JPH074952A - Measuring method for surface area - Google Patents

Measuring method for surface area

Info

Publication number
JPH074952A
JPH074952A JP5145297A JP14529793A JPH074952A JP H074952 A JPH074952 A JP H074952A JP 5145297 A JP5145297 A JP 5145297A JP 14529793 A JP14529793 A JP 14529793A JP H074952 A JPH074952 A JP H074952A
Authority
JP
Japan
Prior art keywords
surface area
adsorbed
water
desorbed
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5145297A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hirayama
博之 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5145297A priority Critical patent/JPH074952A/en
Publication of JPH074952A publication Critical patent/JPH074952A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the surface area of an uneven polysilicon film nondestructively and extremely simply. CONSTITUTION:A polysilicon film in which uneven parts have been formed on the surface is deposited on a substrate 20. After that, when water is supplied to the surface of the film from an ultrapure water source 9 at 170 K in a vacuum, only a monomolecular layer is adsorbed to the whole face. After that, when the layer is set to room temperature, water molecules which have been adsorbed are all desorbed. The amount of desorbed water is measured by a quadrupole mass spectrometer 10. Since the water molecules which are desorbed are equal to the amount of water which has been adsorbed as the monomolecular layer, the amount desorbed is equal to the surface area of the polysillcon film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電荷蓄積用ポリシリコン
電極等の物体の表面積を測定する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for measuring the surface area of an object such as a charge storage polysilicon electrode.

【0002】[0002]

【従来の技術】従来、特開平3−272165号公報、
特開平3−139882号公報などに見られるように、
表面に微細な凹凸をつけて表面積を極めて大きくしたポ
リシリコンを電荷蓄積用電極に用いられている。凹凸の
ポリシリコンを用いると、同じセル面積で蓄積容量を増
加させることができ、α線エラー耐性が向上し、メモリ
保持時間も増加する。また同じ蓄積容量であればセルサ
イズを縮小する事ができ半導体メモリを高集積化するこ
とができる。特開平3−272165号公報は、シリコ
ンを気相成長するとき、堆積膜の結晶状態がアモルファ
スからポリクリスタルへ変化する遷移温度で成長する
と、表面に数十nm程度の径の凹凸が高密度に形成され
たシリコン膜が形成されるというものである。特開平3
−139882号公報は、燐を高濃度に添加したポリシ
リコン膜を、加熱した燐酸液でエッチングすると結晶粒
界が特に速くエッチングされ、その結果膜表面に凹凸が
形成されるというものである。
2. Description of the Related Art Conventionally, JP-A-3-272165,
As seen in JP-A-3-139882,
Polysilicon, which has a very large surface area with fine irregularities on the surface, is used for the charge storage electrode. If uneven polysilicon is used, the storage capacity can be increased in the same cell area, the α-ray error resistance is improved, and the memory retention time is also increased. Further, if the storage capacity is the same, the cell size can be reduced and the semiconductor memory can be highly integrated. Japanese Unexamined Patent Publication No. 3-272165 discloses that, when vapor deposition of silicon is carried out at a transition temperature at which the crystalline state of a deposited film changes from amorphous to polycrystal, irregularities with a diameter of about several tens nm are densely formed on the surface. The formed silicon film is formed. JP-A-3
Japanese Patent Laid-Open No. 139882 discloses that when a polysilicon film to which phosphorus is added at a high concentration is etched with a heated phosphoric acid solution, crystal grain boundaries are etched particularly quickly, and as a result, irregularities are formed on the film surface.

【0003】この電荷蓄積の性能はその表面積の大きさ
で決まる。従って表面積の測定が重要となるが、従来は
基板上に形成したポリシリコン膜を基板ごと割って膜の
断面を走査電子顕微鏡観察することで行われていた。
The performance of this charge storage depends on the size of its surface area. Therefore, it is important to measure the surface area, but conventionally, the polysilicon film formed on the substrate is divided together with the substrate and the cross section of the film is observed by a scanning electron microscope.

【0004】[0004]

【発明が解決しようとする課題】しかしこのような凹凸
ポリシリコンの表面は極めて多岐にわたる。一方上記の
従来の測定方法によって検査できるポリシリコンはこの
広い分布の中のごく一部でしかない。そのため様々な形
状分布を持つポリシリコン膜の表面積を顕微鏡観察から
推定するためには電極を構成する様々な場所での某大な
数の顕微鏡観察が必要であり、その検査効率は非常に悪
くなる。さらにこの検査方法では検査試料は必ず割る必
要があり破壊検査となってしまう。
However, the surface of such uneven polysilicon has a wide variety of surfaces. On the other hand, the polysilicon that can be inspected by the above-mentioned conventional measuring method is only a part of this wide distribution. Therefore, in order to estimate the surface area of a polysilicon film with various shape distributions from a microscopic observation, it is necessary to observe a large number of microscopic observations at various places constituting the electrode, and the inspection efficiency becomes extremely poor. . Furthermore, in this inspection method, the inspection sample must always be broken, resulting in a destructive inspection.

【0005】以上述べた問題点は電荷蓄積用ポリシリコ
ン電極に限らず、半導体集積回路あるいはさらに一般に
物体表面に形成された微細な凹凸の表面積を測定する場
合に共通するものである。
The above-mentioned problems are not limited to the charge storage polysilicon electrode, but are common to the semiconductor integrated circuit or more generally when measuring the surface area of fine irregularities formed on the surface of an object.

【0006】本発明の目的は従来の方法では不可能であ
った、非破壊かつ効率の高い物体表面積の測定方法を提
供することにある。
An object of the present invention is to provide a non-destructive and highly efficient method for measuring the surface area of an object, which was impossible by the conventional methods.

【0007】[0007]

【課題を解決するための手段】本発明は、物体の表面に
真空中で低温でガスを吸着させ、その後温度を上げ、そ
のとき脱離するガスの量を測定することにより吸着した
部分の膜の表面積を測定することを特徴とする。
According to the present invention, a film of an adsorbed portion is obtained by adsorbing a gas on a surface of an object at a low temperature in a vacuum and then raising the temperature and measuring the amount of the gas desorbed at that time. It is characterized by measuring the surface area of.

【0008】吸着ガスとしては表面に一分子層吸着する
気体を用いるとよい。またその気体としては水分子を用
いることができる。水の場合120K程度〜200K程
度の温度範囲で吸着を行い、室温で脱離させてその量を
測定する。
As the adsorbed gas, it is preferable to use a gas that adsorbs a monolayer on the surface. Water molecules can be used as the gas. In the case of water, adsorption is performed within a temperature range of about 120 K to 200 K, desorption is performed at room temperature, and the amount is measured.

【0009】一般に水分子と固体表面の相互作用は極め
て弱く、基本的に水分子は固体表面にはvan der
Waals的な吸着をする。このため真空中において
水分子は物質表面の温度が200K程度以下にならない
と表面に吸着しない。基板温度が200K程度以下の場
合には真空中において水分子は表面に一分子層分の吸着
しかない。基板温度がおよそ120K程度以下の場合に
はこの一分子層吸着した水分子の上の多層の水分子が吸
着するようになる。従ってポリシリコン膜の温度を真空
中で200K以下かつ120K以上の温度に保って、こ
の上に水分子を供給した場合には水分子はその表面に一
分子層吸着する。この温度領域での水分子の吸着係数は
ほとんど1に近い。従って全てのポリシリコン表面を一
分子層の水分子で覆うためには1ラングミュアー程度の
極めて微量の水分子の供給で十分である。この後ポリシ
リコン膜を再び室温に戻した場合には表面に吸着してい
た水分子は全て脱離する。このとき脱離する水分子の量
を四重極質量分析計でモニターする。脱離する水分子の
総量はポリシリコン膜の表面積に一分子層吸着した水の
量に等しいから、脱離量はポリシリコンの表面積に比例
することになる。従ってポリシリコンを常温に戻した時
に脱離する水分子の量によってポリシリコン膜全体の表
面積を評価することができる。この方法はポリシリコン
の形状分布によらず全体の表面積を検査する上で極めて
簡便である。この検査方法は非破壊であり、さらにこの
時に用いる温度は室温あるいはそれ以下の温度であるか
らこの検査によってポリシリコンの下に作りこれまたデ
バイス等の構造を熱的に破壊することがない。また検査
に用いる水分子は表面に吸着した際に表面をエッチング
する、あるいはダングリングボンドを終端する等の相互
作用がなく、しかも真空中で室温に戻したときに表面か
ら完全に脱離する。従って非破壊かつ効率的なポリシリ
コンの検査が実現される。
Generally, the interaction between water molecules and the solid surface is extremely weak, and basically water molecules are van der on the solid surface.
Adsorbs like Waals. Therefore, in vacuum, water molecules are not adsorbed on the surface unless the temperature of the surface of the substance falls below about 200K. When the substrate temperature is about 200 K or less, water molecules are adsorbed on the surface only for one molecular layer in vacuum. When the substrate temperature is about 120 K or lower, the multi-layered water molecules above the water molecules adsorbed by the one molecular layer are adsorbed. Therefore, when the temperature of the polysilicon film is kept at a temperature of 200 K or less and 120 K or more in a vacuum and water molecules are supplied onto the polysilicon film, the water molecules are adsorbed on the surface by one molecular layer. The adsorption coefficient of water molecules in this temperature region is close to 1. Therefore, in order to cover all the polysilicon surface with one molecular layer of water molecules, it is sufficient to supply an extremely small amount of water molecules of about 1 Langmuir. After that, when the polysilicon film is returned to room temperature again, all water molecules adsorbed on the surface are desorbed. The amount of water molecules released at this time is monitored by a quadrupole mass spectrometer. Since the total amount of desorbed water molecules is equal to the amount of water monomolecularly adsorbed on the surface area of the polysilicon film, the desorbed amount is proportional to the surface area of polysilicon. Therefore, the surface area of the entire polysilicon film can be evaluated by the amount of water molecules released when the polysilicon is returned to room temperature. This method is extremely simple in examining the entire surface area regardless of the shape distribution of polysilicon. This inspection method is non-destructive, and the temperature used at this time is room temperature or lower, so that the structure is not formed under the polysilicon by this inspection and the structure of the device or the like is not thermally destroyed. Further, water molecules used for inspection have no interaction such as etching the surface when adsorbed on the surface or terminating dangling bonds, and are completely desorbed from the surface when returned to room temperature in vacuum. Therefore, nondestructive and efficient inspection of polysilicon is realized.

【0010】[0010]

【実施例】以下図面を用いて本発明の実施例について説
明する。図1は本発明を説明するための検査装置の概要
である。基板20上に前述の従来の方法で前面に凹凸ポ
リシリコン膜を形成した。この基板20をサンプルロー
ド室1にカセット2によって多数枚導入する。この後ロ
ード室1は真空に排気され、10- 7 Torr以下の圧
力になったときサンプルトランスファー3によってゲー
トバルブ4を開けて枚葉式に超高真空の検査室5へ移動
される。検査室内の試料台6に基板20をのせた後、直
ちにゲートバルブ4は閉じる。そして試料台6につなが
ったクライオヘッド7によって試料は170Kまで冷却
される。基板温度はクライオヘッド7とヒーター8の組
み合わせによって室温から100K程度までの任意の温
度に素早く設定可能である。基板温度170Kにおいて
超高純水ソース9から1Lの水分子を試料台6上の基板
20に供給してポリシリコン膜表面に一分子層吸着させ
る。この後基板温度を20K/secの割合で室温まで
上昇させ、このとき試料から脱離してくる水の量を四重
極質量分析計10で基板温度の関数として観測する。こ
のとき得られる昇温脱離スペクトルの一例を図2に示
す。図2において斜線で示した昇温脱離スペクトルの面
積は脱離してきた水分子の量に対応する。様々な形成条
件で作製した表面形状分布の異なったポリシリコン膜に
関する表面積を各膜中の多数点の断面顕微鏡写真から判
定した結果と、本方法によって得られた水の昇温スペク
トルの面積の関係を図3に示す。図から明かなように顕
微鏡の結果による表面積と、本方法による水の昇温脱離
スペクトルの面積は比例関係にある。従って本方法によ
ってポリシリコンの表面積を簡便に評価できることは明
かである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an outline of an inspection apparatus for explaining the present invention. An uneven polysilicon film was formed on the front surface of the substrate 20 by the conventional method described above. A large number of the substrates 20 are introduced into the sample load chamber 1 by the cassette 2. Load chamber 1 after this is evacuated to a vacuum, 10 - 7 Torr is moved following the sample transfer 3 UHV laboratory 5 in single wafer by opening the gate valve 4 by when it is pressure. Immediately after placing the substrate 20 on the sample table 6 in the inspection chamber, the gate valve 4 is closed. Then, the sample is cooled to 170 K by the cryohead 7 connected to the sample table 6. The substrate temperature can be quickly set to any temperature from room temperature to about 100K by combining the cryohead 7 and the heater 8. At a substrate temperature of 170 K, 1 L of water molecules are supplied from the ultrapure water source 9 to the substrate 20 on the sample stage 6 so that one molecule layer is adsorbed on the surface of the polysilicon film. After that, the substrate temperature is raised to room temperature at a rate of 20 K / sec, and the amount of water desorbed from the sample at this time is observed by the quadrupole mass spectrometer 10 as a function of the substrate temperature. An example of the thermal desorption spectrum obtained at this time is shown in FIG. The area of the temperature programmed desorption spectrum indicated by hatching in FIG. 2 corresponds to the amount of desorbed water molecules. The relationship between the surface area of the polysilicon films with different surface shape distributions prepared under various formation conditions, determined from the cross-sectional micrographs of multiple points in each film, and the area of the temperature rise spectrum of water obtained by this method. Is shown in FIG. As is clear from the figure, the surface area of the result of the microscope is proportional to the area of the thermal desorption spectrum of water by this method. Therefore, it is obvious that the surface area of polysilicon can be easily evaluated by this method.

【0011】[0011]

【発明の効果】以上詳しく説明したように、本発明によ
ればポリシリコンの表面積は非破壊かつ極めて簡便に評
価することができる。なお本発明はシリコンのみならず
他の半導体や金属、絶縁体等他の物質の表面積評価方法
としても有効である。
As described in detail above, according to the present invention, the surface area of polysilicon can be evaluated nondestructively and very easily. The present invention is also effective as a surface area evaluation method for not only silicon but also other semiconductors, metals, insulators and other substances.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明するための検査装置の説
明図である。
FIG. 1 is an explanatory diagram of an inspection device for explaining an embodiment of the present invention.

【図2】本発明の実施例を説明するための、ポリシリコ
ン膜からの水の昇温脱離スペクトルを示す図である。
FIG. 2 is a diagram showing a thermal desorption spectrum of water from a polysilicon film for explaining an example of the present invention.

【図3】本発明の実施例を説明するための断面顕微鏡観
察によって求めたポリシリコン膜表面積と水の昇温脱離
スペクトル面積の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a surface area of a polysilicon film and a thermal desorption spectrum area of water, which are obtained by observing a cross-sectional microscope for explaining an example of the present invention.

【符号の説明】[Explanation of symbols]

1 サンプルロード室 2 サンプルカセット 3 サンプルトランスファー 4 ゲートバルブ 5 検査室 6 試料台 7 クライオヘッド 8 ヒーター 9 超高純水ソース 10 四重極質量分析計 11 ターボ分子ポンプ 12 ロータリーポンプ 13 コンピューター 20 基板 1 sample loading chamber 2 sample cassette 3 sample transfer 4 gate valve 5 inspection chamber 6 sample stage 7 cryohead 8 heater 9 ultra high pure water source 10 quadrupole mass spectrometer 11 turbomolecular pump 12 rotary pump 13 computer 20 substrate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 物体の表面に真空中で低温でガスを吸着
させ、その後温度を上げ、そのとき脱離するガスの量を
測定することにより吸着した部分の膜の表面積を測定す
ることを特徴とする物体の表面積の測定方法。
1. A surface area of a film of an adsorbed portion is measured by adsorbing a gas on a surface of an object at a low temperature in a vacuum, then raising the temperature and measuring the amount of the gas desorbed at that time. Measuring method of surface area of object.
【請求項2】 吸着ガスとして表面に一分子層吸着する
気体を用いる請求項1に記載の表面積の測定方法。
2. The surface area measuring method according to claim 1, wherein a gas that is adsorbed on the surface by a monolayer is used as the adsorption gas.
【請求項3】 一分子層吸着させる気体として水分子を
用いる請求項2に記載の表面積の測定方法。
3. The method for measuring surface area according to claim 2, wherein water molecules are used as the gas to be adsorbed by one molecular layer.
【請求項4】 120K程度〜200K程度の温度範囲
で吸着を行い、室温で脱離させる請求項3に記載の表面
積の測定方法。
4. The surface area measuring method according to claim 3, wherein adsorption is performed in a temperature range of about 120 K to 200 K, and desorption is performed at room temperature.
【請求項5】 表面に凹凸を有するポリシリコン膜の表
面積を測定する請求項1、2、3、または4に記載の表
面積の測定方法。
5. The surface area measuring method according to claim 1, 2, 3, or 4, wherein the surface area of a polysilicon film having irregularities on the surface is measured.
【請求項6】 ポリシリコン膜は電荷蓄積用の電極であ
る請求項5に記載の表面積の測定方法。
6. The surface area measuring method according to claim 5, wherein the polysilicon film is an electrode for accumulating charges.
JP5145297A 1993-06-17 1993-06-17 Measuring method for surface area Pending JPH074952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5145297A JPH074952A (en) 1993-06-17 1993-06-17 Measuring method for surface area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5145297A JPH074952A (en) 1993-06-17 1993-06-17 Measuring method for surface area

Publications (1)

Publication Number Publication Date
JPH074952A true JPH074952A (en) 1995-01-10

Family

ID=15381892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5145297A Pending JPH074952A (en) 1993-06-17 1993-06-17 Measuring method for surface area

Country Status (1)

Country Link
JP (1) JPH074952A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119813A (en) * 1997-06-10 2000-09-19 Nsk Ltd. Lubricant feeder and linear apparatus
US6135638A (en) * 1998-07-16 2000-10-24 Nippon Thompson Co., Ltd. Linear motion guide unit with lubricating plate assembly
US6190046B1 (en) 1998-07-14 2001-02-20 Nippon Thompson Co., Ltd. Linear motion guide unit with lubricating plate assembly
US6216821B1 (en) 1997-07-24 2001-04-17 Nsk Ltd. Lubricating apparatus for ball screw
US6338285B2 (en) 1996-06-17 2002-01-15 Nsk Ltd. Feed screw device
DE102005000688A1 (en) * 2005-01-04 2006-07-20 Infineon Technologies Ag Method for determining surface of recesses arranged in carrier substrate involves baking carrier substrate in chamber and evacuating chamber, in order to produce and make around an essentially degassed total surface of carrier substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100640A (en) * 1985-10-28 1987-05-11 Shimadzu Corp Specific surface area measuring instrument
JPS62167428A (en) * 1985-12-20 1987-07-23 Shimadzu Corp Apparatus for degassing specimen for measurement of surface area by gas adsorbing method
JPH05288666A (en) * 1992-04-08 1993-11-02 Tokyo Electron Ltd Effective-surface-area estimating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100640A (en) * 1985-10-28 1987-05-11 Shimadzu Corp Specific surface area measuring instrument
JPS62167428A (en) * 1985-12-20 1987-07-23 Shimadzu Corp Apparatus for degassing specimen for measurement of surface area by gas adsorbing method
JPH05288666A (en) * 1992-04-08 1993-11-02 Tokyo Electron Ltd Effective-surface-area estimating method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338285B2 (en) 1996-06-17 2002-01-15 Nsk Ltd. Feed screw device
US6450295B1 (en) 1996-06-17 2002-09-17 Nsk Ltd. Feed screw device
US6752245B2 (en) 1996-06-17 2004-06-22 Nsk Ltd. Feed screw device
US6880676B2 (en) 1996-06-17 2005-04-19 Nsk Ltd. Feed screw device
US7650806B2 (en) 1996-06-17 2010-01-26 Nsk Ltd. Feed screw device
US6119813A (en) * 1997-06-10 2000-09-19 Nsk Ltd. Lubricant feeder and linear apparatus
US6216821B1 (en) 1997-07-24 2001-04-17 Nsk Ltd. Lubricating apparatus for ball screw
US6190046B1 (en) 1998-07-14 2001-02-20 Nippon Thompson Co., Ltd. Linear motion guide unit with lubricating plate assembly
US6135638A (en) * 1998-07-16 2000-10-24 Nippon Thompson Co., Ltd. Linear motion guide unit with lubricating plate assembly
DE102005000688A1 (en) * 2005-01-04 2006-07-20 Infineon Technologies Ag Method for determining surface of recesses arranged in carrier substrate involves baking carrier substrate in chamber and evacuating chamber, in order to produce and make around an essentially degassed total surface of carrier substrate

Similar Documents

Publication Publication Date Title
Comini et al. Single crystal ZnO nanowires as optical and conductometric chemical sensor
JP2005311385A (en) Dc-sputtering process for manufacturing thin-film ferroelectric capacitor having smoothing electrode and improved memory retentivity
US20130288182A1 (en) Electron Beam Processing With Condensed Ice
US3728694A (en) Thin film ferroelectric device
Yashina et al. X-ray photoelectron studies of clean and oxidized α-GeTe (111) surfaces
Eickmans et al. On the annealing of “sers active” silver films: UPS and TDS of adsorbed xenon
JPH074952A (en) Measuring method for surface area
Voogt et al. Adsorption of carbon monoxide on Pd (111) and palladium model catalysts
Liehr Integrated thermal chemical vapor deposition processing for Si technology
Jastram et al. Cryogenic dark matter search detector fabrication process and recent improvements
JP2002270596A (en) Apparatus for fabricating semiconductor device
EP1416530A2 (en) Treatment of a tunnel barrier layer
JP2003347382A (en) Inspection device for dielectric film, inspection method and manufacturing method of semiconductor device
Voorhoeve et al. Kinetics and thermodynamics of thin‐film deposition by molecular beam methods. II. Nucleation, growth, and evaporation of cadmium on germanium single crystals
Prasad et al. Self diffusion studies on cobalt thin films
Brown et al. Laboratory investigations of the role of the grain surface in astrochemical models
Gołek et al. LiF thin layers on Si (100) studied by ESD, LEED, AES, and AFM
Kay Prevention of Oxidation in a Glow Discharge Environment with Sputtered Permalloy Films as an Example
Rod et al. The effects of PECVD silicon dioxide passivation on the electrical characteristics of Sol-Gel deposited PZT film capacitors
Shen The Design and Performance of a High‐Speed Economical Ultrahigh Vacuum Chamber Utilizing Titanium Sublimation
Platt et al. Superconducting tunneling as a probe of sputtered oxide barriers
Nguyen et al. Analysis of critical points in semiconductor optical functions from in situ and real-time spectroscopic ellipsometry
JPS63195191A (en) Epitaxy growing equipment and process
Longiaru et al. Epitaxy above 10− 5 Torr: A student’s introduction to thin film growth and characterization
Bansal Epitaxial growth of topological materials

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960507