JPH0748576A - Dehydrochlorination vessel in waste-plastic liquefaction apparatus - Google Patents

Dehydrochlorination vessel in waste-plastic liquefaction apparatus

Info

Publication number
JPH0748576A
JPH0748576A JP19654493A JP19654493A JPH0748576A JP H0748576 A JPH0748576 A JP H0748576A JP 19654493 A JP19654493 A JP 19654493A JP 19654493 A JP19654493 A JP 19654493A JP H0748576 A JPH0748576 A JP H0748576A
Authority
JP
Japan
Prior art keywords
tank
dehydrochlorination
vessel
pyrolysis
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19654493A
Other languages
Japanese (ja)
Other versions
JPH0819419B2 (en
Inventor
Takaharu Takeuchi
隆春 武内
Nobuyuki Mikata
信行 三方
Atsushi Kobayashi
淳志 小林
Hitoshi Ono
仁 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SMALL CORP
Original Assignee
JAPAN SMALL CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SMALL CORP filed Critical JAPAN SMALL CORP
Priority to JP19654493A priority Critical patent/JPH0819419B2/en
Publication of JPH0748576A publication Critical patent/JPH0748576A/en
Publication of JPH0819419B2 publication Critical patent/JPH0819419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To stabilize the air flow resistance of a dehydrochlorination vessel which removes chlorine contained in the vapor of an oil formed by thermal decomposition and thus prevents poisoning of a catalytic decomposition catalyst in a process for liquefying a chlorine-contg. waste plastic. CONSTITUTION:A waste-plastic liquefaction apparatus comprises a raw material mixing vessel for melting waste plastic, a thermal decomposition vessel for thermally decomposing the resultant melt, a dehydrochlorination vessel for removing chlorine produced in the decomposition vessel from the vapor of an oil formed by the thermal decomposition, and a catalytic decomposition vessel for reforming the vapor provided that an inorg. coarse particle layer having a thickness of 50-100mm and a particle size of 20-40mm is formed at least at the inlet side of the dehydrochlorination vessel and that a CaO layer having a particle size of 2-10mm is formed at the down-stream side of the coarse particle layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、廃プラスチック材の油
化処理設備における脱塩化水素槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dehydrochlorination tank in oil treatment equipment for waste plastic materials.

【0002】[0002]

【従来の技術】廃プラスチック材を油化処理する方法と
して、特開平3−86791号公報に見られるようにポ
リオレフィン系廃プラスチック材を熱分解し、低沸点炭
化水素油の製造を行うものが知られている。
2. Description of the Related Art As a method for oil treatment of waste plastic materials, there is known a method of producing a low boiling point hydrocarbon oil by thermally decomposing a polyolefin waste plastic material as disclosed in Japanese Patent Laid-Open No. 3-86791. Has been.

【0003】図5はこの方法による設備における供給廃
プラスチック材のフロー図である。同図に示すように、
プラスチック材は、まず押出機1によって混練・溶融し
て原料混合槽2に供給される。この溶融プラスチックは
原科混合槽2において、後段の熱分解槽3において生成
した熱分解油を還流し混合して完全溶融させる。次に完
全溶融したプラスチックを熱分解槽3へ送り、加熱炉4
との間を循環させる事により加熱し熱分解させる。この
熱分解に工程において、熱分解槽3からプラスチックの
熱分解油ベーパーが発生し、この熱分解油ベーパーを合
成ゼオライト触媒を内蔵した接触分解槽5に導入し、該
触媒との接触分解反応によって低沸点炭化水素油ベーパ
ーに分解・改質する。次いで、この熱分解油ベーパーを
クーラー6で凝縮させ、低沸点炭化水素油を得る。
FIG. 5 is a flow chart of the waste plastic material supplied in the equipment by this method. As shown in the figure,
The plastic material is first kneaded and melted by the extruder 1 and supplied to the raw material mixing tank 2. This molten plastic is completely melted by refluxing and mixing the pyrolysis oil produced in the thermal cracking tank 3 in the latter stage in the original mixing tank 2. Next, the completely melted plastic is sent to the thermal decomposition tank 3, and the heating furnace 4
It is heated and pyrolyzed by circulating between and. In the process of this thermal decomposition, a thermal decomposition oil vapor of plastic is generated from the thermal decomposition tank 3, and this thermal decomposition oil vapor is introduced into the catalytic decomposition tank 5 containing the synthetic zeolite catalyst, and by catalytic decomposition reaction with the catalyst. Decomposes and reforms into low boiling point hydrocarbon oil vapor. Next, this pyrolyzed oil vapor is condensed in a cooler 6 to obtain a low boiling point hydrocarbon oil.

【0004】ところが、一般の廃棄物系プラスチック材
中には、ポリオレフィン系プラスチック以外に塩化ビニ
ルが10〜15wt%含まれており、この塩化ビニルか
らは、熱分解される過程で塩化水素が発生する。塩化水
素は、前記接触分解槽に内蔵された合成ゼオライト系触
媒を被毒し、触媒効果を失わせる。また塩化水素が生成
油中に混入すると、この生成油の燃焼時の有害物質の発
生の懸念があるため、燃料油として不適となり、生成油
の用途が大幅に狭められることになる。
However, in general waste plastic materials, 10 to 15 wt% of vinyl chloride is contained in addition to the polyolefin plastic, and hydrogen chloride is generated from this vinyl chloride during the thermal decomposition process. . Hydrogen chloride poisons the synthetic zeolite-based catalyst contained in the catalytic cracking tank and loses its catalytic effect. Further, if hydrogen chloride is mixed in the produced oil, there is a concern that harmful substances may be generated when the produced oil is burned, and thus it becomes unsuitable as a fuel oil, and the use of the produced oil is significantly narrowed.

【0005】従って、上記の特開平3−86791号公
報に記載の方法によって、一般廃棄物系プラスチック材
を油化処理して良質の炭化水素油を得るためには、熱分
解槽と接触分解槽の間に塩化水素を除去する脱塩化水素
槽を設ける必要がある。この脱塩化水素槽には、脱塩化
水素のための反応剤として、通常の熱分解油ベーパー温
度で固体状であり、しかも、塩化水素と反応し易いCa
Oを充填する。
Therefore, in order to obtain a good quality hydrocarbon oil by oil-treating a general waste plastic material by the method described in the above-mentioned Japanese Patent Laid-Open No. 3-86791, a thermal decomposition tank and a catalytic cracking tank are used. It is necessary to install a dehydrochlorination tank for removing hydrogen chloride between the two. In this dehydrochlorination tank, as a reaction agent for dehydrochlorination, Ca which is solid at a usual pyrolysis oil vapor temperature and easily reacts with hydrogen chloride.
Fill with O.

【0006】しかしながら、この脱塩化水素槽に粉状ま
たは細粒状のCaOを充填すると、この充填層に熱分解
油ベーパーを通した際、熱分解油ベーパーに同伴される
ミスト状熱分解油がCaOに付着してその通過孔を閉塞
し、これによって、急速に圧力損失が増大すると共に、
通気抵抗不安定が起こる。そのため頻繁に、未反応Ca
Oを残したままCaOの入れ替えが必要になるなど、設
備の運転が煩雑になる。また、局所的な閉塞による、熱
分解油ベーパーの偏流が発生し、通気抵抗が増加して充
分な脱塩化水素効果が得られなくなる。そのため、接触
分解触媒の被毒の加速、生成油への塩化水素の混入等の
問題が発生する。さらに、頻繁なCaOの入れ替えが必
要となるため、ランニングコストが増大する。
However, when the dehydrochlorination tank is filled with powdery or fine-grained CaO, when the pyrolysis oil vapor is passed through this packed bed, the mist-like pyrolysis oil entrained in the pyrolysis oil vapor is CaO. Adheres to and blocks the passage hole, which causes a rapid increase in pressure loss and
Unstable ventilation resistance occurs. Therefore, frequently unreacted Ca
The operation of the equipment becomes complicated, such as replacement of CaO with O remaining. In addition, due to local blockage, non-uniform flow of the pyrolyzed oil vapor occurs, which increases ventilation resistance and makes it impossible to obtain a sufficient dehydrochlorination effect. Therefore, problems such as acceleration of poisoning of the catalytic cracking catalyst and mixing of hydrogen chloride into the produced oil occur. Furthermore, since it is necessary to replace CaO frequently, running costs increase.

【0007】[0007]

【発明が解決しようとする課題】本発明において解決す
べき課題は、このような廃プラスチック材の熱分解によ
る油化設備に設ける脱塩化水素剤としてCaOを充填し
た脱塩化水素槽において、脱塩化水素反応を長期にわた
って安定させるための手段を提供することにある。
The problem to be solved by the present invention is to remove dechlorination in a dehydrochlorination tank filled with CaO as a dehydrochlorination agent to be installed in an oilification facility by thermal decomposition of such waste plastic materials. It is to provide a means for stabilizing the hydrogen reaction for a long period of time.

【0008】[0008]

【課趣を解決するための手段】本発明に係る廃プラスチ
ック材の油化処理設備における脱塩化水素槽は、廃プラ
スチック材を溶融する原料混合槽に続いて、溶融したプ
ラスチックを熱分解する熱分解槽、該熱分解槽で発生し
た熱分解油ベーパー中の塩化水素を除去する脱塩化水素
槽、およびこれに続いて前記熱分解油ベーパーを改質す
る接触分解槽から構成される廃プラスチック材の油化処
理設備における前記脱塩化水素槽であって、該脱塩化水
素槽の少なくとも入口側に、層厚が50〜100mm、
粒子径が20〜40mmの無機質粗粒子を配置するとと
もに、前記無機質粗粒子層の後流側に粒子径が2〜10
mmのCaOを配置したことを特徴とする入口と出口の
間の中間には、細粒のCaOを充填する。
[Means for Solving the Subject] The dehydrochlorination tank in the oil treatment equipment for waste plastic materials according to the present invention comprises a raw material mixing tank for melting the waste plastic materials, followed by heat for thermally decomposing the melted plastic materials. Waste plastic material composed of a cracking tank, a dehydrochlorination tank for removing hydrogen chloride in the pyrolysis oil vapor generated in the pyrolysis tank, and a catalytic cracking tank for subsequently reforming the pyrolysis oil vapor The dehydrochlorination tank in the oilification treatment facility, wherein the layer thickness is 50 to 100 mm at least on the inlet side of the dehydrochlorination tank.
Inorganic coarse particles having a particle diameter of 20 to 40 mm are arranged, and the particle diameter is 2 to 10 on the downstream side of the inorganic coarse particle layer.
In the middle between the inlet and the outlet characterized by arranging CaO of mm, fine-grained CaO is filled.

【0009】無機質粗粒子としては、熱分解油ベーパー
の最高温度である420℃以下の温度で変質及び変形し
ないAl2 3 、SiO2 などのセラミック類,金属
類,ガラスなどのような化学的活性を持たないものを使
用することもできるし、また、粗粒自身の塩化水素との
反応による脱塩化水素のための粗粒CaOを使用するこ
とができる。
As the inorganic coarse particles, chemical substances such as Al 2 O 3 , SiO 2 and other ceramics, metals, glass, etc. which do not change or deform at a temperature of 420 ° C. or lower which is the maximum temperature of the pyrolysis oil vapor. It is possible to use those which do not have activity, and it is also possible to use coarse-grained CaO for dehydrochlorination by reacting the coarse grains themselves with hydrogen chloride.

【0010】[0010]

【作用】充填層の少なくとも入口側に無機物質の粗粒層
を配することによって、ミスト状の熱分解油ベーパーが
該粗粒層に捕捉されるため、脱塩化水素槽内での閉塞を
防止し、槽内圧力損失を低くかつ安定させることができ
る。また、該粗粒層によって該熱分解油ベーパーが整流
されるため、熱分解油ベーパーと脱塩化水素剤との接触
を偏りなく行うことができ、脱塩化水素効率を高めるこ
とができる。
[Function] By disposing a coarse particle layer of an inorganic substance at least on the inlet side of the packed bed, mist-like pyrolyzed oil vapor is trapped in the coarse particle layer, so that clogging in the dehydrochlorination tank is prevented. However, the pressure loss in the tank can be kept low and stable. Further, since the pyrolyzed oil vapor is rectified by the coarse particle layer, the pyrolyzed oil vapor and the dehydrochlorination agent can be evenly contacted, and the dehydrochlorination efficiency can be improved.

【0011】中間に設けた細粒CaO層では、粒体比表
面積が大きいため、固−気接触効率を高めることができ
る。すなわち、粗粒のみを充填したときと比べて脱塩化
水素槽を小さくすることができるとともに、充填したC
aOを効率的に使用できる。
Since the fine CaO layer provided in the middle has a large specific surface area of the granular body, the solid-gas contact efficiency can be enhanced. That is, the dehydrochlorination tank can be made smaller than when only coarse particles are filled, and the filled C
aO can be used efficiently.

【0012】さらに、充填層出口側にも無機質粗粒子の
CaO層を設けると、中間の細粒の脱塩化水素槽後段へ
の飛散・混入を避け、細粒による触媒槽閉塞を防止する
ことができる。
Further, if a CaO layer of inorganic coarse particles is provided on the outlet side of the packed bed, it is possible to prevent the intermediate fine particles from scattering and mixing into the latter stage of the dehydrochlorination tank and preventing the catalyst tank from being blocked by the fine particles. it can.

【0013】[0013]

【実施例】図1に本発明に係る脱塩化水素槽を配置した
油化設備の構成を示す。同図においては、図5に示す従
来の油化設備と同一部分は同一記号で示すもので、1は
押出機、2は原料混合槽、3は熱分解槽、4は加熱炉、
5は接触分解槽、6は熱分解油ベーパー用クーラーを示
し、また、一次脱塩化水素装置として洗浄塔7と、同洗
浄塔7にNaOHを供給するライン8を設け、更に、本
発明に係る脱塩化水素槽9が熱分解槽3と接触分解槽5
との間に配置されている。
EXAMPLE FIG. 1 shows the structure of an oiling facility in which a dehydrochlorination tank according to the present invention is arranged. In the figure, the same parts as those of the conventional oiling equipment shown in FIG. 5 are denoted by the same symbols, 1 is an extruder, 2 is a raw material mixing tank, 3 is a thermal decomposition tank, 4 is a heating furnace,
Reference numeral 5 denotes a catalytic cracking tank, 6 denotes a cooler for a pyrolysis oil vapor, a cleaning tower 7 as a primary dehydrochlorination device, and a line 8 for supplying NaOH to the cleaning tower 7 are further provided, and further according to the present invention. Dehydrochlorination tank 9 consists of thermal decomposition tank 3 and catalytic decomposition tank 5
It is located between and.

【0014】同設備を用いて、ポリエチレン40%,ポ
リプロピレン19%,ポリスチレン36%,ポリ塩化ビ
ニル5%からなるプラスチックを5〜20mmに破砕し
て用いた。
Using the same equipment, a plastic consisting of 40% polyethylene, 19% polypropylene, 36% polystyrene and 5% polyvinyl chloride was crushed to 5 to 20 mm and used.

【0015】次に、破砕したプラスチックを押出機1
に、30kg/hにて定量的に供給し、出ロ温度が25
0〜300℃となるように加熱しながら、混練・溶融し
た。次ぎに押出機1にて溶融したプラスチックを、押出
機1の出口側に接続した原料混合槽2に供給し、後段の
熱分解槽3より還流した熱分解油を用いて直接加熱する
ことにより280〜320℃に加熱した。これらの溶融
過程において、すでにプラスチック中に含まれるハロゲ
ン化合物の内約90%がプラスチック中より脱離しガス
状で発生するので、これらの塩化水素は押出機l,原料
混合槽2から洗浄塔7に導き、ノズル8から供給される
NaOH水溶液にて洗浄中和した。次いでこの溶融プラ
スチックと熱分解油の混合物を、熱分解槽3に供給し、
加熱炉4との間を循環させることにより380〜420
℃に昇温した。ここまでの操作によって、熱分解槽3か
ら約26kg/hの熱分解油ベーパーが発生した。この
熱分解油ベーパーを表lに示す粒子を、図2に示す充填
構造を有する脱塩化水素槽(脱クロル槽)9に導入し
た。しかる後に、脱塩化水素槽9を出た熱分解油ベーパ
ーをクーラー6にて凝縮させ、熱分解油を回収した。
Next, the crushed plastic is fed to the extruder 1
And quantitatively supplied at 30 kg / h, and the outlet temperature is 25
The mixture was kneaded and melted while being heated to 0 to 300 ° C. Next, the molten plastic in the extruder 1 is supplied to the raw material mixing tank 2 connected to the outlet side of the extruder 1 and directly heated by using the pyrolysis oil refluxed from the pyrolysis tank 3 in the subsequent stage to obtain 280 Heated to ~ 320 ° C. In the melting process, about 90% of the halogen compounds already contained in the plastic are desorbed from the plastic and are generated in a gaseous state, so that these hydrogen chlorides are transferred from the extruder l, the raw material mixing tank 2 to the cleaning tower 7. It was led, washed and neutralized with an aqueous NaOH solution supplied from the nozzle 8. Then, a mixture of this molten plastic and pyrolysis oil is supplied to the pyrolysis tank 3,
380-420 by circulating between the heating furnace 4
The temperature was raised to ° C. By the operation up to this point, about 26 kg / h of pyrolysis oil vapor was generated from the pyrolysis tank 3. The particles of the pyrolyzed oil vapor shown in Table 1 were introduced into a dehydrochlorination tank (dechlorination tank) 9 having a packing structure shown in FIG. Then, the pyrolyzed oil vapor discharged from the dehydrochlorination tank 9 was condensed by the cooler 6 to collect the pyrolyzed oil.

【0016】それぞれの粒子を用いての処理を7日間連
続して行った。
The treatment using each particle was continuously performed for 7 days.

【0017】[0017]

【表1】 表1に示す粗粒の粒子径を、20mm以下とすると十分
な空隙が得られず、ミスト状未分解分の付着によって容
易に閉塞が生じる。また、30mm以上とすると、空隙
が大きくなりすぎ、ミスト状未分解分は該空隙を通過し
て細粒CaO層まで到達し、付着,閉塞を起こす。また
上記の細粒の粒子径は、2mm以下とすると脱クロル槽
内の圧力損失が大きくなり、10mm以上とすると熱分
解油ベーパーとCaOの十分な接触面積が得られなくな
り、脱クロル槽を大きくする必要がある。そのため、各
粒子の粒径は上記範囲とすることが好ましい。
[Table 1] When the particle size of the coarse particles shown in Table 1 is 20 mm or less, sufficient voids cannot be obtained, and clogging easily occurs due to attachment of the mist-like undecomposed component. If it is 30 mm or more, the voids become too large, and the undecomposed mist-like components reach the fine CaO layer through the voids, causing adhesion and blockage. If the particle size of the fine particles is 2 mm or less, the pressure loss in the dechlorination tank becomes large, and if it is 10 mm or more, a sufficient contact area between the pyrolyzed oil vapor and CaO cannot be obtained, and the dechlorination tank is enlarged. There is a need to. Therefore, the particle size of each particle is preferably within the above range.

【0018】表1に示す粗粒Al2 3 は化学的活性を
持たないものであり、熱分解油ベーパーの整流効果及び
ミスト状熱分解油の付着,閉塞防止のみを期待してい
る。
Coarse-grained Al 2 O 3 shown in Table 1 has no chemical activity, and is expected only for the rectifying effect of the pyrolyzed oil vapor and for preventing the mist-like pyrolyzed oil from adhering and clogging.

【0019】粗粒CaOは、上記の効果の他に、粗粒自
身の塩化水素との反応による脱塩化水素効果をも期待し
ている。
Coarse-grain CaO is expected to have a dehydrochlorination effect due to the reaction of the coarse-grain itself with hydrogen chloride in addition to the above effects.

【0020】表2に、図2に示すように、この無機粗粒
をCaOの入口側と出口側に配置したときの各例におけ
る粗粒層高さと差圧の経時変化を図3と図4に示す。
As shown in FIG. 2, Table 2 shows the changes over time in the coarse particle layer height and the differential pressure in each example when the inorganic coarse particles are arranged on the CaO inlet side and the CaO inlet side, respectively. Shown in.

【0021】[0021]

【表2】 いずれの例も、細粒層高さは970mmとしている。[Table 2] In all examples, the height of the fine particle layer is 970 mm.

【0022】図3に、No.1〜4における脱クロル槽
の入口側と出口側の差圧の経時変化を示す。図4に、N
o.5〜9における脱クロル槽の入口側と出口側の差圧
の経時変化を示す。入口側粗粒層高さを20mmとした
場合は、プラスチック投入開始後6日目から急速な圧力
損失の増大がみられた。粗粒層高さを50mmとした場
合は、6日目から若干の圧力損失の増大が見られたが、
運転に支障をきたす程ではなかった。粗粒層高さを10
0mm及び120mmとした場合は、圧力損失の経時変
化はほとんど見られず、ほぼ一定して推移した。
In FIG. The change with time of the differential pressure between the inlet side and the outlet side of the dechlorination tank in 1-4 is shown. In FIG. 4, N
o. The change over time of the differential pressure between the inlet side and the outlet side of the dechlorination tank in 5 to 9 is shown. When the height of the coarse particle layer on the inlet side was set to 20 mm, a rapid increase in pressure loss was observed from the 6th day after starting the injection of plastic. When the height of the coarse grain layer was 50 mm, a slight increase in pressure loss was observed from the 6th day,
It didn't hinder driving. Coarse layer height 10
When it was set to 0 mm and 120 mm, almost no change in pressure loss with time was observed, and the pressure loss remained almost constant.

【0023】脱クロル槽入口の熱分解油ベーパーの圧力
は、熱分解油ベーパーの発生圧力(約1500mmA
q)であり、安定運転のためには脱クロル槽内の圧力損
失が200〜300mmAqであることが望ましい。上
記の結果より、脱クロル槽の圧力損失を安定運転を妨げ
ない程度とするためには、50mm以上の高さの粗粒層
を、充填層入口側に設ける必要があるといえる。また、
粗粒層高さが100mmの場合と120mmの場合の圧
力損失の経時変化に、ほとんど差異が認められないこと
から、粗粒層高さの上限は100mmとすれば良いとい
える。
The pressure of the pyrolysis oil vapor at the inlet of the dechlorination tank is the pressure generated by the pyrolysis oil vapor (about 1500 mmA).
q), and it is desirable that the pressure loss in the dechlorination tank is 200 to 300 mmAq for stable operation. From the above results, it can be said that a coarse particle layer having a height of 50 mm or more needs to be provided on the inlet side of the packed bed so that the pressure loss of the dechlorination tank does not hinder stable operation. Also,
It can be said that the upper limit of the height of the coarse particle layer should be 100 mm, because there is almost no difference in the change over time in the pressure loss when the height of the coarse particle layer is 100 mm and when it is 120 mm.

【0024】また、出口側の粗粒子層は、脱クロル槽内
の熱分解油ベーパーの流速,細粒CaO充填時の摩擦粉
化の程度などから適宜設置の要否を決定すればよく、必
要な場合には、無機質粗粒子槽を少なくとも38mm以
上とすればよい。
Further, the coarse particle layer on the outlet side may be appropriately determined depending on the flow rate of the pyrolyzed oil vapor in the dechlorination tank, the degree of frictional powdering when filling fine-grained CaO, and the like. In this case, the inorganic coarse particle tank may have a size of at least 38 mm or more.

【0025】表3に各例における脱クロル槽の入口側と
出口側のベーパー中の塩化水素濃度を示す。
Table 3 shows the hydrogen chloride concentration in the vapor on the inlet side and the outlet side of the dechlorination tank in each example.

【0026】[0026]

【表3】 表3から明らかなように、粗粒層を設けない場合(比較
例5)は脱塩化水素効率が下がる。また通気抵抗の安定
度が低い、層高さ20mmの粗粒層を用いた場合は、脱
塩化水素効率も比較的低くなっているが、層高さが50
mm〜120mmの場合には脱塩化水素効率にあまり差
は無いといえる。
[Table 3] As is clear from Table 3, the dehydrochlorination efficiency decreases when the coarse particle layer is not provided (Comparative Example 5). When a coarse particle layer having a layer height of 20 mm and low stability of ventilation resistance is used, the dehydrochlorination efficiency is relatively low, but the layer height is 50%.
It can be said that there is not much difference in dehydrochlorination efficiency in the case of mm to 120 mm.

【0027】さらに粗粒子としてCaOを用いた場合
は、Al2 3 を用いた場合よりも高い脱塩化水素効率
が得られている。このことから、粗粒CaOによる脱塩
化水素効果も得られることが確認できた。
Further, when CaO is used as the coarse particles, a higher dehydrochlorination efficiency is obtained than when Al 2 O 3 is used. From this, it was confirmed that the dehydrochlorination effect by coarse-grained CaO was also obtained.

【0028】本実施例では接触分解触媒を用いなかった
が、50〜100mmの高さの粗粒層を設けない場合、
接触分解触媒の被毒が加速されることは十分に予想さ
れ、その結果としての低沸点分の収率低下、及び炭化水
素油への塩化水素の混入も十分に予想される。
Although no catalytic cracking catalyst was used in this example, when a coarse particle layer having a height of 50 to 100 mm was not provided,
Acceleration of poisoning of the catalytic cracking catalyst is sufficiently expected, and as a result, lowering of the yield of low boiling point components and incorporation of hydrogen chloride into the hydrocarbon oil are also sufficiently expected.

【0029】[0029]

【発明の効果】本発明によって以下の効果を奏する。The present invention has the following effects.

【0030】(1)脱塩化水素槽の通気抵抗を安定させ
たことにより、長期連続安定運転を達成できる。
(1) By stabilizing the ventilation resistance of the dehydrochlorination tank, long-term continuous stable operation can be achieved.

【0031】(2)脱塩化水素槽内の閉塞,偏流を防止
したことにより、脱塩素効果を安定させることができ
る。
(2) By preventing clogging and uneven flow in the dehydrochlorination tank, the dechlorination effect can be stabilized.

【0032】(3)安定した脱塩化水素効果が得られる
ことにより、炭化水素油の品質を向上させることができ
る。
(3) The quality of hydrocarbon oil can be improved by obtaining a stable dehydrochlorination effect.

【0033】(4)頻繁な閉塞の発生,CaO剤の入れ
替えを防止することにより、CaO剤の使用量を減らす
ことができ、ランニングコストの低減につながる。
(4) By preventing frequent blockage and replacement of the CaO agent, the amount of CaO agent used can be reduced, leading to a reduction in running cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の脱塩化水素槽を設けた油化設備の概
略図である。
FIG. 1 is a schematic diagram of oiling equipment provided with a dehydrochlorination tank of the present invention.

【図2】 本発明の脱塩化水素槽における粗粒層の配置
状態を示す。
FIG. 2 shows an arrangement state of a coarse particle layer in the dehydrochlorination tank of the present invention.

【図3】 廃プラスチックを油化処理する従来設備にお
ける処理フロー図である。
FIG. 3 is a processing flow chart in conventional equipment for oil treatment of waste plastic.

【図4】 実施例l〜4の脱塩化水素槽内の圧力損失の
経時変化を示す図である。
FIG. 4 is a diagram showing changes over time in pressure loss in the dehydrochlorination tanks of Examples 1 to 4.

【図5】 実施例5〜8および比較例1における脱塩化
水素槽内の圧力損失の経時変化を示す図である。
5 is a diagram showing changes over time in pressure loss in the dehydrochlorination tank in Examples 5 to 8 and Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 押出機 2 原料混合槽 3 熱分解槽
4 加熱炉 5 接触分解槽 6 熱分解油ベーパー用クーラー
7 洗浄塔 8 NaOH供給ライン 9 脱塩化水素槽
1 Extruder 2 Raw material mixing tank 3 Pyrolysis tank
4 Heating furnace 5 Contact cracking tank 6 Cooler for pyrolysis oil vapor
7 Washing tower 8 NaOH supply line 9 Dehydrochlorination tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大野 仁 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社機械・プラント事業部内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Hitoshi Ohno 46-59 Nakahara, Tobata-ku, Kitakyushu, Fukuoka Prefecture 46-59 Nippon Steel Corporation Machinery & Plant Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 廃プラスチック材を溶融する原料混合槽
に続いて、溶融したプラスチックを熱分解する熱分解
槽、該熱分解槽で発生した熱分解油ベーパー中の塩素を
除去する脱塩化水素槽、およびこれに続いて前記熱分解
ベーパーを改質する接触分解槽から構成される廃プラス
チック材の油化処理設備における前記脱塩化水素槽であ
って、該脱塩化水素槽の少なくとも入口側に、層厚が5
0〜100mm、粒子径が20〜40mmの無機質粗粒
子を配置するとともに、前記無機質粗粒子層の後流側に
粒子径が2〜10mmのCaO層を配置したことを特徴
とする廃プラスチック材の油化処理設備における脱塩化
水素槽。
1. A raw material mixing tank for melting a waste plastic material, a pyrolysis tank for thermally decomposing the melted plastic, and a dehydrochlorination tank for removing chlorine in the pyrolysis oil vapor generated in the pyrolysis tank. , And the dehydrochlorination tank in an oil treatment facility for waste plastic material, which is subsequently constituted by a catalytic cracking tank for reforming the pyrolysis vapor, at least on the inlet side of the dehydrochlorination tank, Layer thickness is 5
Inorganic coarse particles having a particle diameter of 0 to 100 mm and a particle diameter of 20 to 40 mm are arranged, and a CaO layer having a particle diameter of 2 to 10 mm is arranged on the downstream side of the inorganic coarse particle layer. Dehydrochlorination tank in oil treatment equipment.
【請求項2】 無機質粗粒子が、熱分解油ベーパーの最
高温度である420℃以下の温度で変質及び変形しない
Al2 3 、SiO2 などのセラミック類,金属類,ガ
ラスなどのような化学的活性を持たないもの無機質粒
子、あるいは、塩化水素と反応する粗粒CaOである請
求項1記載の廃プラスチック材の油化処理設備における
脱塩化水素槽。
2. Chemicals such as ceramics such as Al 2 O 3 and SiO 2 , metals, glass, etc., in which the inorganic coarse particles do not deteriorate or deform at a temperature of 420 ° C. or lower which is the maximum temperature of the pyrolysis oil vapor. The dehydrochlorination tank in the oil treatment equipment for waste plastic materials according to claim 1, which is inorganic particles having no physical activity or coarse particles CaO which reacts with hydrogen chloride.
JP19654493A 1993-08-06 1993-08-06 Dehydrochlorination tank in oil treatment equipment for waste plastic materials Expired - Fee Related JPH0819419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19654493A JPH0819419B2 (en) 1993-08-06 1993-08-06 Dehydrochlorination tank in oil treatment equipment for waste plastic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19654493A JPH0819419B2 (en) 1993-08-06 1993-08-06 Dehydrochlorination tank in oil treatment equipment for waste plastic materials

Publications (2)

Publication Number Publication Date
JPH0748576A true JPH0748576A (en) 1995-02-21
JPH0819419B2 JPH0819419B2 (en) 1996-02-28

Family

ID=16359511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19654493A Expired - Fee Related JPH0819419B2 (en) 1993-08-06 1993-08-06 Dehydrochlorination tank in oil treatment equipment for waste plastic materials

Country Status (1)

Country Link
JP (1) JPH0819419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006224A1 (en) * 1995-08-08 1997-02-20 Li Xing A process for producing gasoline, diesel fuel and carbon black from waste rubber and/or waste plastics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006224A1 (en) * 1995-08-08 1997-02-20 Li Xing A process for producing gasoline, diesel fuel and carbon black from waste rubber and/or waste plastics
JPH11504672A (en) * 1995-08-08 1999-04-27 シン,リ Process for producing gasoline, diesel oil and carbon black from waste rubber and / or waste plastic material

Also Published As

Publication number Publication date
JPH0819419B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JP6038201B2 (en) Fluidized bed reactor system and method for reducing silicon deposition on reactor wall
US3879480A (en) Vinyl chloride process
CN1047609C (en) System for the production of carbon black
EP0555833A1 (en) Method of an apparatus for producing low boiling point hydrocarbon oil from waste plastics or waste rubber
CN104937076A (en) Method for processing combustible products, reactor for implementing same (variants) and apparatus comprising said reactor
JPH02276889A (en) Method for treating temperature sensitive hydrocarbon flow containing undistillable component
AU2019252154B2 (en) Pyrolysis of methane with a molten salt based catalyst system
US4132763A (en) Process for the production of pure, silicon elemental semiconductor material
JPS60220124A (en) Gas treatment using moving bed
JPH09268293A (en) Catalytic cracker for synthetic polymer and production of oily material using the same
JPH0748576A (en) Dehydrochlorination vessel in waste-plastic liquefaction apparatus
JPS59500212A (en) Halosilane redistribution method, catalyst suitable for redistribution, and catalyst manufacturing method
US3011969A (en) Stripper design
JP2002012411A (en) Recovering method for hydrogen chloride gas
JP2005154510A (en) Chemical recycle apparatus for waste plastic
WO1996004116A1 (en) Method of decomposing waste plastics and apparatus therefor
JPH08253601A (en) Readily thermally decomposable plastic, its production and thermal decomposition of plastic using the same
JPH0776688A (en) Process for converting plastic into oil
JPH0985046A (en) Removal of hydrogen chloride contained in thermal cracking gas of waste plastic material and oil forming treatment equipment of waste plastic material
CN1667086A (en) Purifying system for biomass gasifying oven
JP2005154516A (en) Apparatus for chemical recycling of waste plastic
JP2000140613A (en) Solid-gas reactor
JPH0834978A (en) Production of low-boiling hydrocarbon oil and production machine
JPH0724322A (en) Production of cracking catalyst
JPH06228569A (en) Method and equipment for decomposition of waste plastic

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees