JPH0747706Y2 - Fourier transform infrared spectrophotometer - Google Patents

Fourier transform infrared spectrophotometer

Info

Publication number
JPH0747706Y2
JPH0747706Y2 JP11062489U JP11062489U JPH0747706Y2 JP H0747706 Y2 JPH0747706 Y2 JP H0747706Y2 JP 11062489 U JP11062489 U JP 11062489U JP 11062489 U JP11062489 U JP 11062489U JP H0747706 Y2 JPH0747706 Y2 JP H0747706Y2
Authority
JP
Japan
Prior art keywords
case
gas
fourier transform
transform infrared
infrared spectrophotometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11062489U
Other languages
Japanese (ja)
Other versions
JPH0348734U (en
Inventor
司 佐竹
寿一郎 右近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP11062489U priority Critical patent/JPH0747706Y2/en
Publication of JPH0348734U publication Critical patent/JPH0348734U/ja
Application granted granted Critical
Publication of JPH0747706Y2 publication Critical patent/JPH0747706Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、フーリエ変換赤外分光光度計(以下、FTIRと
云う)に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a Fourier transform infrared spectrophotometer (hereinafter referred to as FTIR).

〔従来の技術〕[Conventional technology]

第4図は一般的なFTIRの構成を示すもので、同図におい
て1は赤外光を発する光源であり、5はビームスプリッ
タ2、固定ミラー3そして可動ミラー4より成る干渉計
である。
FIG. 4 shows the structure of a general FTIR, in which 1 is a light source for emitting infrared light, and 5 is an interferometer composed of a beam splitter 2, a fixed mirror 3 and a movable mirror 4.

そして、光源1からの赤外光は、干渉計5を介しKBrよ
り成る窓6を通って試料室7内のサンプルに照射され
る。さらにこのFTIRは、検出器8及び検出器8からの出
力を処理するデータ処理部(図外)を備えている。な
お、6′もKBrより成る窓である。
Then, the infrared light from the light source 1 is applied to the sample in the sample chamber 7 through the window 6 made of KBr through the interferometer 5. Further, the FTIR includes a detector 8 and a data processing unit (not shown) that processes the output from the detector 8. Incidentally, 6'is also a window made of KBr.

上記光源1、干渉計5及び検出器8は空気の擾乱及び周
囲の温度変化による影響(特に光源1及び干渉計5)を
防ぐため、カバー9内に収容されている。さらに、空気
中のCO2、H2Oは測定波長域(2.5μm〜25μm)に吸収
帯を持ち、データ中に含まれるバックグランドノイズが
大きくなり、測定データのS/Nが悪化するため、カバー
9内には例えば窒素ガス等の不活性ガスが充填されてい
る。
The light source 1, the interferometer 5 and the detector 8 are housed in a cover 9 in order to prevent the influence of the air disturbance and the ambient temperature change (in particular, the light source 1 and the interferometer 5). Furthermore, CO 2 and H 2 O in the air have an absorption band in the measurement wavelength range (2.5 μm to 25 μm), the background noise included in the data becomes large, and the S / N of the measurement data deteriorates. The cover 9 is filled with an inert gas such as nitrogen gas.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記構成によるFTIRにおいては、例えば
工場でのFTIRの組立の際、カバー9に不活性ガスの導入
口、導出口を設け、カバー9内の光学系を組み付け、光
学調整を終えた時点で、前記ガス導入口より不活性ガス
を充填し、ケース9内のパージを行う。
However, in the FTIR having the above configuration, for example, when assembling the FTIR in a factory, the cover 9 is provided with an inlet and outlet for an inert gas, the optical system in the cover 9 is assembled, and optical adjustment is completed. The case 9 is purged by filling it with an inert gas through the gas inlet.

その後、ガス導入口、導出口を封じ切り、ケース9内を
不活性ガスで充たした状態で出荷する方式であった。
After that, the gas inlet and outlet were sealed off, and the case 9 was shipped with the inert gas filled.

ところが長期間の使用においては、窓等の隙間から、ケ
ース9内の不活性ガスが次第にリークし、さらに、赤外
ビーム透過用のKBr窓6は潮解性が大きいため、長期間
の使用ではKBr窓6表面に曇りが生じ、交換する必要が
ある。そのためKBr窓6の交換時においては、ケース9
内の不活性ガスをリークせざるを得ない。
However, in the long-term use, the inert gas in the case 9 gradually leaks from the gap of the window and the KBr window 6 for transmitting the infrared beam has a large deliquescent property. The surface of the window 6 becomes cloudy and needs to be replaced. Therefore, when replacing the KBr window 6, the case 9
There is no choice but to leak the inert gas inside.

しかし、上記問題が生じた場合でもユーザーサイドでケ
ース9内をパージすることは不可能であり、そのため、
ケース9内での空気量が増し、測定結果のS/N、安定
性、再現性の劣化を招くことになる。
However, even if the above problem occurs, it is impossible for the user side to purge the inside of the case 9, so that
The amount of air in case 9 increases, which causes deterioration of S / N, stability, and reproducibility of measurement results.

本考案は、上述の事柄に留意してなされたもので、その
目的とするところは、測定時の安定性を向上させ、且つ
必要に応じて随時パージを行うことができる経済的なFT
IRを提供することにある。
The present invention has been made in consideration of the above-mentioned matters, and the purpose thereof is to improve the stability during measurement and to perform an economic FT that can perform a purge as needed.
To provide IR.

〔問題点を解決するための手段〕[Means for solving problems]

上述の目的を達成するため、本考案に係るFTIRは、光源
及び干渉計を密閉ケース内に収容すると共に、このケー
ス内に不活性ガスを導入する弁とケース内のガス圧が一
定圧以上のとき、前記ガスをケース外に導出する逆止弁
とを設けた点に特徴がある。
In order to achieve the above object, the FTIR according to the present invention accommodates a light source and an interferometer in a sealed case, and a valve for introducing an inert gas into the case and a gas pressure in the case are equal to or higher than a certain pressure. At this time, a check valve for leading the gas out of the case is provided.

〔作用〕[Action]

上記特徴構成によれば、密閉ケースにのみ不活性ガスが
充たされ、出口側に逆止弁を設けているため、パージ時
間及びパージガスの量を大幅に低減でき、非常に経済的
で、且つ効率が良くなる。
According to the above characteristic structure, since only the closed case is filled with the inert gas and the check valve is provided on the outlet side, the purge time and the amount of the purge gas can be significantly reduced, which is very economical, and Efficiency is improved.

さらに、たとえケース内の不活性ガスの量が低下しよう
とも、随時ケース内のパージを行うことができるので、
測定時における安定性を常に保つことができるのであ
る。
Furthermore, even if the amount of inert gas in the case decreases, the inside of the case can be purged at any time,
The stability during measurement can always be maintained.

〔実施例〕〔Example〕

以下、本考案の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図は本考案に係るFTIRの一構成例を示
し、これらの図において、第4図に示す符号と同一のも
のは同一物又は相当物を示す。
1 and 2 show an example of the configuration of the FTIR according to the present invention. In these figures, the same reference numerals as those shown in FIG. 4 designate the same or corresponding ones.

第1図に示すFTIRが従来のFTIRと大きく異なる点は、光
源1及び干渉系5を断熱性に優れた、例えばポリカーボ
ネートのような合成樹脂等よりなる密閉ケース10内に収
容し、さらに上記密閉ケース10に、例えば窒素ガス等の
不活性ガスを導入するための開閉弁11と、導出するため
の逆止弁12を設けた点である。
The difference between the FTIR shown in FIG. 1 and the conventional FTIR is that the light source 1 and the interference system 5 are housed in a sealed case 10 made of a synthetic resin such as polycarbonate, which has excellent heat insulating properties, and the above-mentioned sealed The case 10 is provided with an opening / closing valve 11 for introducing an inert gas such as nitrogen gas and a check valve 12 for introducing the same.

第2図は上記構成例の要部を示した図であり、外部から
の窒素ガスを開閉弁11に導入管等を介して供給し、開閉
弁11を開いて密閉ケース10内へ窒素ガスを導入し、密閉
ケース10内を経て、逆止弁12から導出させる。
FIG. 2 is a diagram showing a main part of the above configuration example, in which nitrogen gas from the outside is supplied to the on-off valve 11 through an introduction pipe or the like, and the on-off valve 11 is opened to supply the nitrogen gas into the closed case 10. After being introduced, it passes through the sealed case 10 and is led out from the check valve 12.

そして密閉ケース10内が窒素ガスが置換された後、開閉
弁11を閉じ、密閉ケース10内のガス圧が予め設定された
圧力にまで下がると、逆止弁12が閉じるため、自動的に
窒素ガスを密閉ケース10内に封じ込めることができるの
である。
Then, after the inside of the closed case 10 is replaced with nitrogen gas, the on-off valve 11 is closed, and when the gas pressure inside the closed case 10 drops to a preset pressure, the check valve 12 is closed, so that the nitrogen is automatically added. The gas can be contained in the closed case 10.

第3図は本考案の別実施例を示すもので、この図におい
て、上記実施例と同様、第4図に示す符号と同一のもの
は同一物又は相当物を示す。
FIG. 3 shows another embodiment of the present invention. In this figure, like the above embodiment, the same reference numerals as those in FIG. 4 designate the same or corresponding parts.

ここで窒素ガスの導入口に三方コック13を設け、さらに
密閉ケース10の導入弁として逆止弁14を設けてあり、先
ず三方コック13を、密閉ケース10内を窒素ガスでパージ
するように設定し、密閉ケース10内が窒素ガスで置換さ
れた後、三方コック13を閉じると、導入側の逆止弁14が
閉じ、その後前記実施例と同様、密閉ケース10内のガス
圧が設定圧にまで下がると、導出側の逆止弁12も閉じて
窒素ガスが密閉ケース10内に閉じ込められる。
Here, a three-way cock 13 is provided at the introduction port of nitrogen gas, and a check valve 14 is further provided as an introduction valve of the closed case 10.First, the three-way cock 13 is set to purge the inside of the closed case 10 with nitrogen gas. Then, after the inside of the closed case 10 is replaced with nitrogen gas, the three-way cock 13 is closed, the check valve 14 on the introduction side is closed, and then, as in the above-described embodiment, the gas pressure inside the closed case 10 becomes the set pressure. When it goes down, the check valve 12 on the outlet side is also closed and the nitrogen gas is confined in the sealed case 10.

その後、上記三方コック13を検出器8が収容されている
ケース15内に窒素ガスが流れるように切換え、ケース15
内をパージし、同時に、排出口15aを介して、試料室7
内をパージするのである。
After that, the three-way cock 13 is switched so that the nitrogen gas flows in the case 15 in which the detector 8 is housed.
The inside of the sample chamber 7 is purged at the same time through the outlet 15a.
The inside is purged.

尚、16は試料室7に設けた逆止弁である。Reference numeral 16 is a check valve provided in the sample chamber 7.

〔考案の効果〕[Effect of device]

以上説明したように、本考案によれば、光源及び干渉計
を密閉ケース内に収容すると共に、このケース内に不活
性ガスを導入する弁とケース内のガス圧が一定圧以上の
とき、前記ガスをケース外に導出する逆止弁とを設けて
いるので、密閉ケース内にのみ不活性ガスが充たされ、
パージ時間及びパージガスの量を大幅に低減でき、非常
に経済的で、且つ効率が良くなる。
As described above, according to the present invention, the light source and the interferometer are housed in the closed case, and the valve for introducing the inert gas into the case and the gas pressure in the case are equal to or higher than a certain pressure, Since there is a check valve that draws gas out of the case, only the sealed case is filled with inert gas,
The purge time and the amount of purge gas can be greatly reduced, which is very economical and efficient.

さらに、別実施例で述べたように密閉ケース10をパージ
した後、三方コックを切り換えて、検出器部分及び試料
室内をパージすることにより、空気中のCO2、H2Oによる
影響をより一層小さくすることも可能である。
Furthermore, after purging the closed case 10 as described in another embodiment, by switching the three-way cock to purge the detector part and the sample chamber, the effect of CO 2 and H 2 O in the air is further enhanced. It can be made smaller.

また、たとえケース内の不活性ガスの量が低下しようと
も、随時ケース内のパージを行うことができるので、測
定時における安定性を常に保つことができるようになっ
たのである。
Further, even if the amount of the inert gas in the case decreases, the inside of the case can be purged at any time, so that the stability at the time of measurement can always be maintained.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本考案に係るフーリエ変換赤外分光
光度計の一実施例を示し、第1図はフーリエ変換赤外分
光光度計の全体図、第2図は要部を示す平面図である。 第3図は本考案の別実施例を示す要部の平面図である。 第4図は従来のフーリエ変換赤外分光光度計を示す全体
図である。 1……光源、5……干渉計、7……試料室、8……検出
器、10……密閉ケース、11……導入弁、12……逆止弁。
1 and 2 show an embodiment of a Fourier transform infrared spectrophotometer according to the present invention, FIG. 1 is an overall view of the Fourier transform infrared spectrophotometer, and FIG. 2 is a plan view showing essential parts. It is a figure. FIG. 3 is a plan view of an essential part showing another embodiment of the present invention. FIG. 4 is an overall view showing a conventional Fourier transform infrared spectrophotometer. 1 ... Light source, 5 ... Interferometer, 7 ... Sample chamber, 8 ... Detector, 10 ... Sealed case, 11 ... Introduction valve, 12 ... Check valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】光源、干渉計、試料室、検出器などからな
る分析部と、この分析部から出力されるインターフェロ
グラムを処理するデータ処理部とからなるフーリエ変換
赤外分光光度計において、光源及び干渉計を密閉ケース
内に収容すると共に、このケース内に不活性ガスを導入
する弁とケース内のガス圧が一定圧以上のとき、前記ガ
スをケース外に導出する逆止弁とを設けたことを特徴と
するフーリエ変換赤外分光光度計。
1. A Fourier transform infrared spectrophotometer comprising: an analysis unit including a light source, an interferometer, a sample chamber, a detector, and the like, and a data processing unit that processes an interferogram output from the analysis unit, A light source and an interferometer are housed in a sealed case, and a valve for introducing an inert gas into the case and a check valve for discharging the gas out of the case when the gas pressure in the case is a certain pressure or more. A Fourier transform infrared spectrophotometer characterized by being provided.
JP11062489U 1989-09-20 1989-09-20 Fourier transform infrared spectrophotometer Expired - Lifetime JPH0747706Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11062489U JPH0747706Y2 (en) 1989-09-20 1989-09-20 Fourier transform infrared spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11062489U JPH0747706Y2 (en) 1989-09-20 1989-09-20 Fourier transform infrared spectrophotometer

Publications (2)

Publication Number Publication Date
JPH0348734U JPH0348734U (en) 1991-05-10
JPH0747706Y2 true JPH0747706Y2 (en) 1995-11-01

Family

ID=31659148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11062489U Expired - Lifetime JPH0747706Y2 (en) 1989-09-20 1989-09-20 Fourier transform infrared spectrophotometer

Country Status (1)

Country Link
JP (1) JPH0747706Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470977B2 (en) * 2009-03-31 2014-04-16 株式会社島津製作所 Infrared spectrophotometer

Also Published As

Publication number Publication date
JPH0348734U (en) 1991-05-10

Similar Documents

Publication Publication Date Title
JPS58500140A (en) Detection device for selective detection of gases based on optical spectroscopy
US3618361A (en) Method and apparatus for determining gas permeability of film
US2761067A (en) Multi-component photometric analysis
US20040093965A1 (en) Accelerated weathering apparatus having sealed weathering chamber
WO1991005240A1 (en) Infrared-based gas detector
US6410918B1 (en) Diffusion-type NDIR gas analyzer with improved response time due to convection flow
JP2005043285A (en) X-ray diffraction measuring container for thin-film sample
JP2008197092A (en) Exposure tester with specimen vessel integrally formed with ultraviolet filter
US4045679A (en) Fluorescent gas analyzer
US20070125950A1 (en) Fourier transform infrared spectrophotometer
JPH0747706Y2 (en) Fourier transform infrared spectrophotometer
US5225681A (en) Gas-filled uv spectrometer
US6036321A (en) Crystal isolation housing
CN109991179B (en) Use environment simulation device and measurement method for optical thin film spectral measurement
Persijn Purity Analysis of Gases Used in the Preparation of Reference Gas Standards Using a Versatile OPO‐Based CRDS Spectrometer
US4082459A (en) Analytical cell assembly for an analyzer
Low Infrared Examination of Gas Chromatography Effluent using a Dual Beam, Single Detector Interference Spectrometer
WO2018131279A1 (en) Liquid chromatograph detector
US2854585A (en) Composition analyzer utilizing radiation
JP2589317Y2 (en) Connection structure between cell and cell block
Brattain et al. A Rapid Infra‐Red Analytical Method for Hydrocarbon Mixtures and A Routine Spectrophotometer for Plant Control
JP3732921B2 (en) Purge device for spectrometer
JPH041557A (en) Flow cell of infrared spectrophotometer
US3518439A (en) Absorption tester having beam splitter and wheatstone bridge with potentiometer balancing
JPH10332579A (en) Golay cell and 13c measuring apparatus using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term