1 ... Kerosene stripper, 2 ... Heat exchanger, 3 ... Sample circulation line, 4 ... Sample line, 5 ... Water cooler, 6 ... Refractometer, 7 ... … Sample circulation pump, LC… Liquid level control device, RO… Orifice.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一定の温度において、燃料油の煙点と屈折
率とは直線関係になることから、燃料油の温度と屈折率
を測定することによって燃料油の煙点を決定することを
特徴とする燃料油の煙点測定法。
1. The smoke point of the fuel oil and the refractive index have a linear relationship at a constant temperature, and therefore the smoke point of the fuel oil is determined by measuring the temperature and the refractive index of the fuel oil. Measuring method of fuel oil smoke point.
JP27732987A 1987-11-04 1987-11-04 Method of measuring smoke point of fuel oil Expired - Lifetime JPH0750100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27732987A JPH0750100B2 (en) 1987-11-04 1987-11-04 Method of measuring smoke point of fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27732987A JPH0750100B2 (en) 1987-11-04 1987-11-04 Method of measuring smoke point of fuel oil

Publications (2)

Publication Number Publication Date
JPH01119764A JPH01119764A (en) 1989-05-11
JPH0750100B2 true JPH0750100B2 (en) 1995-05-31

Family

ID=17582011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27732987A Expired - Lifetime JPH0750100B2 (en) 1987-11-04 1987-11-04 Method of measuring smoke point of fuel oil

Country Status (1)

Country Link
JP (1) JPH0750100B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048123A (en) * 1996-08-06 1998-02-20 Kubota Corp Spectral analyzer
FR2880426B1 (en) * 2004-12-30 2007-04-06 Total France Sa METHOD AND DEVICE FOR DETERMINING THE SMOKE POINT OF HYDROCARBONS

Also Published As

Publication number Publication date
JPH01119764A (en) 1989-05-11

Similar Documents

Publication Publication Date Title
CA2397555A1 (en) Petroleum distillation method and system
Katz et al. Vaporization equilibrium constants in a crude oil–natural gas system
Durand et al. Automatic gas chromatographic determination of gasoline components: Application to octane number determination
SE527858C2 (en) Process for refining tall oil
JPH0750100B2 (en) Method of measuring smoke point of fuel oil
US11369894B1 (en) Online fuel cutpoint control application using color spectrum
CA1298233C (en) Distillation cut point control
EP0130352A2 (en) Control of a fractional distillation process
EP0305206A2 (en) Apparatus for measuring flash point of petroleum intermediate fraction and method for controlling flash point
Koyunoğlu Eco-Friendly Usage of Aviation Gasoline; Benzene and Toluene Concentration Effect
US3216239A (en) Boiling point determination
US3647635A (en) Octane number control of distillation column overhead by varying reflux
Ramsay Gum Stability of Gasolines
EP0257940A2 (en) A method of analyzing high molecular weight dispersants in motor oils
SU1016493A1 (en) Method of measuring separate yield of multiformation oil wells
RU2310845C1 (en) Method of determining type of mineral engine oil for automobiles
US3647634A (en) Octane number control of distillation column bottoms by varying heat input
Watt et al. Crude assay
SU1158907A1 (en) Method of quantitative determination of highly volatile fractions of petroleum products in water
CA2916841C (en) Method for transferring between spectrometers
Boruah et al. Revisiting Evaluation of Crude Oil in a Cost-Effective Way
SU1410996A1 (en) Method and apparatus for distilling mixtures of broad fractional composition
Meirelles et al. Comparison of The Experimental TBP Curve with Results of Empirical Correlations And Commercial Simulators
Gustavsson Volatility determination of oils by TG
SU953563A1 (en) Method for determination of light petroleum product potential content in oil