JPH0749637B2 - Method and device for predicting fiber orientation of paper - Google Patents

Method and device for predicting fiber orientation of paper

Info

Publication number
JPH0749637B2
JPH0749637B2 JP1180589A JP18058989A JPH0749637B2 JP H0749637 B2 JPH0749637 B2 JP H0749637B2 JP 1180589 A JP1180589 A JP 1180589A JP 18058989 A JP18058989 A JP 18058989A JP H0749637 B2 JPH0749637 B2 JP H0749637B2
Authority
JP
Japan
Prior art keywords
stock
wire
speed
machine direction
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1180589A
Other languages
Japanese (ja)
Other versions
JPH0345795A (en
Inventor
保 多々良
丈治 稲留
裕司 阿部
幸造 土田
祥 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP1180589A priority Critical patent/JPH0749637B2/en
Publication of JPH0345795A publication Critical patent/JPH0345795A/en
Publication of JPH0749637B2 publication Critical patent/JPH0749637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は抄紙機のヘツドボツクスから吐出されてからワ
イヤ上で未だ流動状態にあるまでの過程の紙料挙動から
抄紙中の紙の繊維配向性を予測する方法及び該方法の実
施に好適な装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to the fiber orientation of paper in papermaking from the behavior of stock during the process from discharging from the head box of a paper machine to still being in a fluidized state on the wire. The present invention relates to a method for predicting a value and a device suitable for performing the method.

〔従来の技術〕[Conventional technology]

従来より抄造された紙の特性を判断する目安として繊維
配向性が広く採用されている。
Conventionally, the fiber orientation has been widely adopted as a standard for judging the characteristics of paper made by papermaking.

この紙の繊維配向性は一般に繊維配向角度と繊維配向指
数とで表現され、前者は平均的な繊維の並び方向を意味
し、通常マシン方向をゼロ度として抄紙機の下流に向か
つて時計方向をプラス(正)の角度で、反時計方向をマ
イナス(負)の角度で現わしている。また後者は、この
ようにして表わされる配向角度を示す方向を縦軸として
これと直角な方向を横軸とした場合の縦軸に並んでいる
繊維に対する横軸に並んでいる繊維の割合(いわゆる縦
/横比)の指標となり、繊維配向指数と紙の縦/横比と
の間に下記の関係にある。
The fiber orientation of this paper is generally expressed by the fiber orientation angle and the fiber orientation index, the former means the average fiber arrangement direction, and usually the machine direction is set to zero degree and the clockwise direction is directed downstream of the paper machine. The positive (positive) angle represents the counterclockwise direction with a negative (negative) angle. In the latter, the ratio of the fibers lined up on the horizontal axis to the fibers lined up on the vertical axis when the direction indicating the orientation angle thus represented is taken as the vertical axis and the direction perpendicular to this is taken as the horizontal axis (so-called The aspect ratio is an index, and the fiber orientation index and the aspect ratio of the paper have the following relationship.

このような紙の繊維配向性は、紙の強度や紙ぐせ(カー
ル,反り,ねじれ等)と密接に関連し、PPC適性(普通
紙複写機における小判裁断紙の複写前のトレイ収容性及
び複写後の積層性やソーター性),高速印刷機や加工機
において蛇行や曲がりの発生に関する走行性,NIP適性
(ノンインパクトプリンターで使用される連続伝票用紙
の印刷後の積層性)等と密接に関係している。
The fiber orientation of such paper is closely related to the strength of the paper and paper misalignment (curling, warping, twisting, etc.), and is suitable for PPC (tray accommodation and copying before the copying of small cut paper in a plain paper copying machine). (Layerability and sorter after printing), runnability related to occurrence of meandering and bending in high-speed printing machines and processing machines, NIP suitability (laminating property after printing continuous slip paper used in non-impact printers), etc. is doing.

一般に手抄きで紙を作ると繊維はランダムに並ぶので縦
/横比がほぼ1でクセの無い理想的な紙になるが、機械
抄き紙においては特に抄紙機が広幅で高速になればなる
程マシン方向に沿つて繊維が並び易くなるので縦/横比
が大きくなると共に、各場所でクロスマシン方向及びマ
シン方向の繊維の並び方が異なる(繊維配向性プロフア
イルが不均一になる)傾向が強く表れるようになつてく
る。このような状況にある機械抄き紙においても、繊維
配向指数は可及的に0(すなわち紙の縦/横比が1)に
近いことが好ましく、また繊維配向角度は0度に近いこ
とが好ましいことが判つている。
Generally, when paper is made by hand, the fibers are arranged randomly, so it has an aspect ratio of approximately 1 and is an ideal paper with no habit. However, for machine-made paper, especially when the paper machine is wide and high-speed. The more the fibers are aligned along the machine direction, the larger the aspect ratio becomes, and the different the arrangement of fibers in the cross machine direction and the machine direction at each location (fiber orientation profile becomes non-uniform). Comes to appear strongly. Even in the machine-made paper in such a situation, it is preferable that the fiber orientation index is as close to 0 as possible (that is, the aspect ratio of the paper is 1), and the fiber orientation angle is close to 0 degree. It turns out to be preferable.

典型的な例として、紙料流れを意識的にコントロールし
ない状態で抄造された新聞用紙(抄き幅:6600mm,坪量:4
6.5g/m2,抄速;850m/分)のクロスマシン方向の繊維配
向性プロフアイル、すなわち繊維配向角度プロフアイル
を第8図(イ)にまた紙の縦/横比プロフアイルを第8
図(ロ)に示す。この第8図(イ),(ロ)から明らか
なように、広幅・高速マシンでは抄紙機のヘツドボツク
スから吐出される紙料はスライス両端の壁面抵抗の影響
によつてワイヤ両端部付近の紙料流れが遅くなり、その
結果として乾燥後の紙の両端付近の縦/横比が中央部よ
り小さくなると共に、繊維配向角度もマシン方向から大
幅にずれたいわゆる逆ハの字型(抄紙機の下流に向かつ
て左側がマイナスの角度で右側がプラスの角度となつて
いるから両側の繊維配向角度が反対側に開く形状)のプ
ロフアイルパターンになる。抄紙機メーカーや紙メーカ
ーでは、このように不均一なプロフアイルパターンを是
正するために研究を重ね、端部紙料流れをコントロール
するためのエツジフロー制御方式の採用やその他再循環
弁開度や紙料速度とワイヤ速度との比等のいわゆる操業
条件の最適化等によるプロフアイルパターン改善を積極
的に実施している。
As a typical example, newsprint produced without intentionally controlling the stock flow (paper width: 6600 mm, basis weight: 4
The fiber orientation profile in the cross machine direction of 6.5 g / m 2 , machine speed; 850 m / min), that is, the fiber orientation angle profile is shown in Fig. 8 (a), and the paper aspect ratio profile is shown in Fig. 8 (a).
It is shown in Figure (b). As is clear from Figs. 8 (a) and 8 (b), in wide-width / high-speed machines, the stock discharged from the headbox of the paper machine is affected by the wall resistance at both ends of the slice, and The flow becomes slower, and as a result, the aspect ratio around the edges of the paper after drying becomes smaller than that at the center, and the fiber orientation angle also deviates significantly from the machine direction, so-called inverted C-shape (downstream of the paper machine. Since the left side is a negative angle and the right side is a positive angle, the profile pattern is such that the fiber orientation angles on both sides open to the opposite side. Paper machine manufacturers and paper manufacturers have conducted extensive research to correct such uneven profile patterns, and have adopted an edge flow control system to control the stock flow at the end and other factors such as recirculation valve opening and paper. The profile pattern is being actively improved by optimizing so-called operating conditions such as the ratio of material speed to wire speed.

このようなエツジフロー制御を含めて操業条件変更によ
り繊維配向性のプロフアイルパターンがどのように変化
したかを判断するには通常、抄紙の完了したリール製品
から紙を裁いてサンプリングし、ゼロスパン引張り試験
法あるいは分子配向計(例えば、神崎製紙(株)製MOA-
2001A型)により繊維配向性を測定し、クロスマシン法
のプロフアイルを求める方法は一般的である。
In order to judge how the fiber orientation profile pattern has changed by changing the operating conditions, including such edge flow control, it is usual to cut and sample the paper from the reel product that has completed paper making, and perform the zero span tensile test. Method or molecular orientation meter (for example, MOA- manufactured by Kanzaki Paper Co., Ltd.)
2001A) is used to measure the fiber orientation and obtain the profile of the cross machine method.

しかしながらこれ等の方法では操業条件変更から測定結
果が出る迄にかなりの時間と多大の製品ロスを伴う。例
えば新聞用紙製造マシンにおいて、抄速860m/分で45レ
ーン巻(45000m)のジヤンボロールが抄き上がるまでに
52〜53分の時間を要し、更にこのロールから紙を裁いて
紙自体のマシン方向に対して正確に直角なクロスマシン
方向を決め一定面積の矩形にカツテイングし、少なくと
もクロスマシン方向の6点の繊維配向性プロフアイルを
求めるために必要なサンプリングを行うのに約1時間を
要し、また分子配向計で6個のサンプルの繊維配向性を
求めるのに12分を必要とするから、条件変更から実に2
時間以上もかかつて初めて抄造された紙のクロスマシン
方向のプロフアイルがどう変化したかを把握出来ること
になる。
However, these methods involve a considerable amount of time and a large amount of product loss from the change of operating conditions until the measurement result is obtained. For example, in a newsprint machine, it takes 45 lanes (45000 m) of Jyanboroll at a speed of 860 m / min to make the paper.
It takes 52 to 53 minutes, and the paper is cut from this roll to determine a cross machine direction that is exactly perpendicular to the machine direction of the paper itself and cut into a rectangle of a certain area. At least 6 points in the cross machine direction. It takes about 1 hour to perform the sampling required to determine the fiber orientation profile of the sample, and 12 minutes to determine the fiber orientation of 6 samples with a molecular orientation meter. 2 from the change
Over time, it will be possible to understand how the cross machine direction profile of the paper that was made for the first time has changed.

〔発明の解決しようとする課題〕[Problems to be Solved by the Invention]

上述したように紙の繊維配向性を知ることは紙の各種特
性を把握するために非常に重要な作業であるが、従来の
紙の繊維配向性を測定する方法は非常に煩雑で実機操業
中に簡単且つ迅速に紙の繊維配向性を測定する方法が存
在しないめに、良好な紙の抄造条件で抄紙することが出
来ないという欠点があつた。
As mentioned above, knowing the fiber orientation of the paper is a very important work to understand various properties of the paper, but the conventional method for measuring the fiber orientation of the paper is very complicated and is in operation. Since there is no simple and quick method for measuring the fiber orientation of paper, there is a drawback that paper cannot be made under good papermaking conditions.

そこで本発明は、実機操業中に簡単且つ迅速に紙の繊維
配向性を予測する方法及びその方法を実施するための装
置を提供することを課題とする。
Therefore, it is an object of the present invention to provide a method for easily and quickly predicting the fiber orientation of paper during operation of an actual machine and an apparatus for carrying out the method.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者等は上記課題を解決し、各種操業条件に伴う定
点の繊維配向性の変化、更に好ましくは繊維配向性のク
ロスマシン方向のプロフアイルパターンの変化を簡単に
しかも短時間に求める方法を開発すべく長年に亘つて鋭
意研究を重ねた結果、遂に抄紙機のヘツドボツクスから
吐出されてからワイヤ上で未だ流動状態にあるまでの過
程の紙料位置での紙料の流動状態とその時のマシン条件
から、抄造される紙の繊維配向性を予測する方法及び装
置の開発に成功したのである。
The present inventors have solved the above problems, a method of obtaining a change in the fiber orientation at a fixed point with various operating conditions, more preferably a change in the profile pattern in the cross machine direction of the fiber orientation easily and in a short time. As a result of many years of earnest research to develop, the flow state of the stock at the stock position in the process from the time when it is finally discharged from the head box of the paper machine until it is still flowing on the wire and the machine at that time. We have succeeded in developing a method and apparatus for predicting the fiber orientation of paper to be made from the conditions.

すなわち、本発明者等はモデル抄紙機を利用してヘツド
ボツクスから吐出する紙料の噴出角度及び紙料速度とワ
イヤ速度との比を意識的に変更し(紙料の吐出角度はヘ
ツドボツクスのスライスの設置角度を蛙ことによつて変
更した)、紙料の速度ベクトルとワイヤ速度と乾燥後の
紙の繊維配向性との関係を検討して、紙料の速度を一定
に固定して紙料の吐出角度及びワイヤ速度を変更したと
きの繊維配向角度を示す第9図と、この第9図における
紙料の吐出角度が−4度のときのワイヤ速度と分子配向
指数との関係を示す第10図との如き種々の実験結果を
得、紙の繊維配向性が下記の結果のように紙料とワイヤ
との速度差ベクトルに依存していることを確認すること
が出来た。
That is, the inventors of the present invention consciously change the ejection angle of the stock material discharged from the head box and the ratio of the stock speed and the wire speed by using the model paper machine (the stock material discharge angle is the slice of the head box). The installation angle was changed by a frog), the relationship between the stock velocity vector and the wire speed, and the fiber orientation of the paper after drying was examined, and the stock velocity was fixed to a fixed value. Fig. 9 showing the fiber orientation angle when the discharge angle and the wire speed are changed, and Fig. 10 showing the relationship between the wire speed and the molecular orientation index when the discharge angle of the paper stock in this Fig. 9 is -4 degrees. As shown in the figure, various experimental results were obtained, and it was confirmed that the fiber orientation of the paper depends on the velocity difference vector between the stock and the wire as shown in the following results.

(1) 紙の繊維配向角度の符号は紙料とワイヤとの速
度差ベクトル角度の符号と対応し、紙料の流れの角度の
符号とは必ずしも対応しない。
(1) The sign of the fiber orientation angle of the paper corresponds to the sign of the velocity difference vector angle between the stock and the wire, and does not necessarily correspond to the sign of the angle of the stock flow.

紙料の流れ角度がプラスで紙料速度とワイヤ速度と
の比が1より大きい時は、紙料とワイヤとの速度差ベク
トル角度はプラスになり、紙の繊維配向角度もプラスに
なる。しかし、紙料の流れ角度がプラスでも紙料速度と
ワイヤ速度との比が1より小さい時は、紙料とワイヤと
の速度差ベクトル角度はマイナスになり、紙の繊維配向
角度もマイナスになる。
When the stock flow angle is positive and the ratio of stock speed to wire speed is greater than 1, the stock and wire speed difference vector angle is positive and the fiber orientation angle of the paper is also positive. However, even if the flow angle of the stock is positive, when the ratio of the stock speed to the wire speed is less than 1, the speed difference vector angle between the stock and the wire becomes negative, and the fiber orientation angle of the paper also becomes negative. .

紙料の流れ角度がマイナスで紙料速度とワイヤ速度
との比が1より大きい時は、紙料とワイヤとの速度差ベ
クトル角度はマイナスになり、紙の繊維配向角度もマイ
ナスなる。しかし、紙料の流れ角度がマイナスでも紙料
速度とワイヤ速度との比が1より小さい時は、紙料とワ
イヤとの速度差ベクトル角度はプラスになり、紙の繊維
配向角度もプラスになる。
When the flow angle of the stock is negative and the ratio of the stock speed to the wire speed is greater than 1, the velocity difference vector angle between the stock and the wire is negative, and the fiber orientation angle of the paper is also negative. However, when the ratio of the stock speed to the wire speed is smaller than 1 even if the stock flow angle is negative, the speed difference vector angle between the stock and the wire is positive, and the fiber orientation angle of the paper is also positive. .

紙料の流れ角度がゼロならば、紙料速度とワイヤ速
度との比の大小にも拘らず、紙料とワイヤとの速度差ベ
クトル角度はゼロになり、紙の繊維配向角度もゼロにな
る。
If the flow angle of the stock is zero, the velocity difference vector angle between the stock and the wire is zero and the fiber orientation angle of the paper is also zero, regardless of the ratio of the stock speed to the wire speed. .

(2) 紙の繊維配向角度の絶対値は、紙料とワイヤと
の速度差ベクトル角度の絶対値の凡そ1/3になる。
(2) The absolute value of the fiber orientation angle of the paper is approximately 1/3 of the absolute value of the velocity difference vector angle between the stock and the wire.

(3)紙の繊維配向の縦/横比は、紙料速度とワイヤ速
度との比が1の時に最小となり、紙料速度とワイヤ速度
との比が1から離れる程大きくなる。
(3) The aspect ratio of the fiber orientation of the paper becomes minimum when the ratio of the stock speed to the wire speed is 1, and becomes larger as the ratio of the stock speed to the wire speed deviates from 1.

このように、ワイヤパートにおける紙料とワイヤとの速
度差ベクトルと乾燥後の紙の繊維配向性との間に一定の
法則が見い出されたので、これらの事実関係を利用し
て、抄紙機の定点における紙料とワイヤとの速度差ベク
トルの経時変化から紙のマシン方向の繊維配向性の変動
を予測することも可能になり、また紙料とワイヤとの速
度差ベクトルの経時変化を抄紙機のクロスマシン方向に
も測定してその速度差ベクトルプロフアイルパターンか
らリール製品のクロスマシン方向のみならず紙のマシン
方向の繊維配向性の変動をも予測することも可能になつ
たのである。
In this way, a certain law was found between the velocity difference vector between the stock and the wire in the wire part and the fiber orientation of the paper after drying.Therefore, by utilizing these factual relationships, the paper machine It is also possible to predict the change in the fiber orientation in the machine direction of the paper from the change over time in the velocity difference vector between the stock and wire at a fixed point, and the change over time in the velocity difference vector between the stock and wire. It is also possible to measure the fiber orientation in the machine direction of the paper as well as in the cross machine direction of the reel product by measuring the velocity difference vector profile pattern in the machine direction.

上述したような知見に基づいて紙の繊維配向性を予測す
るためには、先ず紙料とワイヤとの速度差ベクトルを短
時間で測定することが必要となる。
In order to predict the fiber orientation of the paper based on the above-mentioned knowledge, it is necessary to first measure the velocity difference vector between the paper stock and the wire in a short time.

従来、移動物体の流動状態を検知する手段として、特公
昭59-20103号「速度検出装置」や,実開昭60-74059号
「流体の流れ方向検知装置」等が開示されている。前者
は相対的に移動する物体から得られる雑音性の信号を移
動方向に位置する2ケ所で検出する雑音性信号検出手段
とこれらから得られる出力信号中の周期性雑音の位相を
調整する手段とを使用して、片方の雑音性信号の出力と
もう一方の雑音性信号の周期性雑音を位相調整した出力
との差又は和の出力の自己相関値を計算することで、周
期性ノイズの影響を受けずに高精度の速度検出を可能と
したものである。しかしながらこの装置での測定は移動
物体の移動方向が常に一定である場合にのみ有効であ
り、抄紙機における紙料のように抄紙条件(スライスリ
ツプ開度,トータルヘツド,再循環弁開度等)の違いに
より流動状態(特に流れの向き)が変化する時に紙料の
速度がどれだけ変わつたかを検知するためには、2ケ所
に設置された雑音性信号検出装置の中の流れの下流側に
位置する装置を上流側に位置する装置の中心にして円弧
上に少なくとも数ケ所移動してそれぞれ移動毎に前記の
自己相関値を計算してその時の速度を求め、一連の移動
が終つた段階で更に流れの向きを決定するための演算処
理を必要とする。従つて、1つの測定点において流れの
向きが求める迄に十数分以上を要する場合もあり、また
流れの向きがランダムに経時的に変化してその変化幅が
大きい時には円弧上の移動箇所を大幅に増やす必要があ
ることから、この機械的な移動操作と相関処理回数の増
加で1つの測定点における所要時間が更に増えることに
なる。
Conventionally, as means for detecting the flow state of a moving object, Japanese Patent Publication No. Sho 59-20103 "velocity detecting device" and Japanese Utility Model Publication No. 60-74059 "fluid flow direction detecting device" have been disclosed. The former is a noisy signal detecting means for detecting a noisy signal obtained from a relatively moving object at two locations located in the moving direction, and means for adjusting the phase of periodic noise in an output signal obtained from these means. To calculate the autocorrelation value of the output of the difference or the sum of the output of one noisy signal and the phase-adjusted output of the other noisy signal. This enables high-accuracy speed detection without being affected. However, the measurement with this device is effective only when the moving direction of the moving object is always constant, and the paper making conditions (slice lip opening, total head, recirculation valve opening, etc.) are the same as those of paper stock in a paper machine. In order to detect how much the stock velocity changes when the flow state (especially the flow direction) changes due to the difference in the flow rate, the downstream side of the flow in the noisy signal detection device installed in two places The device located at the center of the device located on the upstream side is moved at least several places on an arc, and the autocorrelation value is calculated for each movement to obtain the speed at that time, and the stage at which the series of movements is completed In addition, arithmetic processing for determining the flow direction is required. Therefore, it may take more than ten minutes to obtain the flow direction at one measurement point, and if the flow direction changes randomly over time and the width of change is large, the moving position on the arc should be changed. Since it is necessary to significantly increase the number of times, the time required for one measurement point is further increased by the mechanical movement operation and the increase in the number of correlation processes.

そこでこのような欠点を改良したのが後者の装置であ
る。この装置は、液体中に散在する物質から生ずる雑音
性信号を利用して所定の位置で速度ベクトルを測定する
に際し、流れの上流側に1個所の測定面領域と流れの下
流側に上流側の測定面領域の中心点を中心とした一定長
さの半径の円弧上に少なくとも3個所の測定面領域が一
体となつて置かれ、それぞれ上流側の雑音性信号Aと下
流側の雑音性信号B1,B2,B3を検出し、それぞれAとB1,A
とB2,AとB3の相互相関値又はAとB1の差の自己相関値,A
とB2の差の自己相関値,AとB3の差の自己相関値を求め、
相互相関値又は自己相関値の極大値を選別して流れの向
きを決定する装置であり、上下流一体となつた測定面領
域を流路の長手方向に垂直な線上に互いに間隔を設けた
複数個所に設置してクロスマシン方向の速度ベクトルの
プロフアイルパターンも求めることも可能な装置であ
る。しかしながらこの装置でも所定の1つの測定位置の
速度ベクトルが得られる迄に数分を要し、1個の相関機
を利用して実用的な3m幅の抄紙機におけるクロスマシン
方向の紙料の速度ベクトルプロフアイルパターンを求め
るには少なくとも100mm間隔毎の速度ベクトルが必要で
あることから、都合数十分〜1時間以上(数分×3000mm
/10mm)もの時間を必要とする。更に、この装置の一番
の欠点は流れの向きの測定精度にある。すなわち前記3
つの相互相関値又は自己相関値から極大値を選別するた
めには数学的に外挿する手段しか無く、前記下流側に位
置する測定面領域同士の間隔が広い程、真の流れの向き
との差が大きくなることになる。また極大値が存在しな
い(単純増加,単純減少,極小値)場合には流れの向き
が全く計測出来ないことにもなる。
Therefore, the latter device has improved such drawbacks. This device uses a noisy signal generated from a substance scattered in a liquid to measure a velocity vector at a predetermined position, and one measurement surface region upstream of the flow and an upstream side downstream of the flow. At least three measurement surface areas are integrally formed on an arc having a radius of a constant length centered on the center point of the measurement surface area, and the upstream noise signal A and the downstream noise signal B1 are respectively placed. , B2, B3 are detected and A and B1, A respectively
And B2, A and B3 cross-correlation value or A and B1 difference auto-correlation value, A
And B2 difference autocorrelation value, A and B3 difference autocorrelation value,
A device for selecting the maximum value of the cross-correlation value or auto-correlation value to determine the flow direction, and a plurality of measurement surface regions that are integrated upstream and downstream are provided on a line perpendicular to the longitudinal direction of the flow path with a space therebetween. It is also a device that can be installed at a location to obtain the profile pattern of the velocity vector in the cross machine direction. However, even with this device, it takes several minutes to obtain the velocity vector of one predetermined measurement position, and the velocity of the stock in the cross machine direction in a practical 3 m width paper machine is utilized by using one correlator. It is necessary to have a velocity vector at intervals of at least 100 mm to obtain the vector profile pattern, so it is convenient for several tens of minutes to one hour or more (several minutes x 3000 mm
/ 10mm) time is required. Moreover, the main drawback of this device is the accuracy of the measurement of the flow direction. That is, the above 3
In order to select the maximum value from the two cross-correlation values or auto-correlation values, there is only mathematical extrapolation means, and the wider the distance between the measurement surface areas located on the downstream side, the more the true flow direction The difference will be large. Also, if there is no maximum value (simple increase, simple decrease, minimum value), the flow direction cannot be measured at all.

そこで本発明では、抄紙機のヘツドボツクスから吐出さ
れてからワイヤ上で流動状態にある過程の紙料を対象に
して、例えば(株)小野測器製の空間フイルター式速度
検出センサSF-660BとSF760のような、光源から出た光を
所定の投光面積で投光する投光部とこの投光部から投光
され対象物により反射された光を特殊な形状をなすよう
に配置された受光素子を備えた受光部とを備え、受光部
により受光され抽出された出力をバンドパスフイルター
を通してパルス信号に成形しそのパスル数から速度を求
める公知の空間フイルター式速度センサを利用し、この
2つの空間フイルター式速度センサをマシン方向の同一
軸上に隣接して配置し、片方のセンサでマシン方向の速
度を測り、同時にもう一方のセンサでクロスマシン方向
の速度を測ることによつて、測定点における紙料の速度
ベクトルを瞬時(例えば0.3秒/ポイント)に高精度で
しかも紙料流れの向きがマシン方向から大幅にズレた場
合でも確実に検知出来ることを究明したのである。
Therefore, in the present invention, for the stock material in the process of being in a fluidized state on the wire after being discharged from the head box of the paper machine, for example, space filter type speed detection sensors SF-660B and SF760 manufactured by Ono Sokki Co., Ltd. Such as a light projecting portion that projects light emitted from a light source in a predetermined light projecting area, and light received by the light projecting portion and reflected by an object is arranged to have a special shape. A light receiving unit including an element is used, a known space filter type speed sensor for calculating the speed from the pulse number by shaping the output received and extracted by the light receiving unit into a pulse signal through a band pass filter, and By arranging the space filter type speed sensors adjacent to each other on the same axis in the machine direction, one sensor measures the speed in the machine direction and the other sensor measures the speed in the cross machine direction at the same time. Te is to that investigation that the velocity vector of the stock instantaneous (for example, 0.3 sec / point) at a high accuracy Moreover stock flow direction can be detected reliably even when deviated significantly from the machine direction at the measurement point.

そこでこの紙料の速度ベクトルと同時にワイヤ速度を計
測し、紙料とワイヤとの速度差ベクトルを直ちに演算す
れば、抄紙機の定点における紙料とワイヤとの速度差ベ
クトルの経時変化から紙のマシン方向の繊維配向性の変
動を予測することが可能となるのであり、この定点にお
ける紙料とワイヤとの速度差ベクトルの経時変化の測定
は、紙の繊維配向角度は例えば前述した第8図に示すよ
うにマシン幅中央部では大きな変化はあまり生じないの
で或る程度その条況が把握出来ている抄紙機と紙料とで
あつて且つ両端部の繊維配向性についてはあまり配慮す
る必要がない場合にはそのまま活用出来る。しかしなが
ら、マシン幅のほぼ全幅に亘つて繊維配向性を予測する
必要がある場合には、前記したような2つの空間フイル
ター式速度センサを一緒にクロスマシン方向に走行させ
て抄紙機のクロスマシン方向に連続的に又は所定間隔毎
に紙料とワイヤとの速度差ベクトルを短時間で求めれ
ば、この紙料とワイヤとの速度差ベクトルのクロスマシ
ン方向プロフアイルパターンからリール製品のクロスマ
シン方向の繊維配向性プロフアイルパターンを予測・表
示出来るのである。
Therefore, by simultaneously measuring the wire speed at the same time as the stock velocity vector and immediately calculating the speed difference vector between the stock and the wire, the paper speed change vector It is possible to predict the variation of the fiber orientation in the machine direction, and the change over time of the velocity difference vector between the stock and the wire at this fixed point can be measured by measuring the fiber orientation angle of the paper as shown in FIG. As shown in Fig. 4, there is not much change in the center of the machine width.Therefore, it is necessary to pay close attention to the fiber orientation at both ends of the paper machine and the stock, whose condition can be grasped to some extent. If not, you can use it as is. However, when it is necessary to predict the fiber orientation over almost the entire machine width, the two space filter type speed sensors as described above are run together in the cross machine direction so that the paper machine crosses the machine direction. If the speed difference vector between the stock and the wire is obtained in a short time either continuously or at predetermined intervals, the cross machine direction of the speed difference vector between the stock and the wire is changed from the profile pattern to the cross machine direction of the reel product. It is possible to predict and display the fiber orientation profile pattern.

以下に紙料の速度ベクトル及び紙料とワイヤとの速度差
ベクトルの検出法及びリール製品の繊維配向性の予測・
表示法について、図面を用いて実施例を説明する。
Below is a method for detecting the stock vector and the speed difference vector between the stock and the wire, and the prediction of the fiber orientation of the reel product.
An example of the display method will be described with reference to the drawings.

第1図は本発明に係る紙の繊維配向性の予測方法を実施
する装置の概略を説明する側面図、第2図は同平面図、
第3図は2個の速度センサを利用して紙料の速度ベクト
ルを算出する方法の概念図、第4図(イ)〜(ニ)は紙
料の速度ベクトルとワイヤ速度から両者の速度差ベクト
ルを算出する方法の概念図、第5図(イ),(ロ)及び
第6図(イ),(ロ)はそれぞれ紙料の速度ベクトル及
びワイヤ速度の測定値に基づいて計算した紙料とワイヤ
との速度差及びその速度差ベクトル角度のクロスマシン
方向プロフアイル図の実施例を示すもので、(イ)は紙
料の速度ベクトル及びワイヤ速度を示し(ロ)は紙料と
ワイヤとの速度差及びその速度差ベクトル角度を示す。
第7図はクロスマシン方向の繊維配向角度プロフアイル
の予測値と実測値とを示す図である。
FIG. 1 is a side view for explaining the outline of an apparatus for carrying out the method for predicting the fiber orientation of paper according to the present invention, and FIG. 2 is a plan view thereof.
FIG. 3 is a conceptual diagram of a method for calculating a paper stock speed vector using two speed sensors, and FIGS. 4 (a) to (d) are speed differences between the paper stock speed vector and the wire speed. A conceptual diagram of the method of calculating the vector, Fig. 5 (a), (b) and Fig. 6 (a), (b) are the paper stock calculated based on the measured values of the paper stock speed vector and wire speed, respectively. Shows a cross-machine direction profile diagram of the speed difference between the wire and the wire and the speed difference vector angle, (a) shows the speed vector of the stock and the wire speed, and (b) shows the stock and the wire. Shows the speed difference and the speed difference vector angle.
FIG. 7 is a diagram showing predicted values and actually measured values of the fiber orientation angle profile in the cross machine direction.

図面中、3は抄紙機のヘツドボツクス1の吐出口2から
吐出された紙料であり、ワイヤ4上で脱水されながら次
の乾燥工程(図示なし)へと向かう。5はヘツドボツク
ス1の吐出口2から吐出されてからワイヤ4上で未だ流
動状態にあるまでの過程の紙料3の位置でマシン方向の
同一軸上に隣接して2つの空間フイルター式速度センサ
6及び7を保持しているセンサ保持体8をワイヤ4上に
配置させるフレームであり、このフレーム5としては2
つの空間フイルター式速度センサ6及び7を移動させな
い構造の場合には単なるセンサ保持体8の固定用フレー
ムであれば良く、2つの空間フイルター式速度センサ6
及び7をクロスマシン方向に移動させながら次々と測定
点を変える構造の場合にはセンサ保持体8をクロスマシ
ン方向に摺動自在に支持するガイド体5aとセンサ保持体
8をクロスマシン方向に移動させるためにセンサ保持体
8と螺合させている親ネジ5bとこの親ネジ5bを駆動させ
る駆動源5cとの如き移動手段を備えたものとすれば良
い。このようにセンサ保持体8に保持されている2つの
空間フイルター式速度センサ6及び7をフレーム5に設
置する場合に、空間フイルター式速度センサ6及び7と
して(株)小野測器の空間フイルター式速度センサSF-6
60B及びSF760を使用する場合には空間フイルター式速度
センサ6,7間の間隔をマシン方向の同一軸上に80mm離し
そして空間フイルター式速度センサ6,7を紙料面から515
±25mm離して設置し、空間フイルター式速度センサ6で
マシン方向の紙料3の流れの速度を測定し、空間フイル
ター式速度センサ7でクロスマシン方向の紙料3の流れ
の速度を測定する。9は空間フイルター式速度センサ6
及び7により測定された紙料3のマシン方向及びクロス
マシン方向の速度とセンサ保持体8をクロスマシン方向
に移動させる場合にはセンサ保持体8の移動量(移動位
置)とワイヤ4の速度とを入力されるパーソナルコンピ
ユーターであり、このパーソナルコンピユーター9によ
りその測定位置での紙料3の速度ベクトル(紙料がマシ
ン方向から何度ズレているか、いかなる速度で流れてい
るか)及び紙料3とワイヤ4との速度差ベクトル及び紙
料3とワイヤ4との速度差ベクトル角度が計算されて、
紙料3とワイヤ4との速度差ベクトル角度が表示され
る。この計算は第3図に示すように、空間フイルター式
速度センサ6により紙料3のマシン方向の速度V1が、ま
た空間フイルター式速度センサ7により紙料3のクロス
マシン方向の速度V2がそれぞれ測定されると、これらの
速度V1とV2とから紙料3の速度ベクトルすなわち紙料3
の速度V0と紙料3の流れの向きθとを以下の式により求
め、 この紙料3の速度ベクトルV0とワイヤ4の速度Vwとから
第4図の示すベクトル図に基づいて紙料3とワイヤ4と
の速度差ベクトルVd及び紙料3とワイヤ4との速度差ベ
クトル角度αを求めるのであり、ここで速度ベクトル角
度αは下記の式で表わされる。
In the drawing, reference numeral 3 denotes a paper material discharged from a discharge port 2 of a head box 1 of a paper machine, which goes to the next drying step (not shown) while being dehydrated on the wire 4. 5 is the position of the stock 3 in the process of being discharged from the discharge port 2 of the head box 1 to being still in a flowing state on the wire 4, and two space filter type speed sensors 6 adjacent to each other on the same axis in the machine direction. 2 is used as a frame for arranging the sensor holding body 8 holding the wires 7 and 7 on the wire 4.
In the case of the structure in which the two space filter type speed sensors 6 and 7 are not moved, it suffices to simply use the frame for fixing the sensor holder 8 and the two space filter type speed sensors 6
In the case of a structure in which the measurement points are changed one after another while moving 7 and 7 in the cross machine direction, the guide body 5a for slidably supporting the sensor holder 8 in the cross machine direction and the sensor holder 8 are moved in the cross machine direction. For this purpose, a moving means such as a lead screw 5b screwed to the sensor holder 8 and a drive source 5c for driving the lead screw 5b may be provided. When the two space filter type speed sensors 6 and 7 held by the sensor holder 8 are installed on the frame 5 as the space filter type speed sensors 6 and 7 as described above, the space filter type of Ono Sokki Co., Ltd. is used. Speed sensor SF-6
When using 60B and SF760, the space between the space filter type speed sensors 6 and 7 should be 80 mm apart on the same axis in the machine direction, and the space filter type speed sensors 6 and 7 should be 515 mm apart from the paper surface.
The space filter type speed sensor 6 measures the flow speed of the stock 3 in the machine direction, and the space filter type speed sensor 7 measures the flow speed of the stock 3 in the cross machine direction. 9 is a space filter type speed sensor 6
And 7, the speeds of the stock 3 in the machine direction and the cross machine direction, and when the sensor holder 8 is moved in the cross machine direction, the movement amount (movement position) of the sensor holder 8 and the speed of the wire 4 The personal computer 9 inputs the speed vector of the stock 3 at the measurement position (how many times the stock is displaced from the machine direction and at what speed) and the stock 3 by this personal computer 9. The velocity difference vector between the wire 4 and the velocity difference vector angle between the stock 3 and the wire 4 are calculated,
The speed difference vector angle between the stock 3 and the wire 4 is displayed. In this calculation, as shown in FIG. 3, the speed V 1 of the stock 3 in the machine direction is measured by the space filter type speed sensor 6, and the speed V 2 of the stock 3 in the cross machine direction is calculated by the space filter type speed sensor 7. When measured respectively, from these velocities V 1 and V 2 , the velocity vector of the stock 3, that is, the stock 3
The velocity V 0 and the flow direction θ of the stock material 3 are calculated by the following equations, Based on the vector V 0 of the stock 3 and the speed V w of the wire 4, the speed difference vector Vd between the stock 3 and the wire 4 and the speed between the stock 3 and the wire 4 are obtained based on the vector diagram shown in FIG. The difference vector angle α is obtained, and the velocity vector angle α is represented by the following equation.

ここで このようにして紙料3の流れの向きがマシン方向から大
幅にズレていても、確実に高精度で短時間で紙料3の流
れの向きとその方向の速度とが計測出来るのである。そ
してセンサ保持体8をクロスマシン方向に移動させる場
合にはセンサ保持体8の移動位置における各計算結果を
チヤート上にプロツトさせた図として出力させれば紙の
クロスマシン方向のプロフアイルを描かせることが出来
るのである。
here In this way, even if the flow direction of the stock 3 is largely deviated from the machine direction, the flow direction of the stock 3 and the speed in that direction can be reliably measured in a short time with high accuracy. When the sensor holder 8 is moved in the cross machine direction, each calculation result at the moving position of the sensor holder 8 can be output as a chart plotted on a chart to draw a profile of the paper in the cross machine direction. You can do it.

〔作用〕[Action]

抄速790m/分,ワイヤ速度774.5m/分,再循環弁開度60%
で6600mmの坪量46.5g/m2の新聞用紙を抄紙した際に本発
明方法を実施するための本発明装置により測定した紙料
の速度ベクトル及びワイヤ速度を第5図(イ)に、また
紙料とワイヤとの速度差及びその速度差ベクトル角度を
第5図(ロ)に示した。
Machine speed 790m / min, wire speed 774.5m / min, recirculation valve opening 60%
Fig. 5 (a) shows the velocity vector and wire velocity of the stock measured by the device of the present invention for carrying out the method of the present invention when a newsprint paper having a basis weight of 66.5 mm and a weight of 46.5 g / m 2 was produced. The speed difference between the stock and the wire and the speed difference vector angle are shown in FIG.

また、抄速792m/分,ワイヤ速度816.5m/分,再循環弁開
度60%で6600mm幅の坪量46.5g/m2の新聞用紙を抄紙した
際に本発明方法を実施するための本発明装置により測定
した紙料の速度ベクトル及びワイヤ速度を第6図(イ)
に、また紙料とワイヤとの速度差及びその速度差ベクト
ル角度を第6図(ロ)に示した。
In addition, a method for carrying out the method of the present invention when a newsprint paper having a paper speed of 792 m / min, a wire speed of 816.5 m / min, a recirculation valve opening of 60% and a 6600 mm width and a basis weight of 46.5 g / m 2 is used. Fig. 6 (a) shows the paper stock velocity vector and wire velocity measured by the device of the invention.
Fig. 6 (b) shows the speed difference between the paper stock and the wire and the speed difference vector angle.

このようにして求められる紙料とワイヤとの速度差及び
その速度差ベクトル角度(紙料とワイヤとの速度差ベク
トル)が実際に抄紙された製品とどのような対応をなし
ているかを、抄紙の完了したリール製品から紙を裁いて
サンプリングして分子配向計(神崎製紙(株)製MOA-20
01A型)により求めた繊維配向角度と対比した結果を第
7図に示した。この繊維配向角度のプロフアイルより本
発明方法が実施の結果と非常に良く対応していることが
判る。
How the speed difference between the stock and the wire and the speed difference vector angle (the speed difference vector between the stock and the wire) obtained in this way correspond to the product actually made Molecular orientation meter (MOA-20 manufactured by Kanzaki Paper Co., Ltd.)
FIG. 7 shows the results of comparison with the fiber orientation angle determined by 01A type). From the profile of this fiber orientation angle, it can be seen that the method of the invention corresponds very well to the results of the practice.

またこのような測定は1点当り僅か0.3秒で測定が可能
であつたので、実用的な3メートル幅の抄紙機の場合に
は所定の測定位置1箇所における紙料の速度ベクトルと
ワイヤ速度を5回計測してもその平均値を求めるのに1.
5秒(0.3×5)しか必要としないから2つの速度センサ
を同時に100mm/秒で移動させて100mm間隔毎に25点場所
を変えて各測定点毎に5回分の平均値を求め、紙料とワ
イヤとの速度差ベクトルのクロスマシン方向プロフアイ
ル図の作成してもモニター上にチヤートとして表示させ
るのに僅か2分(移動時間25秒+計測時間25×1.5秒+
表示に要する時間)しか必要としなかった。
Moreover, since such a measurement can be performed in only 0.3 seconds per point, in the case of a practical paper machine with a width of 3 meters, the velocity vector of the stock and the wire velocity at one predetermined measuring position can be measured. Even if you measure 5 times, 1.
Since it requires only 5 seconds (0.3 x 5), two speed sensors are moved at 100 mm / sec at the same time, and 25 points are changed every 100 mm interval to find the average value of 5 times at each measuring point. Even if a cross machine direction profile diagram of the velocity difference vector between the wire and the wire is created, it takes only 2 minutes to display it as a chart on the monitor (moving time 25 seconds + measurement time 25 × 1.5 seconds +
Only the time required for display) was needed.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明に係る紙の繊維配向性の予測
方法は、抄造された紙の特性を判断する目安として繊維
配向性を、抄紙機のヘツドボツクスから吐出されてから
ワイヤ上で未だ流動状態にあるまでの過程の紙料位置に
マシン方向の同一軸上に隣接して2つの空間フイルター
式速度センサを配置し、片方の速度センサで紙料のマシ
ン方向の速度を測定しもう一方の速度センサで紙料のク
ロスマシン方向の速度を測定することによつて測定点の
紙料の速度ベクトル(紙料流れの向きと速さ)を求め、
その測定点における紙料の速度ベクトルとワイヤ速度と
から紙料とワイヤとの速度差ベクトルを求めて、紙料と
ワイヤとの速度差ベクトルの経時変化から紙のマシン方
向の繊維配向性の変動を短時間で予測するという簡単な
方法であり、この測定点の数をマシン方向の同一軸上に
隣接して配置した2つの速度センサを同時にクロスマシ
ン方向に移動させながら次々と測定点を変えることによ
つて、クロスマシン方向の紙料の速度ベクトルプロフア
イルパターン及び紙料とワイヤとの速度ベクトルプロフ
アイルパターンを求めれば、このクロスマシン方向の紙
料とワイヤとの速度差ベクトルプロフアイルパターンか
らリール製品のクロスマシン方向の繊維配向性プロフア
イルパターンも短時間で予測して表示出来る画期的な方
法であり、従来のようにその紙の抄造が完了しなければ
紙の繊維配向性が測定出来なかつた欠点を一挙に解決し
て操業中にその操業条件変更により繊維配向性のプロフ
アイルパターンがどのように変化するかを短時間に判断
出来るので、製紙業界に貢献するところの非常に大きな
ものであり、また本発明に係る紙の繊維配向性の予測装
置は上記本発明方法を実施すために好適な装置であつて
構造も比較的簡単で操作及び保守も容易である。
As described above in detail, the method for predicting the fiber orientation of the paper according to the present invention uses the fiber orientation as a criterion for judging the characteristics of the paper made by the paper, and the fiber orientation still flows on the wire after being discharged from the head box of the paper machine. Two space filter type speed sensors are arranged adjacent to each other on the same axis of the machine direction in the process of being in the state until the state, and one speed sensor measures the speed of the stock in the machine direction and the other speed sensor is used. The velocity vector of the stock at the measurement point (the direction and speed of the stock flow) is obtained by measuring the speed of the stock in the cross machine direction with the speed sensor,
The velocity difference vector between the stock and the wire is obtained from the velocity vector of the stock and the wire velocity at the measurement point, and the change in the fiber orientation in the machine direction of the paper is determined from the change with time of the velocity difference vector between the stock and the wire. Is a simple method of predicting in a short time. The number of measurement points is changed one after another while simultaneously moving two speed sensors arranged adjacent to each other on the same axis in the machine direction in the cross machine direction. Thus, if the speed vector profile pattern of the stock in the cross machine direction and the speed vector profile pattern of the stock and the wire are obtained, the speed difference vector profile pattern of the stock and the wire in the cross machine direction is obtained. This is an epoch-making method that can predict and display the fiber orientation profile pattern in the cross machine direction of reel products in a short time. As described above, if the paper orientation of the paper is not completed, the fiber orientation of the paper cannot be measured at once, and it is possible to determine how the fiber orientation profile pattern changes by changing the operating conditions during operation. Since it can be judged in a short time, it is a very large one that contributes to the paper manufacturing industry, and the fiber orientation predicting apparatus of the present invention is a suitable apparatus for carrying out the method of the present invention. The structure is relatively simple and easy to operate and maintain.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る紙の繊維配向性の予測方法を実施
する装置の概略を説明する側面図、第2図は同平面図、
第3図は2個の速度センサを利用して紙料の速度ベクト
ルを算出する方法の概念図、第4図(イ)〜(ニ)は紙
料の速度ベクトルとワイヤ速度から両者の速度差ベクト
ルを算出する方法の概念図、第5図(イ),(ロ)及び
第6図(イ),(ロ)はそれぞれ紙料の速度ベクトル及
びワイヤ速度の測定値に基づいて計算した紙料とワイヤ
との速度差及びその速度差ベクトル角度のクロスマシン
方向プロフアイル図の実施例を示すもので、(イ)は紙
料の速度ベクトル及びワイヤ速度を示し(ロ)は紙料と
ワイヤとの速度差及びその速度差ベクトル角度を示す。
第7図はクロスマシン方向の繊維配向角度プロフアイル
の予測値と実測値とを示す図、第8図は紙料流れを意識
的にコントロールしない状態で抄造された新聞用紙のク
ロスマシン方向の繊維配向性プロフアイルを示す図で、
(イ)は繊維配向角度プロフアイルをまた(ロ)は紙の
縦/横比プロフアイルを示す。第9図は紙料の速度を一
定に固定して紙料の吐出角度及びワイヤ速度を変更した
ときの繊維配向角度を示す図、第10図はこの第9図にお
ける紙料の吐出角度が−4度のときのワイヤ速度と分子
配向指数との関係を示す図である。 図面中 1……ヘツドボツクス 2……吐出口 3……紙料 4……ワイヤ 5……フレーム 5a……ガイド体 5b……親ネジ 5c……駆動源 6,7……空間フイルター式速度センサ 8……センサ保持体 9……パーソナルコンピユーター V0……紙料の速度 θ……紙料の流れの向き V1……紙料のマシン方向の速度 V2……紙料のクロスマシン方向の速度 Vw……ワイヤの速度 Vd……紙料とワイヤとの速度差ベクトル α……紙料とワイヤとの速度差ベクトル角度
FIG. 1 is a side view for explaining the outline of an apparatus for carrying out the method for predicting the fiber orientation of paper according to the present invention, and FIG. 2 is a plan view thereof.
FIG. 3 is a conceptual diagram of a method for calculating a paper stock speed vector using two speed sensors, and FIGS. 4 (a) to (d) are speed differences between the paper stock speed vector and the wire speed. A conceptual diagram of the method of calculating the vector, Fig. 5 (a), (b) and Fig. 6 (a), (b) are the paper stock calculated based on the measured values of the paper stock speed vector and wire speed, respectively. Shows a cross-machine direction profile diagram of the speed difference between the wire and the wire and the speed difference vector angle, (a) shows the speed vector of the stock and the wire speed, and (b) shows the stock and the wire. Shows the speed difference and the speed difference vector angle.
FIG. 7 is a diagram showing predicted values and measured values of the fiber orientation angle profile in the cross machine direction, and FIG. 8 is a cross machine direction fiber of newsprint produced without intentionally controlling the stock flow. It is a diagram showing an orientation profile,
(A) shows the fiber orientation angle profile, and (b) shows the paper aspect ratio profile. FIG. 9 shows the fiber orientation angle when the stock material speed is fixed and the stock material discharge angle and the wire speed are changed. FIG. 10 shows the stock material discharge angle in FIG. It is a figure which shows the relationship between a wire speed at 4 degrees, and a molecular orientation index. In the drawing 1 …… Headbox 2 …… Discharge port 3 …… Paper material 4 …… Wire 5 …… Frame 5a …… Guide body 5b …… Lead screw 5c …… Drive source 6,7 …… Space filter type speed sensor 8 ...... Sensor holder 9 ...... Personal computer V 0 …… Paper speed θ …… Paper flow direction V 1 …… Paper stock machine speed V 2 …… Paper stock cross machine direction V w …… Wire speed Vd …… Speed difference vector between stock and wire α …… Speed difference vector angle between stock and wire

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−233344(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-233344 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】抄紙機のヘツドボツクスから吐出されてか
らワイヤ上で未だ流動状態にあるまでの過程の紙料位置
にマシン方向の同一軸上に隣接して2つの空間フイルタ
ー式速度センサを配置し、片方の速度センサで紙料のマ
シン方向の速度を測定しもう一方の速度センサで紙料の
クロスマシン方向の速度を測定することによつて測定点
の紙料の速度ベクトル(紙料流れの向きと速度)を求
め、その測定点における紙料の速度ベクトルとワイヤ速
度とから紙料とワイヤとの速度差ベクトルを求めて、紙
料とワイヤとの速度差ベクトルの経時変化から紙のマシ
ン方向の繊維配向性の変動を予測することを特徴とする
紙の繊維配向性の予測方法。
1. Two space filter type speed sensors are arranged adjacent to each other on the same axis in the machine direction at the stock position in the process of being discharged from the head box of a paper machine and still being in a fluidized state on the wire. , One of the speed sensors measures the speed of the stock in the machine direction and the other speed sensor measures the speed of the stock in the cross-machine direction. Direction and speed), the speed vector of the stock at the measurement point and the wire speed to find the speed difference vector between the stock and the wire, and the change over time of the speed difference vector between the stock and the wire A method for predicting the fiber orientation of paper, characterized by predicting the variation of the fiber orientation in the direction.
【請求項2】マシン方向の同一軸上に隣接して配置した
2つの速度センサを同時にクロスマシン方向に移動させ
ながら次々と測定点を変えて、クロスマシン方向の紙料
の速度ベクトルプロフアイルパターン及び紙料とワイヤ
との速度差ベクトルプロフアイルパターンを求め、この
クロスマシン方向の紙料とワイヤとの速度差ベクトルプ
ロフアイルパターンからリール製品のクロスマシン方向
の繊維配向性プロフアイルパターンを予測し表示する請
求項1に記載の紙の繊維配向性の予測方法。
2. A velocity vector profile pattern of a stock material in the cross machine direction by moving two speed sensors arranged adjacent to each other on the same axis in the machine direction in the cross machine direction at the same time while changing measurement points one after another. And the speed difference vector profile pattern between the stock and the wire, and the fiber orientation profile pattern in the cross machine direction of the reel product is predicted from this speed difference vector profile pattern between the stock and the wire in the cross machine direction. The method for predicting fiber orientation of paper according to claim 1, which is displayed.
【請求項3】抄紙機のヘツドボツクス(1)の吐出口
(2)から吐出されてからワイヤ(4)上で未だ流動状
態にあるまでの過程の紙料(3)の位置の直上にフレー
ム(5)によりマシン方向の同一軸上に隣接して2つの
空間フイルター式速度センサ(6,7)を保持しているセ
ンサ保持体(8)と、該2つの空間フイルター式速度セ
ンサ(6,7)により測定されたマシン方向の紙料(3)
の流れの速度及びクロスマシン方向の紙料(3)の流れ
の速度とワイヤ(4)の速度とを入力されてその測定位
置での紙料(3)の速度ベクトル,紙料(3)とワイヤ
(4)との速度差ベクトル及び紙料(3)とワイヤ
(4)との速度差ベクトル角度を計算して紙料(3)と
ワイヤ(4)との速度差ベクトル及び紙料(3)とワイ
ヤ(4)との速度差ベクトル角度を表示するパーソナル
コンピユーター(9)とを備えていることを特徴とする
紙の繊維配向性の予測装置。
3. A frame (3) immediately above the position of the stock (3) in the process of being discharged from the discharge port (2) of the head box (1) of the paper machine and still being in a fluidized state on the wire (4). 5) A sensor holder (8) holding two space filter type speed sensors (6, 7) adjacent to each other on the same axis in the machine direction, and the two space filter type speed sensors (6, 7). ) Machine-wise stock as measured by ()
Flow velocity and the flow velocity of the stock (3) in the cross machine direction and the velocity of the wire (4) are input, and the velocity vector of the stock (3) at the measurement position, the stock (3) and The speed difference vector between the stock (3) and the wire (4) is calculated by calculating the speed difference vector between the stock (3) and the wire (4). ) And a personal computer (9) for displaying the velocity difference vector angle between the wire (4) and the wire (4).
【請求項4】フレーム(5)がセンサ保持体(8)をク
ロスマシン方向に摺動自在に支持するガイド体(5a)と
センサ保持体(8)をクロスマシン方向に移動させる移
動手段とを備えたものであり、パーソナルコンピユータ
ー(9)が2つの空間フイルター式速度センサ(6,7)
により測定されたマシン方向の紙料(3)の流れの速度
及びクロスマシン方向の紙料(3)の流れの速度とセン
サ保持体(8)の移動量とワイヤ(4)の速度とを入力
されて各測定位置での紙料(3)の速度ベクトル,紙料
(3)とワイヤ(4)との速度差ベクトル及び紙料
(3)とワイヤ(4)との速度差ベクトル角度を計算し
て紙料(3)とワイヤ(4)との速度差ベクトル及び紙
料(3)とワイヤ(4)との速度差ベクトル角度をチヤ
ート上にプロツトさせた図として出力させれるものであ
る請求項3に記載の紙の繊維配向性の予測装置。
4. A guide body (5a) for supporting a sensor holder (8) slidably in the cross machine direction by a frame (5) and a moving means for moving the sensor holder (8) in the cross machine direction. It is equipped with a personal computer (9) with two space filter type speed sensors (6, 7).
Input the flow velocity of the stock (3) in the machine direction, the flow velocity of the stock (3) in the cross machine direction, the movement amount of the sensor holding body (8) and the speed of the wire (4) measured by Then, the velocity vector of the stock (3), the velocity difference vector between the stock (3) and the wire (4), and the velocity difference vector angle between the stock (3) and the wire (4) at each measurement position are calculated. The speed difference vector between the stock (3) and the wire (4) and the speed difference vector angle between the stock (3) and the wire (4) can be output as a chart plotted on a chart. Item 5. A device for predicting the fiber orientation of paper according to Item 3.
JP1180589A 1989-07-14 1989-07-14 Method and device for predicting fiber orientation of paper Expired - Fee Related JPH0749637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1180589A JPH0749637B2 (en) 1989-07-14 1989-07-14 Method and device for predicting fiber orientation of paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1180589A JPH0749637B2 (en) 1989-07-14 1989-07-14 Method and device for predicting fiber orientation of paper

Publications (2)

Publication Number Publication Date
JPH0345795A JPH0345795A (en) 1991-02-27
JPH0749637B2 true JPH0749637B2 (en) 1995-05-31

Family

ID=16085908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180589A Expired - Fee Related JPH0749637B2 (en) 1989-07-14 1989-07-14 Method and device for predicting fiber orientation of paper

Country Status (1)

Country Link
JP (1) JPH0749637B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399380B2 (en) * 2004-11-10 2008-07-15 Honeywell International Inc. Jet velocity vector profile measurement and control

Also Published As

Publication number Publication date
JPH0345795A (en) 1991-02-27

Similar Documents

Publication Publication Date Title
JP3211089B2 (en) Electro-optical device for measuring single entities of fibers or other samples
US4947684A (en) System and process for detecting properties of travelling sheets in the machine direction
US4903528A (en) System and process for detecting properties of travelling sheets in the cross direction
US4921574A (en) Process for controlling properties of travelling sheets with scan widths less than the sheet width
KR890007074A (en) System and process for continuous determination of paper strength
US5298122A (en) Measuring device and method for measuring the crosswise profile of a paper web
EP1624302A2 (en) Measuring and testing continuous elongated textile material
US6231722B1 (en) Method and system for monitoring the process of separation of a web
EP0253644B1 (en) Sensor for determination of the strength of sheet materials
PL189954B1 (en) A method of monitoring the distance between the rolls of a roll pair, and means for use in carrying out the method
US4742879A (en) Apparatus for measuring quantities of fiber fed to a textile machine
JPH0749637B2 (en) Method and device for predicting fiber orientation of paper
JPH01104896A (en) Method and apparatus for measuring air permeability in papermaking machine
US5728930A (en) Method and device for measuring the permeability of a drying wire to air
FI108884B (en) Method and apparatus for measuring paper thickness
US5373545A (en) Method for the on-line nondestructive measurement of a characteristic of a continuously produced
US7386975B2 (en) Method for determining the effects of fancy yarn
US7399380B2 (en) Jet velocity vector profile measurement and control
RU2422821C2 (en) Device to evaluate quality of bast or fibre of fibre crops
JP4228472B2 (en) Method and apparatus for predicting fiber orientation characteristics of paper
CA2300115C (en) Method for operating a traversing sensor apparatus
JPH09210664A (en) Method and apparatus for measuring selvage wave of coil
CA2024649C (en) Method for measuring the cyclic speed of a traveling looped belt
JPH026707A (en) Measuring method for worn crown of roll
JPH06294645A (en) Bent detection method for rolled member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees